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Abstract 

Hess, K.P. and J.-M. Lemaire, Generalizing a definition of Lusternik and Schnirelmann to model 

categories, Journal of Pure and Applied Algebra 91 (1994) 1655182. 

Lusternik-Schnirelmann category is an important numerical homotopy invariant, defined origin- 

ally for topological spaces but employed since in other categories in which there is a good notion of 

homotopy. In the interest of unification, Doeraene defined a J-category to be a category satisfying 

a certain set of axioms which ensure that an LS-type invariant can be reasonably defined. He 

provided two equivalent definitions of LS-category for J-categories and showed that these generaliz- 

ed definitions agree with previous definitions in specific categories. Extending his results, we provide 

a third equivalent definition of the LS-category of an object in a J-category, analogous to the 

original topological definition of Lusternik and Schnirelmann. 

Introduction 

In 1934 Lusternik and Schnirelmann defined a numerical invariant for topological 

spaces, which they called the category of a space [lo]. Their main result -and 

motivation for defining this invariant-was that the category of a manifold is a lower 

bound for the number of critical points of a real function defined on the manifold. 

Later Fox introduced Lusternik-Schnirelmann category in the framework of 

homotopy theory and this viewpoint was extensively studied by Whitehead, Ganea, 
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Hilton and others during the sixties. For an excellent and thorough introduction to 

LS-category, the reader is referred to James’ survey article [S]. More recently, 

LS-catetory has turned out to be a most useful notion in rational homotopy and more 

generally in the study of algebraic models of homotopy types; see [9] for an introduction. 

There are three standard, equivalent definitions of LS-category: the original defini- 

tion of Lusternik and Schnirelmann, as well as two more recent definitions of 

Whitehead and Ganea. The original, and perhaps most intuitive, definition is the 

following: 

Definition [lo]. The U-category of a topological space S, denoted cat S, is the least 

m for which there exists a covering of S by m + 1 open sets, each contractible within S. 

Thus, for example, the LS-category of a contractible space is zero, and the LS- 

category of the n-sphere is one, for all n > 0. 

The second definition of LS-category uses the notion offat wedge. 

Definition. Let S be a pointed topological space with basepoint *. The mthfut wedge 

of S is 

T”S = {(so, . . , .s,)ES~+’ 1 Si = *, for some i). 

Hence, T’S = * and T2S = S v S. 

Definition [13]. cat S I m if and only if there exists a map S -+ T”S such that the 

following diagram commutes up to homotopy: 

S 

/I A 

TmSv S”‘+l 

The third equivalent definition of LS-category is due to Ganea, and relies on the 

following “fibre-cofibre” construction: 

Definition. Let S be a pointed space. The mth Ganea jibration pm: E”S + S of S is 

defined recursively as follows. 

(0) p0 : E’S = P,S + S is the path fibration. 

(1) Given pk : EkS, take the mapping cone G k+ ‘S of the inclusion of the fibre Fk into 

Ek; take the canonical extension rk+l : Gkf’S+ S: 

Ek - EkS-G k+ls 

Convert rk+ 1 into a fibration to obtain pk + 1 : Ek + ‘S + S. 
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Remark. (1) One easily sees that E’S= CQS. 
(2) [S] F”‘ERS* ... *QS- the (m + 1)-fold join of s2S with itself. 

Definition [6]. cat S I m if and only if there exists a homotopy sections s : S -+ E”S 
of pm, i.e. ~~0s~ 1s. 

One unfortunate fact about LS-category is that it is quite difficult to compute, no 

matter which of the three definitions is used, except in very special cases. For this 

reason, topologists have attempted since the late 1970s to approximate LS-category 

algebraically, in the hopes that making computations for algebras would be easier 

than for topological spaces. In this context, “algebraic approximation” means model- 

ling topological spaces in some algebraic category, in which an LS-category-type 

homotopy invariant is defined. 

