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IGF-I induces vascular endothelial growth factor in human
mesangial cells via a Src-dependent mechanism1
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IGF-I induces vascular endothelial growth factor in human Insulin-like growth factor-I (IGF-I) is a potent mito-
mesangial cells via a Src-dependent mechanism. genic polypeptide, under growth hormone regulation,

Background. Both insulin-like growth factor-I (IGF-I) and which binds to a specific receptor (IGF-RI) and to sixvascular endothelial growth factor (VEGF) have been impli-
binding proteins (IGFBPs) that modulate its bioavail-cated in the pathogenesis of early renal dysfunction in diabetes.
ability [1–3].We investigated whether IGF-I affects VEGF gene expression

and protein secretion in human mesangial cells. Furthermore, Although circulating IGF-I levels are normal or re-
we studied the intracellular signaling pathway involved and the duced in patients with diabetes [4], the local IGF-I system
interaction of IGF-I with mechanical stretch, a known VEGF

appears to be up-regulated. There is increased kidneyinducer.
IGF-I content in experimental diabetes [2, 3, 5]. Further-Methods. Human mesangial cells were exposed to IGF-I in

the presence and in the absence of (1) anti-IGF-I type I recep- more, increases in IGF-RI and changes in IGFBPs ex-
tor antibody (�IR3) (1 �g/mL), a monoclonal antibody blocking pression, leading to enhanced IGF-I trapping and pos-
the IGF-I type I receptor; (2) wortmannin (600 nmol/L), a sibly bioactivity, have been reported in kidneys fromphosphatidylinositol 3-kinase (PI3K) inhibitor; (3) 4-amino-5-

diabetic animals [2, 3, 6, 7].(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), a
specific Src inhibitor (10 �mol/L); and (4) cyclic stretch (�10% Transgenic animals overexpressing IGF-I develop glo-
elongation). merular hypertrophy [7] and IGF-I infused in pharmaco-

Results. IGF-I induced a dose-dependent increase in VEGF logic concentrations in humans increases renal plasmaprotein levels (10�11 mol/L, 5%; 10�10 mol/L, 14%; 10�9 mol/L,
flow and glomerular filtration rate [8]. Furthermore, sup-46%; 10�8 mol/L, 66%; 10�7 mol/L, 68%; P � 0.001). IGF-I–
pression of the growth hormone/IGF-I axis prevents theinduced VEGF production rose by 6 hours with a peak at 12

hours, and declined by 24 hours (52%, 72%, and 34%, respec- onset of these early glomerular abnormalities in diabetic
tively; P � 0.01 at 12 hours). A corresponding 50% increase animals [3, 5, 10, 11].
in VEGF mRNA levels was seen at 6 hours (P � 0.01). IGF-I–

Similarly, in experimental diabetes, inhibition of vas-induced VEGF protein secretion was not affected by the addi-
cular endothelial growth factor (VEGF) prevents bothtion of wortmannin (IGF-I, 76% vs. IGF-I � wortmannin, 79%

increase over control; P � NS), but was abolished by �IR3 glomerular hyperfiltration and glomerular hypertrophy
(IGF-I, 69% vs. IGF-I � �IR3, 0%; P � 0.001) and significantly and ameliorates albuminuria [12]. VEGF exists in five
reduced by PP2 (IGF-I, 50% vs. IGF-I � PP2, 14%; P � 0.01). isoforms, VEGF165 being the most abundant. The mainSimultaneous exposure of human mesangial cells to both IGF-I

VEGF binding sites are on endothelial cells, and VEGFand stretch failed to further increase VEGF production (IGF-I,
1.49 � 0.05; stretch, 1.76 � 0.05; and IGF-I � stretch, 1.83 � stimulates and promotes vascular permeability and en-
0.11). dothelium-dependent vasodilatation [13]. VEGF is ex-

