JOURNAL OF ALGEBRA 83, 477-483 (1983)

Remarks on Reduction (mod *p*) of Finite Complex Linear Groups

GEOFFREY R. ROBINSON

Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, Illinois 60637

> Communicated by Walter Feit Received by August 31, 1982

Let G be a finite irreducible subgroup of $GL(n, \mathbb{C})$ and p be a prime divisor of |G|. Then it is well known that (replacing G with a suitable conjugate within $GL(n, \mathbb{C})$, if necessary) we may suppose that G is a subgroup of GL(n, R), where R is the localization of the ring of algebraic integers of a cyclotomic number field at a prime ideal π containing p. This enables us to define a homomorphism from G to GL(n, F), where F is the finite field of characteristic p obtained by factoring out the unique maximal ideal of R. The kernel of this homomorphism is a p-group, and the above process is known as reduction (mod p) of G.

In this paper, we will consider what can be said if a *p*-element x of G, acts with minimum polynomial of relatively small degree in some reduction (mod p) of G when G is quasi-primitive.

The methods of this paper are inspired by the article of Feit [3]. Indeed, Feit has obtained some of the results of our Theorem A already in unpublished work. The proof of Theorem A presented here evolved from an idea of Professor George Glauberman, and owes much to that idea. Glauberman also obtained part of our Theorem A (also in unpublished work) independently of Feit. Part of the proof of Theorem A is a special case of Theorem A 1.4 of [5].

Before we state our main theorem, we need to fix some notation. G is a finite group, p is a prime divisor of |G|, R is a principal ideal domain which is a local subring of \mathbb{C} such that $F = R/\pi$ is a finite field of characteristic p (where π is the unique maximal ideal of R). V is a faithful RG-module such that $V \otimes_R \mathbb{C}$ is irreducible and quasi-primitive, and \overline{V} is the canonical FG-module obtained from V. Also, x is an element of order p in G and k is the positive integer such that $\overline{V}(1-x)^k = 0$, $\overline{V}(1-x)^{k-1} \neq 0$. Finally, P is a Sylow p-subgroup of G containing x, and Q is the subgroup of P generated by the G-conjugates of x contained in P.

THEOREM A. (i) If $k \leq (p-1)/2$, then $(V \otimes_R \mathbb{C})_{N_G(Q)}$ is irreducible.

(ii) If $1 < k \leq (p+1)/4$, then $(V \otimes_R \mathbb{C})_{N_G(O)}$ is irreducible and quasiprimitive, Q is extra-special of exponent p, and order p^{2m+1} for some integer m such that p^m divides $\dim_{\mathbb{C}}(V \otimes_R \mathbb{C})$, and each irreducible constituent of $(V \otimes_R \mathbb{C})_M$ has degree p^m , where M is the normal subgroup of G generated by the conjugates of x. Also, $Z(Q) \leq Z(G)$, so that $O_p(G) \neq 1_G$.

(iii) If $k \leq (p+5)/8$, then $x \in O_p(G)$.

Proof. Let $H = N_G(Q)$. In Case (i), we let $W = V \otimes V^*$, in Case (ii) we let $W = V \otimes V^* \otimes V \otimes V^*$, and in Case (iii) we let $W = V \otimes V^* \otimes V \otimes V^* \otimes V \otimes V^* \otimes V \otimes V^*$. We first prove that $C_w(H) = C_w(G)$ in each case. Let $\overline{W} = W/\pi W$. Matters have been arranged so that $\overline{W}(1-x)^{p-2} = 0$ (for in general, if $V_1(1-x)^m = 0$ and $V_2(1-x)^n = 0$, then $V_1 \otimes V_2^*(1-x)^{m+n-1} = 0$).

We define a linear mapping $\phi: C_w(H) \to C_w(G)$ by $v\phi = \sum_{t \in T} vt$ for each $v \in C_w(H)$, where $G = \bigcup_{t \in T} Ht$ and [G:H] = |T|. It is easy to check that the definition of ϕ is independent of the transversal T chosen. Suppose then that $C_w(H) \neq C_w(G)$. Then there is some $w \neq 0$ in $C_w(H)$ with $w\phi = 0$. By taking a suitable multiple of w, we may suppose that $\overline{w} \neq 0$.

Now let $\{g_i: 1 \le i \le s\}$ be a complete set of (H, Q) double coset representatives in G with $g_1 = 1_G$. We compute the contribution made to $\overline{w\phi}$ by the double coset Hg_iQ for i > 1.