In order to model topological spaces algebraically, we need an algebraic category 

%? in which there is a well-defined notion of homotopy (e.g., a Quillen model category 

such as the category of connected chain algebras over a field) and a model 

A: Y0Y -+ %‘. A model is an assignment of topological spaces to objects in %? and of 

continuous maps to morphisms in %?, which induces a functor from the homotopy 

category of F0P to the homotopy category of V (the model &! may depend on 

non-canonical choices which prevent it from being a true functor Y0P + 9). 

Examples of models include the Sullivan minimal model, which takes values in the 

category of commutative cochain algebras over Q [12], and the AdamssHilton 

model, with values in the category of connected chain algebras over a ring [l]. 

In 1982 Felix and Halperin defined a homotopy invariant, denoted catO, in the 

category of commutative cochain algebras over Q [4]; they proved that cat, of the 

Sullivan minimal model of space is equal to the LS-category of the rationalization 

(localization at 0) of the space. Thus, cat,, of the Sullivan minimal model of a space is 

a lower bound for the LS-category of the space. Later, inspired by the definition of cat,, 

Halperin and Lemaire defined similar homotopy invariants in the category of l- 

connected cochain algebras over a field and in the category of connected chain algebras 

over a field [7], which also provide lower bounds for topological LS-category. 

In view of these results, one may ask whether there exists a certain structure 

common to all of these categories, which allows a category-theoretic definition of 

LS-category which would agree with the homotopy invariants mentioned above. This 

would provide a unified proof that the LS-category of the model bounds the LS- 

category of the space below; this would also allow to extend the notion of LS-category 

to any other categories with the appropriate structure. 

In his thesis [3], Doeraene made considerable progress in answering this question. 

He established the set of axioms which must hold in a category in which there is a LS- 

category-type homotopy invariant. Categories satisfying these axioms are called J- 

categories. Doeraene also provided two equivalent definitions of LS-catetory, 

analogous to the definitions of Whitehead and Ganea, in an arbitrary J-category. 

He showed that several familiar categories are J-categories and proved that many 
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results known to be true for the original topological LS-category hold in the general 

context. 

The goal of this article is to present a third possible definition of LS-category in an 

arbitrary J-category, analogous to the original Lusternik-Schnirelmann definition. 

We prove that this third definition is equivalent to those of Doeraene. Beforehand, 

we review the necessary algebraic background material, including the axioms of a 

J-category, in Section 1. 

1. Algebraic preliminaries 

In order to generalize the notion of LS-category to categories other than 999, it is 

necessary to distinguish the relevant structure of 97.99 which enables us to define 

LS-category, so that it is a homotopy invariant. Doeraene investigated this question 

in his thesis and formulated axioms to be satisfied by a category in which LS-category 

can be defined in a manner analogous to the constructions of Ganea and Whitehead 

[3]. Such a category is called a category with joins. In a category with joins, %?, both 

constructions lead to invariants of weak homotopy type, but these invariants are not 

necessarily equal. If ‘47 satisfies one additional axiom formulated by Doeraene (the 

“cube” axiom), then the definitions are equivalent. We say then that %’ is a J-category. 

In this section, we give a self-contained account of these notions for the convenience of 

the reader. 

Let %Y be any category. If 

E-C 

I I 
A-B 

is a fibered product (pull-back), then write A x,C for the object E. Dually, if 

B-A 

I I 
c-s 

is an amalgamated sum (push-out), denote the object S by A vsC. 