Conclusion. IGF-I induces VEGF gene expression and pro- pressed constitutively in the kidney in glomerular epithe-tein secretion in human mesangial cells via a Src-dependent
lial cells [14] and in pathologic conditions by othermechanism.
glomerular cell types, including mesangial cells [15].
Both high glucose and mechanical stretch, mimicking1 See Editorial by Cooper and Thomas, p. 1584.
glomerular capillary hypertension, are potent VEGF in-

Key words: IGF-I, VEGF, mesangial cells, Src. ducers in vitro in human mesangial cells [16, 17].
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mechanisms involved. We also studied the interaction Cell number determination
of IGF-I and mechanical stretch on VEGF production. Cell were harvested with 0.25% trypsin and 0.5%

EDTA and the cell number determined by a Coulter
Cell Counter (Coulter Electronics, Ltd., Luton Beds, UK).METHODS

Materials Application of mechanical stretch to cultured cells
All materials were purchased from Sigma Chemical Mesangial cells were seeded in equal number (12,000/

Co. (St. Louis, MO, USA) unless otherwise stated. Fetal cm2) into six-well type I collagen-coated silicone elasto-
mer-base culture plates (Flex I plates) and control platescalf serum (FCS) was obtained from Gibco-BRL (Pais-
(Flex II plates). After insulin and serum deprivationley, UK) and Flex I and Flex II plates from Flexcell Inter-
for 24 hours, cells were subjected to repeated stretch/national Corporation (McKeensport, PA, USA). Wort-
relaxation cycles (60 cycles/minute) by mechanical defor-mannin, monoclonal anti-IGF-I type I receptor antibody
mation using a Flexercell Strain Unit (FX3000 Flexcell(�IR3), and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyr-
International Corporation, McKeensport, PA, USA).azolo[3,4-d]pyrimidine (PP2) were obtained from Cal-
Cells were exposed to an average 10% uniaxial elonga-biochem (Nottingham, UK). Monoclonal anti-human
tion, which mimics that present in vivo in glomeruli ex-VEGF antibody was obtained from R&D Systems (Min-
posed to supernormal pressure levels, and is known inneapolis, MN, USA) and rabbit polyclonal antihuman
vitro to induce mesangial cell VEGF production [17].VEGF antibody from Serotec (Oxford, UK). The reverse
Stretch and control experiments were carried out simul-transcription (RT) system and the transforming growth
taneously with cells derived from a single pool. Controlfactor-�1 (TGF-�1) enzyme-linked immunosorbent assay
cells were grown in nondeformable, but otherwise identi-(ELISA) were purchased from Promega (Southampton,
cal, plates (Flex II plates) in parallel.UK), oligonucleotide primers from Oswel (Southamp-

ton, UK), and AmpliTaq from Perkin Elmer (Warring- mRNA analysis
ton, WA, USA).

Total RNA was isolated using a commercial prepara-
tion based on a guanidinium and phenol extraction (Tria-Cell culture
zol) and reverse transcribed (1 �g) according to standardHuman mesangial cells were isolated as described pre-
protocols using avian myeloblastosis virus (AMV) reverseviously [17, 18]. Briefly, normal renal cortex was obtained
transcriptase and poly-d(T). The polymerase chain reac-

from three donor nephrectomies found to be unsuitable
tion (PCR) was performed with oligonucleotide primers

for transplantation on the basis of an abnormal vascular
designed to amplify specifically the 165 isoform of human

