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Abstract 

Differential Evolution (DE) is a population-based stochastic global optimization technique that requires the adjustment of a very 
few parameters in order to produce results. However, the control parameters involved in DE are highly dependent on the 
optimization problem; in practice, their fine-tuning is not always an easy task. The self-adaptive differential evolution (SADE) 
variants are those that do not require the pre-specified choice of control parameters. On the contrary, control parameters are self-
adapted by using the previous learning experience. In this paper, we discuss and evaluate popular common and self-adaptive 
differential evolution (DE) algorithms. In particular, we present an empirical comparison between two self-adaptive DE variants 
and common DE methods. In order to assure a fair comparison, we test the methods by using a number of well-known unimodal 
and multimodal, separable and non-separable, benchmark optimization problems for different dimensions and population size. 
The results show that SADE variants outperform, or at least produce similar results, to common differential evolution algorithms 
in terms of solution accuracy and convergence speed. The advantage of using the self-adaptive methods is that the user does not 
need to adjust control parameters. Therefore, the total computational effort is significantly reduced. 
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1. Introduction 

In the past decades, several evolutionary algorithms (EAs) that mimic biological entities behavior and evolution 
have emerged. EAs are widely used for the solution of single and multi-objective optimization problems. An 
evolutionary algorithm that has recently gained popularity is Differential Evolution (DE) [1,2]. DE is population-
based stochastic global optimization algorithm. The control parameter setting in EAs and DE has been extensively 
studied in the literature [3-6]. The effect of the population size was reported in [7]. Several DE variants or strategies 
exist [8-12]. The classical DE algorithm has been applied to a large number of engineering problems such as 
microwave structures and antenna design [13-16].  

DE produces better results than Particle Swarm Optimization (PSO) on numerical benchmark problems with low 
or medium dimensionality (30 and 100 dimensions) [17]. One of its advantages is the adjustment of very few 
parameters. The control parameters and the learning strategies involved in DE are highly dependent on the 
optimization problem to be solved. Thus, its drawback is the excessive time required for strategy selection and for 
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fine-tuning the control parameters. Recently, a novel DE algorithm, the Self-adaptive Differential Evolution 
(SADE), has been applied to numerical benchmark problems that self-adapts these control parameters [18].  

2. The Differential Evolution (DE) and the Self-adaptive Differential Evolution (SADE) algorithms 

A population in DE consists of NP vectors , , 1,2,...i Gx i NP  (G is  the  number  of  generations).   The  possible  
solutions are represented with D-dimensional vectors , ,1, ,2, , ,( , ,... )i G i G i G i D Gx x x x . The population is randomly 
initialized from a uniform distribution between the low and the upper bounds defined for each variable; these 
bounds are user-specified according to the nature of the problem. 

The initial population evolves in each generation with the use of mutation, crossover and selection operators. 
Depending on the form of these operators, several DE variants or strategies exist [2,19]. The choice of the best DE 
strategy depends on the type of the problem [20]. Two popular strategies are the DE/best/1/bin and the 
DE/rand/1/bin. In these, a mutant vector v  for every target vector ,i Gx  is computed, respectively, by 

1 2, , , , 1 2( ),   j G best G r G r Gv x F x x r r (1) 

1 2 3, , , , 1 2 3( ),   i G r G r G r Gv x F x x r r r (2) 

In these expressions, ,best Gx is the best vector found at generation G, F is a mutation control parameter and r1, r2,
and r3 are randomly chosen indices from the population. After mutation, the crossover operator generates a trial 
vector ,i Gu  with elements 
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where j = 1,2,…D, rndj is a number from a uniform random distribution from the interval [0,1], rn(j) is a randomly 
chosen index from (1,2,…D) and CR is the crossover constant from the interval [0,1].  Differential evolution uses a 
greedy selection operator. According to this, the selection scheme for minimization problems is 
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where ,( )i Gf u , ,( )i Gf x  are the fitness values of the trial and the old vector, respectively. Common stopping criteria 
are the number of generations or the number of the objective-function evaluations.  