A category with joins, just like a Quillen model category, has three distinguished 

classes of morphisms: fibrations, cofibrations, and weak equivalences. We will denote 

fibrations, cofibrations, and weak equivalences by arrows of the types *, H, and 

2, respectively. Moreover, as in a model category, any morphism A + B can be 
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factored in two ways: 

A-B A-B 

I/ 
r and = 

V 
B’ A’ 

In such a category, commutative homotopy pull-backs and push-outs can be defined 

as follows: 

Definition. The commutative diagram 

D-C 

I I 
A-B 

is a commutative homotopy pull-back when the induced map D -+ A x,E in the 

following diagram is a weak equivalence: 

The rectangle D-C-B-A is a commutative homotopy push-out 

A v,E + B in the following diagram is a weak equivalence. 

when the induced map 

A v,E 

Let 0 denote the initial/final object of the category. An object B is called cojbrant if 

every fibration which is also a weak equivalence (also known as trivial jibration) 

p:A SB 

admits a section S: B + A, i.e. pas = lB. If every cofibration which is also a weak 
equivalence (also known as trivial cojibration) 
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admits a retract r: C -+ B so that roi = ls, then B is jibrant. If the map B + 0 is 

a fibration, then B is 0-Jibrant. The object B is 0-cojibrant if 0 -+ B is a cofibration. If 

fibrations have the right lifting property with respect to trivial cofibrations, then all 

0-fibrant objects are fibrant. Dually, all 0-cofibrant objects are cofibrant whenever 

cofibrations have the left lifting property with respect to trivial fibrations. 

We now present Doeraene’s axioms for a category with joins. The reader familiar 

with the notion of a model category [11] or of a cofibration category (e.g. [2]) will 

recognize that a category with joins fulfills most of the requirements to be a model 

category or a cofibration category: 

Definition. A pointed category % endowed with three distinguished classes of mor- 

phisms, called fibrations, cofibrations, and weak equivalences, is a category with joins 

if the following axioms are satisfied: 

(Jl) Any morphism A + B can be factored two ways: 

A-B 

\/ 
Y (c-factorization) 

B’ 

and 

A---tB 

v 
z (f-factorization). 

A’ 

(52) Given morphisms 

B-A 

I f 
C 

there exists a push-out 

B-A 

I I f .f 

C---tA v,C 

Given morphisms 

A 

I 
9 

C-IB 
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there exists a pull-back 
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A x&-A 

I I s 9 

C-B 

Furthermore, if f (respectively, g) is a weak equivalence, then so is f(respect- 

ively, S). 

(53) Isomorphisms belong to all three distinguished classes of maps. The composition 

of cofibrations is a cofibration. The composition of fibrations is a fibration. If any 

twooff:A -+ B,g:B + C,andgf:A + C are weak equivalences, then the third 

is as well. 

(54) For every A there exists a trivial fibration B % A with B cofibrant. 

Note that axioms (Jl)-(53) are self-dual; if one replaces (54) by its dual, one obtains 

a category with cojoins. 

In a category with joins, %‘, one can perform the Ganea construction and define the 

fat wedge. To achieve this we first define the notions of join and cojoin of two objects 

over a third one in a category with joins. 

Definition. Given two morphisms f : A --+ Bandg:C -+ Bin%,theirjoin,A*sC,can 

be defined in two steps as follows. 

(i) Choose an f-factorization 

A-B 

and take the pull-back 

D x,C===C 

I I s 9 

D====dB 

(ii) Choose a c-factorization 
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and take the push-out 

Z= Dx,C-W 

I I 
cvcv,w 

Then A*,C = C vz W. 

One checks that if ?? is the category of topological spaces, and B is a point, this 

definition yields the standard join A*C. One can also check fairly easily that A*,C is 

well-defined up to weak equivalence. 

We can now present Doeraene’s fat wedge and Ganea constructions for a category 

with joins. 

Definition. Let %? denote a category with joins. Let B be an object of %?. Then nthfut 

wedge on B, T”B, is defined recursively, together with a morphism t” : T”B + B”+ ‘, as 

follows. 

(0) to: T”B = 0 + B. 
(1) T”B is the join of (lg,,O):B”+ B”xB and t”-l~lg:T”-lBxB-+ B”xB; 

t”: T”B + B ‘+’ is the morphism induced from the join. 

One can easily show that in F09’ this definition of fat wedge agrees up to 

homotopy equivalence with the usual one. 

