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Let G be a finite irreducible subgroup of GL(n, C) and p be a prime 
divisor of ]G]. Then it is well known that (replacing G with a suitable 
conjugate within GL(n, C), if necessary) we may suppose that G is a 
subgroup of GL(n, R), where R is the localization of the ring of algebraic 
integers of a cyclotomic number field at a prime ideal II containing p. This 
enables us to define a homomorphism from G to GL(n, F), where F is the 
finite field of characteristic p obtained by factoring out the unique maximal 
ideal of R. The kernel of this homomorphism is a p-group, and the above 
process is known as reduction (modp) of G. 

In this paper, we will consider what can be said if ap-element x of G, acts 
with minimum polynomial of relatively small degree in some reduction 
(modp) of G when G is quasi-primitive. 

The methods of this paper are inspired by the article of Feit [3]. Indeed, 
Feit has obtained some of the results of our Theorem A already in 
unpublished work. The proof of Theorem A presented here evolved from an 
idea of Professor George Glauberman, and owes much to that idea. 
Glauberman also obtained part of our Theorem A (also in unpublished 
work) independently of Feit. Part of the proof of Theorem A is a special case 
of Theorem A 1.4 of [5]. 

Before we state our main theorem, we need to fix some notation. G is a 
finite group, p is a prime divisor of 1 G I, R is a principal ideal domain which 
is a local’ subring of C such that F = R/n is a finite field of characteristic p 
(where rr is the unique maximal ideal of R). V is a faithful RG-module such 
that V@, C is irreducible and quasi-primitive, and v is the canonical FG- 
module obtained from V. Also, x is an element of order p in G and k is the 
positive integer such that @l - x)~ = 0, v(l - x)~-’ # 0. Finally, P is a 
Sylow p-subgroup of G containing x, and Q is the subgroup of P generated 
by the G-conjugates of x contained in P. 
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THEOREM A. (i) Ifk ,< (p - 1)/2, then (V@, C),E’G(p, is irreducible. 

(ii) If 1 < k < (p + 1)/4, then (V@, c)N,(oj is irreducible and quasi- 
primitive, Q is extra-special of exponent p, and order p2mt’ for some integer 
m such that p” divides dim,(V OR C), and each irreducible constituent of 
(V OR c), has degree p”, where M is the normal subgroup of G generated 
by the conjugates of x. Also, Z(Q) < Z(G), so that O,(G) f 1,. 

(iii) If k < (p + 5)/8, then x E O,(G). 

Proof. Let H = No(Q). In Case (i), we let W = V@ V*, in Case (ii) we 
let W = V@ V* @ V@ V*, and in Case (iii) we let W = V 0 V* @ V@ 
V* @ Vg V* @ V @ V*. We first prove that C,(H) = C,.(G) in each case. 
Let w= W/zW. Matters have been arranged so that @( 1 - x)“-’ = 0 (for 
in general, if V,(l -xy=o and V,(l -xy=o, then 
v, @ VT(l -X)m+“-’ = 0). 

We define a linear mapping 4: C,(H) + C,(G) by v# = CIET vt for each 
v E C,(H), where G = U,,, Ht and [G : HJ = / TI. It is easy to check that 
the definition of 4 is independent of the transversal T chosen. Suppose then 
that C,(H) # C,(G). Then there is some w # 0 in C,(H) with w$ = 0. By 
taking a suitable multiple of w, we may suppose that $ # 0. 

Now let { gi: 1 < i < s} be a complete set of (H, Q) double coset represen- - 
tatives in G with g, = 1,. We compute the contribution made to w# by the 
double coset HgiQ for i > 1. 

We first remark that if a p-group A is generated by a set S and A acts 
transitively on a set n, then there is an element s E S which fixes no element 
of R if (R( > 1 (for let B be the stabilizer of a point in Sz. Then there is a 
maximal subgroup D of A which contains all conjugates of B. Some element 
s E S must lie outside D, and this s fixes no point of G). Now for i > 1, 
Hgi Q > Hgi, for otherwise gi Qg; ’ < H, so hgiQg,: ‘h -’ < P for some 
h E H, and then hgiQg; ‘h-l = Q by definition of Q, so that 
hg, E NJQ) = H, and gi E H, a contradiction. 