Storn has suggested [2] that the DE control parameters are adjusted as 0.5,1F , 0.8,1CR  and 10NP D .
In [18], a novel approach was proposed for self-adapting of the DE control parameters. The method probabilistically 
selects one out of several available learning strategies for each individual in the current population and automatically 
adapts parameters settings during evolution. This strategy was based on the DE/rand/1/bin scheme. Each vector was 
extended with its own F and CR values and the control parameters were self-adjusted in every generation for each 
individual according to the scheme: 
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where rnd1...4 are uniform random numbers in the interval [0,1], and ,l uF F  are the lower and the upper limits of F.
The latter are set to 0.1 and 0.9, respectively [18]. Therefore by using the self-adaptive algorithm the user does not 
have to adjust the F and CR parameters while the time complexity does not increase (a detailed analysis of the 
SADE algorithm can be found in [18]). Recently, this algorithm has been successfully applied to microwave 
absorber and pyramidal horn design problems [21,22]. We point out that in [18] the self-adapting algorithm was 
based only on rand/1/bin strategy. In [20], the authors concluded that the best/1/bin strategy is the most competitive 
approach regardless of the characteristics of the problem at hand. In this paper, we also present a new version of the 
SADE algorithm based on the best/1/bin strategy. We denote the two self-adaptive variants used in our study as 
SADE/rand/1/bin and SADE/best/1/bin.

3. Test Functions 

Usually, a comparative study of different optimization methods is performed by using a set of test functions from 
the literature. In this paper, six well-known benchmark functions are used. We have chosen two unimodal and four 
multimodal functions; the functions can also be grouped into separable or non-separable.  These are the Sphere 
function, the Schwefel’s problem 1.2, the generalized Rosenbrock’s function, the Ackley’s function, the generalized 
Rastrigin’s function and the Salomon’s function. The above functions are defined [20] respectively as: 

1
2

1 1
0

( ) ,   5.12   and   0, 0,...0 0
D

j j
j

f x x x f (6) 

2
-1

2 2
0 0

( ) ,   100   and   0,0,...0 0
D k

j j
k j

f x x x f (7) 

2 2 22
3 1 3

0
( ) 100 1 ,   2   and   1,1,...1 0

D

j j j j
j

f x x x x x f (8) 

1 1
2

4 4
0 0

1 1 1( ) 20exp exp cos 2 20 exp 1 ,   10   and   0,0,...0 0
5

D D

j j j
j j

f x x x x f
D D

(9) 

1
2

5 5
0

( ) 10cos 2 10 ,   5.12   and   0,0,...0 0
D

j j j
j

f x x x x f (10) 

1 1
2 2

6 6
0 0

( ) cos 2 0.1 1,   1.5   and   0,0,...0 0
D D

j j j
j j

f x x x x f (11) 

The sphere function is one of the simplest benchmarks. It is a continuous, unimodal and separable problem. The 
second one is a unimodal and separable problem. The generalized Rosenbrock’s global optimum lies inside a 
parabolic shaped flat valley. It is easy to find the valley but convergence to the global optimum is difficult. This 
problem is multimodal and non-separable. The Ackley’s function is a multimodal non-separable problem and has 
many local optima and a narrow global optimum. The generalized Rastrigin function is a complex multimodal 
separable problem with many local optima. The sixth problem is highly multimodal and non-separable. 
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4. Experimental Results and Discussion 

This section presents a comparative analysis of the common DE strategies DE/best/1/bin and DE/rand/1/bin and 
their self-adaptive variations SADE/best/1/bin and SADE/rand/1/bin. In order to perform a fair comparison, we use 
the benchmark functions that are given in Section 3. We study two cases with D = 30 and D = 50. In the first case, 
we set NP = 100; in the second one, the population size is set equal to 150. As it is reported in [7], a large population 
size affects the ability of the algorithm to find the correct search direction. Therefore, we decided to work with 
relatively small population sizes as in [20]. In each experiment, the total number of iterations is equal to 3000. The 
results of all the experiments are averaged over 50 independent runs. All experiments are executed 50 times. The 
control parameters for the common DE strategies are F = 0.6 and CR = 0.9.  