supply. Intact glomeruli were collected from cortical ho- VEGF as we have previously described [17]. A single
mogenates by serial sieving. The isolated glomeruli were PCR product of 317 bp was obtained, the identity of which
digested with collagenase (type IV, 750 U/mL) and then was confirmed by digestion with the restriction enzyme
seeded in culture flasks. After the outgrowth of mesan- HindIII (Promega) yielding two fragments of 181 bp and
gial cells, the glomeruli were removed by washing and the 136 bp as predicted from the known cDNA sequence for
cells were cultured in RPMI 1640 medium, supplemented VEGF165 [19]. Expression of the housekeeping gene gly-
with insulin-transferrin-selenium and l-glutamine, and ceraldehyde 3-phosphate dehydrogenase (GAPDH) was
containing 20% FCS, 7 mmol/L glucose, 100 U/mL peni- determined in parallel to control for amount of RNA
cillin, and 100 �g/mL streptomycin in a humidified 5% input and RT efficiency using primer sequences previ-
CO2 incubator at 37	C. Mesangial cells were harvested ously reported [20]. VEGF and GAPDH mRNA levels
using 0.25% trypsin and 0.5% ethylenediaminetetraace- were quantified by competitive RT-PCR, using deletion-
tic acid (EDTA). The cells were stellate or fusiform in mutated cDNA to control for PCR amplification effi-
appearance, grew in multilayers, formed hillocks in long- ciency and for use in quantitative analysis [17]. Competi-
term culture, and stained for �-smooth muscle actin tor cDNAs with a 50 bp deletion were generated by
(�-SMA) by direct immunofluorescence. Cells did not PCR as previously described [21]. PCR products were
stain for cytokeratin, factor VIII, common leukocyte an- resolved in a 3% Nu-Sieve/1% agarose gel containing
tigen (DAKO, High Wycombe, UK) and Thy-1 (Serotec, ethidium bromide, analyzed by an image system (Eagle
Oxford, UK), excluding, respectively, contamination of Eye System, Strategene, UK) and quantified using a den-
epithelial, endothelial cells, lymphomonocytes, and hu- sitometry analysis software (QGEL, Strategene, UK).
man fibroblasts. Studies were performed between pas-

Protein measurementsages 4 and 7, while the cells retained the characteristic
morphologic and immunofluorescent features described Culture supernatants from all experimental conditions

were collected, centrifuged to remove cell debris, andabove.
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Fig. 1. Dose-response and time course of vas-
cular endotheial growth factor (VEGF) pro-
tein production by insulin-like growth factor-I
(IGF-I) in human mesangial cells. Serum- and
insulin-deprived human mesangial cells were
exposed to increasing IGF-I concentrations
(10�11, 10�10, 10�9, 10�8, 10�7 mol/L) for 12
hours (A ); and to IGF-I at 10 nmol/L for
various time periods of 6, 12, and 24 hours
(B ). VEGF protein levels were measured as
described in the Methods section and ex-
pressed as fold increase vs. control *P � 0.001
vs. control (N � 3); **P � 0.01 vs. control
(N � 4).

stored at �70	C for analysis. VEGF protein concentra- were exposed to increasing IGF-I concentrations (10�11,
tion was measured by an in-house two-site immunoenzy- 10�10, 10�9, 108, and 10�7 mol/L) for 12 hours to determine
mometric assay using a mouse monoclonal and a rabbit the effective IGF-I dose. Twelve hours was chosen as
polyclonal antihuman VEGF165 (range, 1 to 40 pmol/L, being a known time period in which various stimuli up-
intra-assay coefficient of variance, 5.3%) as we have pre- regulate VEGF protein production [17, 22]. Cells were
viously reported [17, 22]. Briefly 96-well microtiter plates serum- and insulin-deprived for 24 hours prior to the
were coated overnight at 4	C with a mouse monoclonal experiment because VEGF and IGF-I receptor expres-
anti-VEGF antibody as the capture antibody. The plates sion are enhanced and diminished, respectively, by small
were blocked with bovine serum albumin (BSA), follow-

concentrations of FCS [15, 23]. IGF-I induced VEGFing which the samples were added and incubated for
secretion in a concentration-dependent manner (10�11

5 hours. After washing, a rabbit polyclonal antihuman
mol/L, 5%; 10�10 mol/L, 14%; 10�9 mol/L, 46%; 10�8