We first remark that if a p-group A is generated by a set S and A acts transitively on a set Ω , then there is an element $s \in S$ which fixes no element of Ω if $|\Omega| > 1$ (for let B be the stabilizer of a point in Ω . Then there is a maximal subgroup D of A which contains all conjugates of B. Some element $s \in S$ must lie outside D, and this s fixes no point of Ω). Now for i > 1, $Hg_iQ > Hg_i$, for otherwise $g_iQg_i^{-1} \leq H$, so $hg_iQg_i^{-1}h^{-1} \leq P$ for some $h \in H$, and then $hg_iQg_i^{-1}h^{-1} = Q$ by definition of Q, so that $hg_i \in N_G(Q) = H$, and $g_i \in H$, a contradiction.

Since Q is generated by conjugates of x, by the above remarks we may write $Hg_iQ = \bigcup_{k=1}^{p} \bigcup_{j=0}^{p-1} Hy_k z^j$, where z is a conjugate of x and r is an integer which depends on i. Then the contribution to $\overline{w\phi}$ from Hg_iQ is $\sum_{k=1}^{r} \overline{wy_k}(1-z)^{p-1} = 0$, because z is conjugate to x and $\overline{W}(1-x)^{p-1} = 0$. Hence only the coset H makes any contribution to $\overline{w\phi}$, so that $\overline{w\phi} = \overline{w}$. This contradicts the fact that $w\phi = 0$ but $\overline{w} \neq 0$. Thus we must have $C_w(H) = C_w(G)$.

Case i. In this case, we have $C_{V \otimes V^*}(H) = C_{V \otimes V^*}(G)$, and it readily follows that $(V \otimes_R \mathbb{C})_H$ is irreducible.

Case ii. In this case, $C_{V \otimes V^* \otimes V \otimes V^*}(H) = C_{V \otimes V^* \otimes V \otimes V^*}(G)$. Let χ be the character of G afforded by V. By (i), $\chi|_H$ is irreducible. In this case, we see

that $(\chi\bar{\chi},\chi\bar{\chi})_G = (\chi\bar{\chi}|_H,\chi\bar{\chi}|_H)_H$. To prove (ii) we are required to prove that whenever $N \triangleleft H, \chi|_N$ is a multiple of an irreducible character.

Let N be a normal subgroup of H. We note that each irreducible constituent of $\chi\bar{\chi}$ remains irreducible on restriction to H. Thus whenever ϕ is an irreducible constituent of $\chi\bar{\chi}$ with $(\phi|_N, 1_N) \neq 0$ we see that $N \leq \ker \phi$ (since $\phi|_H$ is irreducible and $N \triangleleft H$). It follows that $C_{V \otimes V^*}(N)$ is G-invariant.

Let $K = C_G(C_{V \otimes V^*}(N))$. Then $N \leq K$, so that $C_{V \otimes V^*}(K) \leq C_{V \otimes V^*}(N) \leq C_{V \otimes V^*}(K)$. Since $V \otimes_R \mathbb{C}$ is quasi-primitive, $\chi|_K = a\psi$ for some integer a, some irreducible character ψ of K (because $K \lhd G$). Since $C_{V \otimes V^*}(N) = C_{V \otimes V^*}(K)$, $\psi|_N$ remains irreducible. Thus $\chi|_N = a\psi|_N$, so is a multiple of an irreducible character, as required. In particular, every Abelian normal subgroup of H is contained in Z(G), so is cyclic. Since $Z(Q) \lhd H$, $O_p(G) \neq 1_G$.

Since x acts nontrivially on \overline{V} , $x \notin Z(Q)$, so that Q is nonabelian. We outline the argument of Rigby [7] to show that Q is extra special of exponent p (p must be odd in this case, of course). Every characteristic Abelian subgroup of Q is normal in H, so is contained in Z(G), so is cyclic. Since Q is generated by elements of order p, and is nonabelian, Q is quickly seen to be extra special and of exponent p. Thus $|Q| = p^{2m+1}$ for some integer m, and each irreducible constituent of $\chi|_Q$ has degree p^m , so that p^m divides dim_C($V \otimes_R \mathbb{C}$).

Let $X = C_G(C_{V \otimes V^*}(Q))$. Then $X \triangleleft G$, and all irreducible constituents of $\chi|_X$ are equal, and of degree p^m , by an earlier argument. Let M be the normal subgroup of G generated by the conjugates of x. Then $Q \leq M \leq X$, so each irreducible constituent of $\chi|_M$ has degree p^m also (and all are equal). The proof of part (ii) is complete.