Figures 1 and 2 show the convergence graphs for the conducted experiments on 30 and 50 dimensions, 
respectively. Table 1 presents the corresponding mean and standard deviation values. The bold font indicates the 
best results for every case. We notice that in the unimodal and separable problems (Sphere and Schwefel’s 1.2) the 
self-adaptive algorithms convergence faster than the corresponding common DE variants; also, the best/1/bin is 
faster than the rand/1/bin. These results are consistent with [20]. In the case of the Rosenbrock’s function, the 
SADE/best/1/bin variant obtains the best results and the fastest convergence. For the Ackley’s function, the 
rand/1/bin variants converge faster than the best/1/bin ones. The obtained results up to numerical errors are similar 
for DE/rand/1/bin, SADE/rand/1/bin, and SADE/best/1/bin. The best/1/bin variants showed clearly a better 
performance over the rand/1/bin ones for the case of the generalized Rastrigin function, which is probably one of 
the hardest problems to solve. The SADE/rand/1/bin showed the best performance for the 30-D case. However, for 
the 50-D case, the best results are obtained by SADE/best/1/bin in terms of both solution accuracy and convergence 
speed.  The rand/1/bin variants provide better results for the Salomon’s function. The best/1/bin variants and the 
SADE/rand/1/bin converge at similar speeds. Finally, we must also point out that the obtained results are quite 
similar in both 30-D and 50-D problems.   
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Fig. 1. Convergence graphs of DE and SADE variants on benchmark problems with 30 dimensions. 
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Fig. 2. Convergence graphs of DE and SADE variants on benchmark problems with 50 dimensions. 

Table 1. Average value and standard deviation of DE and SADE variants on benchmark problems with 30 and 50 dimensions. 

DE/best/1/bin DE/rand/1/bin SADE/best/1/bin SADE/rand/1/bin Benchmark 
problem D

Avg StD Avg StD Avg StD Avg StD 

30 0.002 0.003 0.001 4x10-4 0 0 0 0Sphere 
function 50 0.171 0.014 1.002 0.196 0 0 0 0

30 0 0 11.800 2.844 0 0 0.251 0.133 Schwefel’s 
problem 1.2 50 2.48x10-8 1.55x10-8 291.599 38.229 3.31x10-7 2.95x10-7 4.290 0.969 

30 168.519 64.682 3.749 1.277 9.251x10-15 1.771x10-14 12.254 0.169 Rosenbrock’s 
function 50 145.024 61.896 40.597 0.669 0.284 1.026 24.301 0.483 

30 10.118 0.889 1.375x10-13 5.127x10-14 1.261x10-14 3.389x10-15 1.585x10-9 5.188x10-10 
Ackley’s 
function 50 13.366 1.119 1.171x10-8 3.752x10-9 4.273x10-11 1.615x10-11 1.339x10-9 4.431x10-10

30 97.942 25.440 171.157 7.195 21.970 4.987 13.602 3.859 Rastrigin’s 
function 50 102.934 26.082 383.871 11.631 101.810 23.419 109.861 10.086 

30 0.394 0.067 0.201 0.012 0.304 0.022 0.199 0Salomon’s 
function 50 0.489 0.079 0.445 0.065 0.371 0.039 0.261 0.047 

5. Conclusions 

We have presented a performance comparison of some common and self-adaptive DE algorithms. The methods 
were implemented and studied on six well-known benchmark problems on thirty and fifty dimensions. The results 
showed that the SADE/best/1/bin variant outperforms or produces similar results with the other methods in terms of 
solution accuracy and convergence speed. The obtained results show that the best/1/bin variants are the most 
suitable optimizers for solving unimodal problems. For multimodal problems the SADE/best/1/bin strategy was the 
most competitive in most of the cases. Regarding convergence speed in most cases the best/1/bin strategy is faster. 
Our results are consistent with those found in [20].  The major advantage of the self-adaptive DE is that it does not 
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require the pre-specified choice of control parameters thus reducing significantly the users’ effort. In our future 
work  we  plan  to  further  compare  the  SADE/best/1/bin variant with other competitive algorithms and extend the 
search to 100 or more dimensions. 
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