VEGF165 as the detection antibody was added and incu-
mol/L, 66%; and 10�7 mol/L, 68%) with a minimumbated overnight. Immunocomplexes were detected by
effective concentration of 1 nmol/L and a plateau effectalkaline phosphatase-conjugated goat antirabbit immu-
at 100 nmol/L (Fig. 1A). In subsequent experiments anoglobulin (IgG) and revealed by 3,3
, 5,5
 tetrameth-
10 nmol/L IGF-I concentration was used as this concen-ylbenzidine dihydrochloride substrate. The reaction was

stopped with H2S04 and the absorbance was measured tration maximally induced VEGF.
at 450/690 nm. The assay also detects the VEGF121 iso- A significant increase in VEGF production was also
form, but no cross-reactivity was detected with human observed in mesangial cells exposed to insulin; however,
platelet-derived growth factor (PDGF), human TGF-�1 this occurred only at pharmacologic insulin concentra-
to 5 and bovine VEGF. For each experiment, VEGF tion of 1 �mol/L (1.78 � 0.05-fold increase over control,
protein levels were determined within a single assay run. P � 0.05, N � 3).
All protein results were adjusted for cell number. The effect of IGF-I on VEGF secretion was not accom-

Total TGF-�1 protein concentration was measured by
panied by an increase in TGF-�1, another growth factorELISA (range, 16 to 1000 pg/mL, intra-assay coefficient
produced by mesangial cells and believed to be impor-of variance, 1.6%) using a mouse monoclonal and a rab-
tant in the pathogenesis of diabetic glomerulopathybit polyclonal antihuman TGF-�1. Activation of latent
(IGF-I at 10 nmol/L, 1.06 � 0.03-fold increase over con-TGF-�1 was obtained by acidification according to man-
trol, P � NS, N � 3).ufacturer’s instructions.

In time-course experiments, we observed IGF-I–induced
Data presentation and statistical analysis VEGF secretion by 6 hours, with a peak at 12 hours and

All data are presented as mean � SEM. Data were a decline thereafter (52%, 72%, and 34% respectively;
analyzed by analysis of variance (ANOVA) and if sig- P � 0.01 IGF-I over control at 12 hours) (Fig. 1B).
nificant, the Newman-Keuls procedure was used for post To assess whether this rise in VEGF protein secretion
hoc comparisons. Values for P � 0.05 were considered was preceded by an increase in mRNA levels, we mea-
significant. sured by competitive RT-PCR VEGF mRNA in cells

exposed to IGF-I (10 nmol/L) for 6 hours. This time
RESULTS point was chosen based on previous studies showing that
IGF-I induces VEGF gene expression and VEGF mRNA levels rise approximately 6 hours earlier
protein secretion than VEGF protein levels [17, 22]. VEGF was expressed

in the basal condition and significantly rose by 50% inTo investigate the effect of IGF-I on VEGF protein
production, serum and insulin-deprived mesangial cells cells exposed to IGF-I (Fig. 2).
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Fig. 2. Effect of insulin-like growth factor (IGF-I) on vascular endo-
thelial growth factor (VEGF) mRNA levels. Serum and insulin-
deprived human mesangial cells were exposed to IGF-I (10 nmol/L)
for 6 hours. VEGF mRNA levels were quantified as described in the Fig. 3. Insulin-like growth factor-I (IGF-I) induces vascular endothe-
Methods section and expressed as fold increase vs. control. * P � 0.01 lial growth factor (VEGF) via the IGF-I type 1 receptor. Serum- and
IGF-I over control (N � 4). insulin-deprived human mesangial cells were exposed to IGF-I (10

nmol/L) for 12 hours in the presence or in the absence of �IR3 (IR3
1 �g/mL). VEGF protein levels were measured as described in the
Methods section and expressed as fold increase vs. control. *P � 0.001
IGF-I vs. others (N � 3).

Mesangial cell VEGF induction by IGF-I occurs via
the IGF-RI receptor

IGF-I binds to the IGF-RI receptor as well as to the
Inhibition of Src by PP2 prevents IGF-I–inducedinsulin receptor, although with a 50- to 100-fold reduc-
VEGF secretiontion in affinity [24]. A murine monoclonal antibody