We can now define the Ganea construction in an arbitrary category with joins: 

Definition. Let % denote a category with joins. Let B be an object of %. The nth Ganea 
construction on B, G”B, is defined recursively, together with a morphism g” : G”B + B, 
as follows. 

(0) g”:GoB = 0 + B. 
(1) G”B = O*BG”- ‘B; g”: G”B + B is the morphism induced from the join. 

Note that the definition of G”B is equivalent to saying that G”B is the homotopy 

cofiber of the homotopy fiber of g”- ‘. Thus it is clear that the abstract definition of 

G”B agrees with the original definition in FOP. 

We are now prepared to state Doeraene’s two definitions of LS-category in any 

category with joins, %7. Doeraene proved that the definitions are equivalent in 

a category with joins which also satifies the following “cube” axiom: 

(Cube axiom) Consider a commuting cubic diagram in which the vertical arrows 

are directed downwards. If the bottom of the cube is a commutative homotopy 

push-out and its sides are cummutative homotopy pull-backs, then the top is 

a commutative homotopy push-out. 

A category with joins in which the above axiom holds is called a J-category. 
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Remark. If C is a cofibrant object of q, then A*BC is cofibrant for all A,BEObV [3]. 

Thus T”A and G”A are cofibrant whenever A is cofibrant. 

Definition. Let BEOb V? be a cofibrant and 0-fibrant. The LS-category of B, cat,B, is 

the least n such that the following equivalent conditions 

(i) There exists WEOb% together with a diagram 

in which the lower triangle commutes up to homotopy 

a fibration. 

(ii) There exists ZEObV? together with a diagram 

in which the lower triangle commutes up to homotopy 

a fibration. 

are satisfied. 

and the diagonal arrow is 

and the diagonal arrow is 

It is clear that in F0Og these definitions are equivalent to the Ganea and Whitehead 

definitions of LS-category, respectively. 

If it is true that catq is a weak homotopy invariant in some category 5~7, then cat,B 

can be defined for arbitrary B by letting cat,B = cat,B” where 

B-O 

i.e., B’ is obtained via an f-factorization of B + 0 and B” is a cofibrant model of B’. 
Although Doeraene stated that cat, is a weak homotopy invariant in any category 

with joins which also satisfies the “cube” axiom, a careful examination of his proof 

reveals that it does not use this last axiom. The proof is thus valid in any category with 

joins. 
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2. A third abstract definition of LS-category 

In this section a third possible definition of LS-category for J-categories is pres- 

ented. This third definition is the analog of the original topological definition of 

Lusternik and Schnirelmann. We show that the new definition is equivalent to the two 

definitions of Doeraene. We then prove a result concerning the LS-category of 

a cofiber, using the new definition. The result is much harder to prove with the other 

two definitions. 

Let %? be a J-category. The new invariant in %, to be called cat’ until proved equal to 

LS-category as defined by Doeraene, will be defined recursively. 

Definition. Given a morphism f : A + B in 97, we say that 

(i) cat&(A; f) = 0 if and only if f *O, 

(ii) cat$(A; f) < m if and only if there exists a homotopy push-out 

E-C 

I h ’ 

9 

D-A f )B 

such that cat&(C; fg ) = m - 1 and cat&(D; fh) = 0. 

Let cat&(A) = cat$(A; lA). 

It is clear that the motivation for the definition of cat’ comes from the Luster- 

nik-Schnirelmann definition of LS-category for topological spaces. Essentially, the 

above definition says that cat’,A 5 m if A can be made up of m + 1 objects which are 

contractible in A. In the category of topological spaces, it is easy to see that cat’ is 

exactly LS-category as defined by Lusternik and Schnirelmann. 

Remark. (1) If A 4 B %C is a sequence of morphisms in the category %‘, then 

cat&(A; gf) < cat&(F; f). 