Since Q is generated by conjugates of x, by the above remarks we may 
write Hg,Q = U;=, up:; Hykzi, where z is a conjugate of x and r is an - 
integer which depends on i. Then the contribution to wd from HgiQ is 
cI;=lwy,(l -z)~-’ =O, b ecause z is conjugate to x and @(l - x)“-’ = 0. - - 

Hence only the coset H makes any contribution to w#, so that w# = W. 
This contradicts the fact that w# = 0 but W # 0. Thus we must have 
C,(H) = C,(G). 

Case i. In this case, we have C,,,,(H) = C,,,,(G), and it readily 
follows that (V OR C), is irreducible. 

Case ii. In this case, C,,~v.‘ovov~(H) = C,,Ov*OvOv*(G). Let x be the 
character of G afforded by V. By (i), xIH is irreducible. In this case, we see 
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that &, & = (&, xl],),. To prove (ii) we are required to prove that 
whenever N u H, x(~ is a multiple of an irreducible character. 

Let N be a normal subgroup of H. We note that each irreducible 
constituent of ~2 remains irreducible on restriction to H. Thus whenever 4 is 
an irreducible constituent of xx with (#IN, lN) # 0 we see that N < ker 4 
(since & is irreducible and N (1 H). It follows that C,.,,(N) is G- 
invariant. 

Let K = CG(CVoV* (N)). Then N< K, so that C,,,,(K)& C,,,&V) < 
C vgv.(K). Since V& G is quasi-primitive, x& = a~ for some integer a, 
some irreducible character IJ of K (because K u G). Since C,,,,(N) = 
C vove(K), vIN remains irreducible. Thus xJN = a~&, so is a multiple of an 
irreducible character, as required. In particular, every Abelian normal 
subgroup of H is contained in Z(G), so is cyclic. Since Z(Q) a H, 

O,(G) + 1,. 
Since x acts nontrivially on v, x 6? Z(Q), so that Q is nonabelian. We 

outline the argument of Rigby (71 to show that Q is extra special of 
exponent p (p must be odd in this case, of course). Every characteristic 
Abelian subgroup of Q is normal in H, so is contained in Z(G), so is cyclic. 
Since Q is generated by elements of order p, and is nonabelian, Q is quickly 
seen to be extra special and of exponent p. Thus ] Q] =p2”“’ for some 
integer m, and each irreducible constituent of & has degree p”, so that p” 
divides dim,( V OR C). 

Let X = CG(CVoV* (Q)). Then X (1 G, and all irreducible constituents of 
xlX are equal, and of degree pm, by an earlier argument. Let M be the normal 
subgroup of G generated by the conjugates of x. Then Q <M < X, so each 
irreducible constituent of XI,,, has degree p” also (and all are equal). The 
proof of part (ii) is complete. 

Case iii. Suppose that x & O,(G). Then by part (ii), Q is extra special of 
exponent p. In this case, we also have C,,,(H) = C,.(G), where W = V @ V* @ 
v@v*@v@v*@v@v*. 

An argument similar to that used in part (ii) shows that whenever N 4 H, 
C vgv.ov&V is G- invariant, and that there is a normal subgroup K of G 
having the same fixed points on V@ I’* @ I’@ V* as N does, so that each 
irreducible constituent of X& remains irreducible on restriction to N. 

Let R be the normal subgroup of G which corresponds to Q in the above 
way. By part (ii), xX]c is a multiple of the regular character of Q/Q’, so that 
all irreducible constituents of x& are linear. Hence all irreducible 
constituents of x,& are linear also, so that R’ Q ker&) = Z(G). Thus R is 
nilpotent. Since Q <R, and x E Q, x lies in O,(G), contrary to hypothesis. 
The proof of part (iii) is complete. 
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COROLLARY 1. Let G, x be as in Theorem A. Then ifx @ Z(G), x has at 
least (p + 3)/4 distinct eigenvalues on VOR C. 

ProoJ Suppose that x has (p + 1)/4 or fewer eigenvalues, but that 
x 4 Z(G). Then x has a minimum polynomial of degree <(p + 1)/4 on V. If 
x acts nontrivially on p we see from part (ii) that Q is extra special and that 
& = av for some faithful irreducible character li/ of Q. Since x E Q\Z(Q) 
(for Z(Q) <Z(G) and x & Z(G)) we have x(x) = 0, a contradiction, as x has 
(p + I)/4 or fewer eigenvalues. Thus x E O,(G), so O,(G) 4 Z(G). 