against the IGF-RI, �IR3 (1 �g/mL), specifically recog- Src is known to mediate stretch-induced VEGF in
nizes the extracellular �-subunit of the IGF-RI and in- human mesangial cells [17]. Thus, we tested whether this
hibits receptor-mediated effects [25] Preincubation with intracellular signaling molecule could also be involved
�IR3 (1 �g/mL) for 30 minutes before IGF-I (10 nmol/L) in IGF-I–induced VEGF. Serum- and insulin-deprived
addition led to complete inhibition of IGF-I–induced human mesangial cells were exposed to IGF-I (10 nmol/L)
VEGF protein production (Fig. 3), indicating that this for 12 hours, either in the presence or in the absence
effect was mediated exclusively by the IGF-RI receptor. of PP2 (10 �mol/L), a selective Src inhibitor [29]. PP2
The �IR3 neutralizing antibody induced a modest and induced a modest nonsignificant reduction in basal VEGF
not significant rise in basal VEGF levels due to its weak production, but significantly reduced, by 72%, IGF-I–
agonist activity [26]. induced VEGF secretion (P � 0.01), providing evidence

of a Src role in IGF-I induction by VEGF (Fig. 4B).
IGF-I–induced VEGF secretion is independent
of PI3K Simultaneous exposure to IGF-I and stretch does not

enhance VEGF productionTo test the role of phosphatidylinositol 3-kinase (PI3K),
an intracellular mediator of IGF-I signaling [27, 28], in To study the effect of combined exposure to IGF-I
IGF-I–induced VEGF production, serum- and insulin- and stretch on human mesangial cell VEGF production,
deprived mesangial cells were exposed to IGF-I (10 serum- and insulin-deprived mesangial cells were stretched
nmol/L) for 12 hours either in the presence or in the (elongation 10%), either in the presence or in the ab-
absence of the PI3K inhibitor, wortmannin (600 nmol/L). sence of IGF-I (10 nmol/L) for 12 hours. Both IGF-I
IGF-I–induced VEGF secretion was not affected by the and stretch induced a significant increase in VEGF pro-
addition of wortmannin, indicating that VEGF induction duction; however, simultaneous exposure to both stimuli
was PI3K-independent (Fig. 4A). By contrast, in parallel failed to further increase VEGF production (Fig. 5).
experiments, wortmannin completely abolished insulin-
induced VEGF production [insulin (1 �mol/L) � vehicle,

DISCUSSION1.78 � 0.03; insulin (1 �mol/L) � wortmannin (600
This work demonstrates that IGF-I induces VEGFnmol/L), 1.12 � 0.04-fold increase over control; P � 0.05

production in human mesangial cells. There was a peakinsulin vs. others, N � 3]. This indicates that insulin
72% increase after 12 hours. This increase in VEGF isinduces VEGF through a PI3K-dependent pathway, and
commensurate with that we have previously reported init confirms that, in our experiments, wortmannin was

both active in the preparation and used at a concentra- response to angiotensin II in human mesangial cells [22].
The doses of IGF-I eliciting VEGF production were intion adequate to block PI3K-dependent effects.
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Fig. 4. Effect of phosphatidylinositol 3-kinase
(PI3K) and Src inhibition on insulin-like growth
factor-I (IGF-I)–induced vascular endothelial
growth factor (VEGF) production in human
mesangial cells. Serum- and insulin-deprived
human mesangial cells were exposed to IGF-I
(10 nmol/L) for 12 hours in the presence or in
the absence of: wortmannin (600 nmol/L) (A ),
and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)
pyrazolo[3,4-d] pyrimidine (PP2) (10 �mol/L)
(B ). VEGF protein levels were measured as
described in the Methods section and ex-
pressed as fold increase vs. control. *P � 0.001
IGF-I and IGF-I � wortmannin vs. others (N �
3); **P � 0.01 IGF-I vs. others (N � 3).

induced VEGF production we observed in human mes-
angial cells was lower than that reported in these trans-
formed nonrenal cell lines. The reasons for this are
unclear. However, increased expression of IGF-I recep-
tor and altered regulatory mechanisms in transformed
cells may explain the enhanced response to IGF-I. Our
findings, although smaller in magnitude, are likely to
be more physiologically relevant as they were shown in
primary cultures of normal human cells.