Case iii. Suppose that $x \notin O_p(G)$. Then by part (ii), Q is extra special of exponent p. In this case, we also have $C_w(H) = C_w(G)$, where $W = V \otimes V^* \otimes V \otimes V^* \otimes V \otimes V^* \otimes V \otimes V^*$.

An argument similar to that used in part (ii) shows that whenever $N \lhd H$, $C_{V \otimes V^* \otimes V \otimes V^*}(N)$ is G-invariant, and that there is a normal subgroup K of G having the same fixed points on $V \otimes V^* \otimes V \otimes V^*$ as N does, so that each irreducible constituent of $\chi \bar{\chi}|_{K}$ remains irreducible on restriction to N.

Let R be the normal subgroup of G which corresponds to Q in the above way. By part (ii), $\chi \bar{\chi}|_Q$ is a multiple of the regular character of Q/Q', so that all irreducible constituents of $\chi \bar{\chi}|_Q$ are linear. Hence all irreducible constituents of $\chi \bar{\chi}|_R$ are linear also, so that $R' \leq \ker(\chi \bar{\chi}) = Z(G)$. Thus R is nilpotent. Since $Q \leq R$, and $x \in Q$, x lies in $O_p(G)$, contrary to hypothesis. The proof of part (iii) is complete. COROLLARY 1. Let G, x be as in Theorem A. Then if $x \notin Z(G)$, x has at least (p+3)/4 distinct eigenvalues on $V \otimes_R \mathbb{C}$.

Proof. Suppose that x has (p+1)/4 or fewer eigenvalues, but that $x \notin Z(G)$. Then x has a minimum polynomial of degree $\leq (p+1)/4$ on \overline{V} . If x acts nontrivially on \overline{V} we see from part (ii) that Q is extra special and that $\chi|_Q = a\psi$ for some faithful irreducible character ψ of Q. Since $x \in Q \setminus Z(Q)$ (for $Z(Q) \leq Z(G)$ and $x \notin Z(G)$) we have $\chi(x) = 0$, a contradiction, as x has (p+1)/4 or fewer eigenvalues. Thus $x \in O_p(G)$, so $O_p(G) \leq Z(G)$.

Since V is quasi-primitive, $O_p(G)$ is the central product of an extra special group of exponent p and a cyclic group contained in Z(G), so again we have $\chi(x) = 0$, a contradiction. Thus if $x \notin Z(G)$, x must have at least (p + 3)/4 distinct eigenvalues.

COROLLARY 2. Suppose that $O_p(G) = 1_G$ and that $P^{(n)} \neq 1_G$. Then $\chi|_P$ has at least (p-1)/4 distinct irreducible constituents of degree p^n or more. In particular, dim_C $(V \otimes_R \mathbb{C}) \ge p^n((p-1)/4)$.

Proof. An easy induction argument shows that $P^{(n)} \leq \ker \psi$ whenever ψ is an irreducible constituent of $\chi|_p$ of degree p^{n-1} or less. Since $P^{(n)} \neq 1_G$, there is an element x of order p in $P^{(n)} \cap Z(P)$. Since x has at least (p+3)/4 distinct eigenvalues, there must be at least (p-1)/4 inequivalent irreducible constituents of $\chi|_p$ of degree p^n or more.

Remark. We can conclude from the above argument that $\dim_{\mathbb{C}}(V \otimes_{\mathbb{R}} \mathbb{C}) > p^{n}((p-1)/4)$ and if $p \equiv 3 \pmod{4}$ that $\dim_{\mathbb{C}}(V \otimes_{\mathbb{R}} \mathbb{C}) > p^{n}((p+1)/4)$.

COROLLARY 3. Let $\varepsilon = 1$ if $p \equiv -1 \pmod{4}$ and $\varepsilon = -1$ if $p \equiv 1 \pmod{4}$. (mod 4). Then if $\dim_{\mathbb{C}}(V \otimes_{\mathbb{R}} \mathbb{C}) \leq p((p + \varepsilon)/4)$, and $O_p(G) = 1$, G has elementary Abelian Sylow p-subgroups.

Proof. By Corollary 2, P is Abelian. Choose $y \in P$ of order p^2 , if possible, and let $y^p = x$. Then $\overline{V}(1-y)^{p(p+\varepsilon)/4} = 0$, so $\overline{V}(1-x)^{(p+\varepsilon)/4} = 0$, which contradicts part (ii) of Theorem A, as $O_p(G) = 1_G$. Thus P is elementary Abelian.