Since V is quasi-primitive, O,(G) is the central product of an extra special 
group of exponent p and a cyclic group contained in Z(G), so again we have 
x(x) = 0, a contradiction. Thus if x @ Z(G), x must have at least (p + 3)/4 
distinct eigenvalues. 

COROLLARY 2. Suppose that O,(G) = 1, and that PC”’ # 1,. Then xIp 
has at least (p - 1)/4 distinct irreducible constituents of degree p” or more. 
In particular, dim,( V OR C) >p”((p - 1)/4). 

Proof: An easy induction argument shows that PC”’ ,< ker w whenever v 
is an irreducible constituent of xjP of degree p”- ’ or less. Since PC”’ # lo, 
there is an element x of order p in PC”) n Z(P). Since x has at least 
(p + 3)/4 distinct eigenvalues, there must be at least (p - I)/4 inequivalent 
irreducible constituents of xl,, of degree p” or more. 

Remark. We can conclude from the above argument that 
dim,(V@, C) > p”((p - 1)/4) and if p z 3 (mod 4) that dim&V@, C) > 
P”((P + 1)/4)* 

COROLLARY 3. Let c=l if pi-1 (mod4) and E=-1 if p= 1 
(mod 4). Then if dim,(V@, C) <p((p + s)/4), and O,(G) = 1, G has 
elementary Abelian Sylow p-subgroups. 

Proof By Corollary 2, P is Abelian. Choose y E P of order p2, if 
possible, and let yp = X. Then r( 1 -y)p”P+E)‘4 = 0, so v( 1 - x)(,+ E)‘4 = 0, 
which contradicts part (ii) of Theorem A, as O,(G) = 1,. Thus P is 
elementary Abelian. 

COROLLARY 4. Let r be the maximum dimension of any indecomposable 
summand of VP. Then if O,(G) = 1,) P has nilpotence class less than 
4r/(p - E), where E = f 1 and p z E (mod 4). 

ProoJ: We define the subspaces [v, P; i] of i7 by: [l? P; 1 ] is the 
subspace of v generated by {r7(1 -x):r7E v,xEP} and for i> 1, 
[V,P;i+ l]=[[F,Pp;i],P]. W e recall that L,(P) denotes the ith term of the 
lower central series of P. 
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The three subgroups lemma and an easy induction argument yields 
[V,L,(P)] < [V,P;i] for i> 1. Another induction argument yields 
[F,L,(P);k]< [V,P;ik] f or i, k > 1. Since r is the maximum dimension of 
any indecomposable summand of VP, we have [p, P, r] = 0. 

Suppose that O,(G) = 1 G, and let j be any integer greater than or equal to 
4r/(p - E). Then [V, L,(P); (p - s)/4] = 0, so in particular, each element of 
Lj(P) has minimum polynomial of degree (p - a)/4 or less on v. By 
Theorem A(ii), L,(P) = 1,. Thus class (P) <,4r/(p - E). 

COROLLARY 5. Suppose that p > I and that x is an element of order p in 
P such that v(l - x)” = 0. Then x E O,(G). 

Proox Suppose that x Q? O,(G). By Theorem A(iii), p = 7. Also, we may 
choose a conjugate y of x such that (x, y) is not a p-group (in fact by 
Theorem 3.8.1 of [6], (x, y) involves SL(2,p)). Let K = (x, y). Then K’ 
contains an element of order 6, say z in a component of K/O,(K). 

Let v, = PO, F, , where F, is an algebraically closed field containing F. 
The argument of Theorem 3.8.1 of [6] shows that the composition factors of 
G are all 1 or 2 dimensional. We show that they are all 2 dimensional. 
There is at least one 2-dimensional composition factor. If there are any 
trivial composition factors z has eigenvalues 1, a,& where a and /I are 
primitive 6th roots of unity. Since z is p-regular, the eigenvalues of z on 
P’aR C are 1, -w, --O, where w = exp(2xi/3). This contradicts the well- 
known result of Blichfeldt (see [2] for a proof of this result, which is valid 
for quasi-primitive representations, though only stated for primitive ones). 
Thus all composition factors of v,K are 2 dimensional. 