IGF-I–induced VEGF production was completely in-
hibited by �IR3, a neutralizing antibody blocking the
IGF-RI receptor [25]. This indicates a specific IGF-I
effect occurring via the IGF-RI receptor. IGF-I can also

Fig. 5. Effect of combined insulin-like growth factor (IGF-I) and bind to the insulin receptor, but insulin receptors arestretch on vascular endothelial growth factor (VEGF) protein secre-
expressed at a low level in mesangial cells and are nottion. Serum- and insulin-deprived mesangial cells were exposed for 12

hours to vehicle, IGF-I (10 nmol/L), stretch (10% elongation), and activated in response to the IGF-I concentrations used
IGF-I � stretch. VEGF protein levels were measured as described in in this study [35]. Consistently, we found that pharmaco-the Methods section and expressed as fold increase vs. control (N �

logic insulin concentrations were required to induce3). *P � 0.05 IGF-I, stretch, and IGF-I � stretch over control. P �
NS IGF-I vs. stretch vs. stretch � IGF-I. VEGF production in this cell type.

Exposure to IGF-I did not affect mesangial cell pro-
duction of TGF-�1, a cytokine implicated in the patho-
genesis of diabetic glomerulopathy [3], demonstratingthe physiologic range and comparable to those used in
that, under our experimental conditions, VEGF induc-previous reports on IGF-I–induced fibronectin and colla-
tion was a specific response of mesangial cells to IGF-I.gen production in murine mesangial cells [30]. Addition

VEGF induction occurs via different mechanisms, in-of exogenous IGF-I, however, is superimposed to the
cluding an Src/Raf/mitogen-activating protein (MAP) ki-IGF-I endogenously produced by mesangial cells [31]
nase pathway [36] and a PI3K/protein kinase-B (PKB)and thus mimics a state of IGF-I excess, suggesting that
pathway [37]. PI3K plays a key role in IGF-I intracellularsuperphysiologic IGF-I levels are required for VEGF
signaling in most cell types and mediates IGF-I–inducedinduction. IGF-I–induced VEGF protein level rose after
VEGF expression in human osteoblast-like cells [38].6 hours, peaked at 12 hours, and declined thereafter. A
However, in our experiments the addition of wortman-temporally related increase in VEGF mRNA level was
nin, a PI3K inhibitor, did not affect IGF-I–inducedseen at 6 hours. This time course of VEGF production
VEGF secretion, indicating that in human mesangialwas similar to that we previously observed for serum,
cells this IGF-I effect was PI3K independent.angiotensin II and stretch-induced VEGF in human mes-

A previous report in NIH3T3 fibroblasts had shownangial cells [17, 22, 32].
that VEGF induction by IGF-I and insulin occurs viaIGF-I–induced VEGF expression has been previously
different signaling pathways, which are, respectively, in-reported in nonrenal cell lines, such as SV40-transformed
dependent and dependent of PI3K [39]. In line with this,retinal pigment epithelial cells [33], endometrial adeno-
we found that in human mesangial cells insulin inducescarcinoma cells [34], and COLO205 colon carcinoma

cells [26]. The magnitude and duration of the IGF-I– VEGF via a PI3K-dependent mechanism.
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Members of the Src family of nonreceptor tyrosine between IGF-I and VEGF pathways have been de-
scribed at the cellular level in the retina [53, 54], includingkinases are important intracellular signaling molecules

for the expression of VEGF [36, 40, 41]. Cell lines trans- an enhanced VEGF production in response to IGF-I by
retinal epithelial cells [33]. Our results suggest a similar-fected with v-Src overexpress VEGF [36] and mechanical

stretch induces VEGF via a Src-dependent mechanism in ity between pathogenic mechanisms of vascular dysfunc-
tion in two separate beds of the microvascular circula-human mesangial cells [17]. In this study, the significant

inhibition of IGF-I–induced VEGF expression by the tion.
highly specific Src inhibitor, PP2 [29], indicates that Src
plays a key role in mediating VEGF production in re- ACKNOWLEDGMENTS
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