(2) Suppose there exists a weak equivalence f:A?B in %7. Then, if 
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is a commutative homotopy push-out, then so is 

U”-V 

lfl fS 1 
W-B 

Thus, cat 6 (B) 5 cat 6 (A: 

Before demonstrating that cat’ agrees with Doeraene’s definition of LS-category in 

an arbitrary J-category, we need the following proposition describing the behavior of 

cat’ under retraction. An immediate consequence of this proposition is that cat’ is 

a homotopy invariant. 

Proposition 2.1. Let ‘ix be a J-category. Let A A BL A be morphisms in %? satisfying 

r 0 i- lA. Then cat&A < cat&B. 

Proof. Suppose that cat&B = m. Then there is a commutative homotopy push-out 

where cat&( W; 6) = m - 1 and cat&( V; y) = 0, i.e., y N 0. 

Choose an f-factorization of i 

and consider the diagram 

We would like to show that this diagram is a commutative homotopy push-out and 

that rcj N 0. Note that rz is a weak equivalence, since r-717 ‘v lA. Here, we are using the 

fact that a morphism homotopic to a weak equivalence is a weak equivalence [2]. 

Since y-0, there is a cylinder Ion V 
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for which there exists a morphism H : I -+ B such that 

commutes. Take the pull-back 

Ix& i FVX,C 

u 7-c u n 

I p .v 

Since p is a weak equivalence, axiom (52) implies that jj is also a weak equivalence. 

Furthermore, Ix B C fits into the pull-back diagram below, in which both squares and 

the entire rectangle are pull-backs. 

Because 

pjo(7t v 7t) = 7cV:(Vx&) v (Vx,C) -+ v, 

there is an induced map 

J?(vX,c) V (VX,) --f 1 X,c 

such that 

j$= V:(Vx,C) v (Vx,C) + vx,c 

and 

xl:= j(n v TT):(VX&) v (VxBC) + I. 

Factor Jas 

(Vx,C) v (Vx&)i vx,c 
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where j’ is a cofibration and CJ is a weak equivalence. Then 

(Vx,C) v (Vx,C)L vx,c 

------by= 
is a cylinder on V x,C and 

(VXBC) v (Vx,C)O B 

ilJ/ 

commutes. Thus TCY N_ 0. 

To show that diagram (1) is a homotopy push-out, consider the cubic diagram 

in which, by hypothesis, the bottom face is a homotopy push-out. Each of the sides is 

the pull-back of a fibration and hence a homotopy pull-back. Thus, by the cube 

axiom, the top face must be a homotopy push-out. Therefore, since r7t is a weak 

equivalence, 

Ux&A wx,c 

I B 1 rn6 

vx,c rnr f A 

is a homotopy push-out in which rrcv=O. 

To complete the proof, note that we can demonstrate inductively that if 

cat&(W;6)=m- 1, then cat&(Wx,C;zg)<m- 1 and hence cat&(Wx,C; ~7~6) 

<rn - 1. The proof that XV-0 and that diagram (1) is a homotopy push-out is the 

base step in the inductive process. We also make use of the fact that if 
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is a commutative homotopy push-out, then 

zx,c’ Yx,C 

1- E 1 B 

s xx,c- wx,c 

is also a commutative homotopy push-out, according to the cube axiom. 

Thus, cat&A I m = cat&B. 0 

We wish now to compute an upper bound for cat’ of Ganea objects, as a first step in 

demonstrating that cat’ agrees with Doeraene’s LS category. 

Lemma 2.2. Let V be a J-category. Suppose that BEOb% is 0-jibrant. Then 

cat&G”B I n for all n. 

Proof. We will prove this lemma inductively. It is obvious that cat&GOB = 0. Sup- 

pose that cat&G”-‘B I n - 1. 

Recall the procedure for constructing G”B. Begin by factoring g”- ‘, as weak 

equivalence followed by a fibration, 

Take the pull-back 

and then choose a c-factorization of 5, 

F”- ‘“0 

Finally, take the push-out ofj and i, 

p-1 i ,EPl 

I j I 7 

J 
r 

W- G”B 
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It is clear, according to remarks (1) and (2) above, that 

cat&(E”-‘; 3) 5 cat$(E”-‘) 5 cat&(G”-‘B) I n - 1 

and that cat&( W; r) I cat&(W). Since Wz 0 is a weak equivalence and 0 + W + 0 is 

an isomorphism, 0 + W is also a weak equivalence. Thus cat&W I cat&O = 0. 