COROLLARY 4. Let r be the maximum dimension of any indecomposable summand of \overline{V}_p . Then if $O_p(G) = 1_G$, P has nilpotence class less than $4r/(p-\varepsilon)$, where $\varepsilon = \pm 1$ and $p \equiv \varepsilon \pmod{4}$.

Proof. We define the subspaces $[\overline{V}, P; i]$ of \overline{V} by: $[\overline{V}, P; 1]$ is the subspace of \overline{V} generated by $\{\overline{v}(1-x): \overline{v} \in \overline{V}, x \in P\}$ and for i > 1, $[\overline{V}, P; i+1] = [[\overline{V}, P; i], P]$. We recall that $L_i(P)$ denotes the *i*th term of the lower central series of P.

The three subgroups lemma and an easy induction argument yields $[\overline{V}, L_i(P)] \leq [\overline{V}, P; i]$ for $i \geq 1$. Another induction argument yields $[\overline{V}, L_i(P); k] \leq [\overline{V}, P; ik]$ for $i, k \geq 1$. Since r is the maximum dimension of any indecomposable summand of \overline{V}_p , we have $[\overline{V}, P, r] = 0$.

Suppose that $O_p(G) = 1_G$, and let *j* be any integer greater than or equal to $4r/(p-\varepsilon)$. Then $[\overline{V}, L_j(P); (p-\varepsilon)/4] = 0$, so in particular, each element of $L_j(P)$ has minimum polynomial of degree $(p-\varepsilon)/4$ or less on \overline{V} . By Theorem A(ii), $L_j(P) = 1_G$. Thus class $(P) < 4r/(p-\varepsilon)$.

COROLLARY 5. Suppose that $p \ge 7$ and that x is an element of order p in P such that $\overline{V}(1-x)^2 = 0$. Then $x \in O_p(G)$.

Proof. Suppose that $x \notin O_p(G)$. By Theorem A(iii), p = 7. Also, we may choose a conjugate y of x such that $\langle x, y \rangle$ is not a p-group (in fact by Theorem 3.8.1 of [6], $\langle x, y \rangle$ involves SL(2, p)). Let $K = \langle x, y \rangle$. Then K' contains an element of order 6, say z in a component of $K/O_p(K)$.

Let $\overline{V}_1 = \overline{V} \otimes_F F_1$, where F_1 is an algebraically closed field containing F. The argument of Theorem 3.8.1 of [6] shows that the composition factors of $\overline{V}_{1K'}$ are all 1 or 2 dimensional. We show that they are all 2 dimensional. There is at least one 2-dimensional composition factor. If there are any trivial composition factors z has eigenvalues 1, α, β , where α and β are primitive 6th roots of unity. Since z is p-regular, the eigenvalues of z on $V \otimes_R \mathbb{C}$ are $1, -\omega, -\overline{\omega}$, where $\omega = \exp(2\pi i/3)$. This contradicts the well-known result of Blichfeldt (see [2] for a proof of this result, which is valid for quasi-primitive representations, though only stated for primitive ones). Thus all composition factors of \overline{V}_{1K} are 2 dimensional.

Let $t = z^3$. Then t has only the eigenvalue -1 on \overline{V}_1 . Since t is p-regular, $t \in Z(G)$. Let M be the normal subgroup of G generated by the conjugates of x. Then $t \in M'$, since $t \in \langle x, y \rangle'$. By Theorem A(ii), each irreducible component of V_M has dimension p^m for some integer m. This contradicts the fact that $t \in M'$, since t has only the eigenvalue -1 on V and p is odd.

Thus $x \in O_n(G)$, and the proof of Corollary 5 is complete.

An Application to a Theorem of Feit and Thompson

It is not difficult to prove, using Corollary 1 that if a finite group G has a faithful complex representation of degree (p+1)/4 or less, where p is a prime, then G has an Abelian normal Sylow p-subgroup. However, in [4] Feit and Thompson proved that if G has a faithful complex representation of degree less than (p-1)/2, then G has an Abelian normal Sylow p-subgroup. They used a complicated coherence argument to reduce to the case when p divided |G| to the first power only. The next lemma gives an alternative reduction to this case and shows in fact that we only need to consider the

case when the representation of G has degree (p-1)/3. Results of Brauer [1] can be used to eliminate this case.

It is easy to see that it is sufficient to consider the case when G has a faithful irreducible complex representation of degree $\langle (p-1)/2 \rangle$, and the Sylow p-subgroups of G are trivial intersection sets.