Let t = z3. Then t has only the eigenvalue - 1 on v, . Since t is p-regular, 
t E Z(G). Let M be the normal subgroup of G generated by the conjugates of 
x. Then t f M’, since t E (x, y)‘. By Theorem A(ii), each irreducible 
component of V, has dimension pm for some integer m. This contradicts the 
fact that t E M’, since t has only the eigenvalue -1 on I/ and p is odd. 

Thus x E O,(G), and the proof of Corollary 5 is complete. 

An Application to a Theorem of Feit and Thompson 

It is not difficult to prove, using Corollary 1 that if a finite group G has a 
faithful complex representation of degree (p + 1)/4 or less, where p is a 
prime, then G has an Abelian normal Sylow p-subgroup. However, in [4] 
Feit and Thompson proved that if G has a faithful complex representation of 
degree less than (p - 1),/2, then G has an Abelian normal Sylow p-subgroup. 
They used a complicated coherence argument to reduce to the case when p 
divided ] G( to the first power only. The next lemma gives an alternative 
reduction to this case and shows in fact that we only need to consider the 
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case when the representation of G has degree (p - 1)/3. Results of Brauer 
[ 1 ] can be used to eliminate this case. 

It is easy to see that it is sufficient to consider the case when G has a 
faithful irreducible complex representation of degree <(p - 1)/2, and the 
Sylow p-subgroups of G are trivial intersection sets. 

PROPOSITION 6. Let G be a finite group, p be a prime, V be a faithful 
irreducible GG-module with dim,(V) < (p - 1)/2. Let P be a Sylow p- 
subgroup of G such that P n Pg = 1 G for all g E G\N,(P). Then VNc;(p, is 
irreducible and one of the following occurs’s: 

(i) P a G. 

(ii) IPI =p and dim,(V) = (p - 1)/3. 

(iii) 1 PI =p and dim,(V) = (p - 1)/2. 

Proof: Suppose that (i) does not occur. Then O,(G) = 1,. We claim that 
V is primitive. Otherwise V = P, where W is a CH-module of dimension at 
most (p - 1)/4 and H is a subgroup of G. Let K = n,,, Hg. Then 
pt [G : K], since [G : H] < p. Furthermore, V, is a direct sum of CK- 
modules of dimension at most (p - 1)/4, so that K has an Abelian normal 
Sylow p-subgroup by Theorem A(ii), contrary to the fact that O,(G) = 1, 
and P + G. 

By Corollary 3, P is elementary Abelian. By Corollary 1, dim,(V) > 
(p + 3)/4. Suppose that [PI > p. We may suppose that V is a faithful RG- 
module, where R is the localization at some prime ideal containing p of some 
ring of algebraic integers in a cyclotomic number field. Let 71 be the unique 
prime ideal of R and let F be the residue Iield R/n. 

Let H = N,(P), and let W = V @ V* 0 V @ V*. If C,,,(H) = C,,,(G), the 
arguments of Theorem A(ii) yield a contradiction. Let v= V/zV. Then 
[v,P;(p-1)/2]=0. By LemmaA2.3 of [5], [m,P;2p-5]=0. 

We define the mapping 4: C,(H) -+ C,(G) as we did in Theorem A. There 
must be some w E C,(H) with w# = 0, W # 0, as in Theorem A. 

Let { gi: 1 < i < r} be a complete set of (H, P) double-coset representatives 
in G. Then 

ti#=@+ i wgi 1 x. 
i=2 XCP 

Since r.?# f W, there is some i such that flgi CXEP x # 0. Let P be generated 
by (xj: 1 <j < n}, and by no proper subset. Then 

#gi C X= @i fi (1 -xj>"-'* 

XEP .j= I 
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Thus [w, P; n(~ - l)] # 0, a contradiction, as [ @, P; 2p - 5]= 0 and n > 1. 
Thus IPI=p. 

By Theorem A(l), VNGtPj is irreducible. By Corollary 1, VP is multiplicity 
free, and dim,(V) > (p + 3)/4. Since VP is multiplicity free and VNctPj is 

irreducible, we see that dim,(V) is a divisor of p - 1. Hence we see that 
dim,(V) = (p - 1)/3 or (p - 1)/2, as claimed. 
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