Therefore, cat&(G”B) I n. 0 

For the remainder of this section, %’ will denote a J-category satisfying in addition: 

(Ml) Any fibration can be factored as a cofibration followed by a trivial fibration. 

(M2) Fibrations have the right lifting property with respect to trivial cofibrations. 

Axioms (Ml) and (M2) hold in any closed model category. 

We are now ready to prove the following theorem: 

Theorem 2.3. Let BEOb$Z be co$brant and 0-jbrant. Then cat&B = cat,B. 

Proof. Suppose that cat&B = n. Then there is a commuting diagram 

X-‘G”B 

111 
9” 

= 
B-B 

in which the lower triangle commutes up to homotopy and the diagonal arrow is 

a fibration. Then, by Proposition 2.1 and remark (2) above, 

cat&B I cat&X I cat&G”B I n = cat&B. 

We next claim that if A and B are cofibrant and 0-fibrant, f : A ---f B, and 

cat&(A;f) = n, then there is a diagram 

in which the upper triangle is an f-factorization of g” and the lower triangle commutes 

up to homotopy. It then follows immediately that cat&A = n implies that catqA I n. 

It is certainly true that if cat&(A;f) = 0, then 

is the required diagram. Assume that the claim holds for n - 1. 
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Suppose that cat&(A;f) = n, i.e. that there is a homotopy push-out 

U’W 

lj h I Y 

V-A 

(2) 

where cat&( W; fg) = n - 1 and cat&(V’; fh) = 0. Thus by induction, there are dia- 

grams 

x-‘o Y AC”-‘B 

and 11 Ignml 

w- B 

in which the upper triangles are f-factorizations and the lower triangles commute up 

to homotopy. By Theorem 9.1 in [3], we can assume that X and Y are cofibrant and 

that the lower triangles actually commute exactly. 

Notice that if a : A’S A is a weak equivalence, where A and A’ are cofibrant and 

0-fibrant, then there exists a homotopy inverse /I: A + A’ to CC Thus, if there is 

a diagram 

in which the upper triangle is an f-factorization and the lower triangle commutes up to 

homotopy, then in the diagram 

Z ‘G”B 

the lower triangle commutes up to homotopy. Thus, we can assume without loss of 

generality that diagram (2) is a push-out. 

From the pull-back 

Xx,Y- Y 

II II 
X----+B 
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then factor 
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Xx,Y==+X 

\/” j z 

Z 

as a cofibration followed by a trivial fibration. Take the push-out 

Xx,Y- v 

I I 0 

4 
Z- G”B 

and consider the following commuting diagram: 

u i .W 

Since X is cofibrant, there is a section X + Z and hence a morphism 6: V -+ Z such 

that the two ways of getitng from U to G”B, 4aj and Ori, are homotopic. 

Note that all 0-fibrant objects are fibrant, since %? satisfies (M2) and is pointed. Thus 

for any choice of f-factorization 

The object S is fibrant, since B, and therefore S, are 0-fibrant. Now, because S is 

fibrant and j is a cofibration, we can apply the homotopy extension property [2, 

11.2.171 to obtain a map F: V + S such that Fj = k&i: U -+ S. Thus, since A is the 

push-out of i and j, there is an induced map A -+ S such that the diagram 

commutes. 0 
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The following proposition is now an immediate consequence of the new LS- 

category definition. Doeraene proved this proposition in [3], based on the earlier two 

definitions, but the proof there is long and complex. 

Proposition 2.4. Given ,f : A + B, a morphism in %‘, let %” denote thefollowing push-out: 

A-I’f 
o-x-c f 

Then cat,C/ 5 cat,B + 1. 0 
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