PROPOSITION 6. Let G be a finite group, p be a prime, V be a faithful irreducible $\mathbb{C}G$ -module with $\dim_{\mathbb{C}}(V) \leq (p-1)/2$. Let P be a Sylow p-subgroup of G such that $P \cap P^g = 1_G$ for all $g \in G \setminus N_G(P)$. Then $V_{N_G(P)}$ is irreducible and one of the following occurs:

- (i) $P \triangleleft G$.
- (ii) |P| = p and $\dim_{\mathbb{C}}(V) = (p-1)/3$.
- (iii) $|P| = p \text{ and } \dim_{\mathbb{C}}(V) = (p-1)/2.$

Proof. Suppose that (i) does not occur. Then $O_p(G) = 1_G$. We claim that V is primitive. Otherwise $V = W^G$, where W is a $\mathbb{C}H$ -module of dimension at most (p-1)/4 and H is a subgroup of G. Let $K = \bigcap_{g \in G} H^g$. Then $p \nmid [G:K]$, since [G:H] < p. Furthermore, V_K is a direct sum of $\mathbb{C}K$ -modules of dimension at most (p-1)/4, so that K has an Abelian normal Sylow p-subgroup by Theorem A(ii), contrary to the fact that $O_p(G) = 1_G$ and $P \triangleleft G$.

By Corollary 3, P is elementary Abelian. By Corollary 1, $\dim_{\mathbb{C}}(V) \ge (p+3)/4$. Suppose that |P| > p. We may suppose that V is a faithful RG-module, where R is the localization at some prime ideal containing p of some ring of algebraic integers in a cyclotomic number field. Let π be the unique prime ideal of R and let F be the residue field R/π .

Let $H = N_G(P)$, and let $W = V \otimes V^* \otimes V \otimes V^*$. If $C_W(H) = C_W(G)$, the arguments of Theorem A(ii) yield a contradiction. Let $\overline{V} = V/\pi V$. Then $[\overline{V}, P; (p-1)/2] = 0$. By Lemma A 2.3 of [5], $[\overline{W}, P; 2p-5] = 0$.

We define the mapping $\phi: C_w(H) \to C_w(G)$ as we did in Theorem A. There must be some $w \in C_w(H)$ with $w\phi = 0$, $\bar{w} \neq 0$, as in Theorem A.

Let $\{g_i: 1 \leq i \leq r\}$ be a complete set of (H, P) double-coset representatives in G. Then

$$\bar{w}\phi = \bar{w} + \sum_{i=2}^{r} \bar{w}g_i \sum_{x \in P} x.$$

Since $\bar{w}\phi \neq \bar{w}$, there is some *i* such that $\bar{w}g_i \sum_{x \in P} x \neq 0$. Let *P* be generated by $\{x_j: 1 \leq j \leq n\}$, and by no proper subset. Then

$$\bar{w}g_i \sum_{x \in P} x = \bar{w}g_i \prod_{j=1}^n (1-x_j)^{p-1}.$$

Thus $[\overline{W}, P; n(p-1)] \neq 0$, a contradiction, as $[\overline{W}, P; 2p-5] = 0$ and n > 1. Thus |P| = p.

By Theorem A(i), $V_{N_G(P)}$ is irreducible. By Corollary 1, V_p is multiplicity free, and $\dim_{\mathbb{C}}(V) \ge (p+3)/4$. Since V_p is multiplicity free and $V_{N_G(P)}$ is irreducible, we see that $\dim_{\mathbb{C}}(V)$ is a divisor of p-1. Hence we see that $\dim_{\mathbb{C}}(V) = (p-1)/3$ or (p-1)/2, as claimed.

References

- 1. R. BRAUER, On groups whose order contains a prime number to the first power. I, II, *Amer. J. Math.* 64 (1942), 401-420; 421-440.
- 2. L. DORNHOFF, "Group Representation Theory, Part A," Dekker, New York, 1972.
- 3. W. FEIT, Some properties of the Green correspondence, in "Theory of Finite Groups" (R. Brauer and C. H. Sah, Eds.), pp. 139–148, benjamin, New York, 1969.
- W. FEIT AND J. G. THOMPSON, On groups which have a faithful representation of degree less than (p-1)/2, Pacific J. Math. 4 (1961), 1257-1262.
- 5. G. GLAUBERMAN, Global and local properties in finite groups, in "Finite Simple Groups" (M. B. Powell and G. Higman, Eds.), pp. 1–63, Academic Press, London, 1971.
- 6. D. GORENSTEIN, "Finite Groups," Harper & Row, New York, 1968.
- 7. J. F. RIGBY, Primitive linear groups containing a normal nilpotent subgroup larger than the centre, J. London Math. Soc. 35 (1960), 389-400.