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Abstract

In this paper, by introducing a new operator, improving and generating a p-Laplace operator for some p > 1, we study the
existence of countably many positive solutions for nonlinear boundary value problems on the half-line

(ϕ(u′))′ + a(t) f (u(t)) = 0, 0 < t < +∞,

u(0) =
m−2∑
i=1

αi u(ξi ), u′(∞) = 0,

where ϕ : R→ R is the increasing homeomorphism and positive homomorphism and ϕ(0) = 0. We show the sufficient conditions
for the existence of countably many positive solutions by using the fixed-point index theory and a new fixed-point theorem in cones.
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1. Introduction

In this paper, we consider the existence of countable many positive solutions of the following boundary value
problem on a half-line

(ϕ(u(t)′))′ + a(t) f (u(t)) = 0, 0 < t < +∞, (1.1)

u(0) =
m−2∑
i=1

αi u(ξi ), u′(∞) = 0, (1.2)

where ϕ : R → R is the increasing homeomorphism and positive homomorphism and ϕ(0) = 0, ξi ∈ (0,+∞)
with 0 < ξ1 < ξ2 < · · · < ξm−2 < +∞ and αi satisfy αi ∈ [0,+∞), 0 <

∑m−2
i=1 αi < 1, f ∈

C([0,+∞), [0,+∞)), a(t) : [0,+∞)→ [0,+∞) and has countably many singularities in [0,+∞).
A projection ϕ : R → R is called an increasing homeomorphism and positive homomorphism, if the following

conditions are satisfied:
(1) if x ≤ y, then ϕ(x) ≤ ϕ(y), for all x, y ∈ R;
(2) ϕ is a continuous bijection and its inverse mapping is also continuous;
(3) ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈ [0,+∞).
In the above definition, we can replace condition (3) by the following stronger condition:
(4) ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈ R, where R = (−∞,+∞).

Remark 1.1. If conditions (1), (2) and (4) hold, then it implies that ϕ is homogeneous generating a p-Laplace
operator, i.e. ϕ(x) = |x |p−2x , for some p > 1.

In this paper, some of the following hypotheses are satisfied:

(C1) f ∈ C([0,+∞), [0,+∞)), f (u(t)) 6≡ 0 on any subinterval of (0,+∞) and when u is bounded f ((1+ t)u(t))
is bounded on [0,+∞);

(C2) There exists a sequence {ti }∞i=1 such that 1 ≤ ti+1 < ti , limi→∞ ti = t0 < +∞, and t0 > 1. limt→ti a(t) =
∞, i = 1, 2, . . ., and

0 <
∫
+∞

0
a(t)dt < +∞,

∫
+∞

0
ϕ−1

(∫
+∞

τ

a(s)ds

)
dτ < +∞; (1.3)

(C3) There exists a sequence {ti }∞i=1 such that 0 < ti+1 < ti < 1, limi→∞ ti = t0 < +∞, and 0 < t0 < 1.
limt→ti a(t) = ∞, i = 1, 2, . . ., and (1.3) holds. Moreover, a(t) does not vanish identically on any subinterval
of [0,+∞).

In recent years, the existence and multiplicity of positive solutions for the p-Laplacian operator, i.e. ϕ(x) =
|x |p−2x , for some p > 1 have received wide attention, please see [6–9,11,13,16,18] and references therein. However
for the increasing homeomorphism and positive homomorphism operator the research has proceeded very slowly.
In [2], Liu and Zhang study the existence of positive solutions of quasilinear differential equation

(ϕ(x ′))′ + a(t) f (x(t)) = 0, 0 < t < 1,

x(0)− βx ′(0) = 0, x(1)+ δx ′(1) = 0,

where ϕ : R → R is an increasing homeomorphism and positive homomorphism and ϕ(0) = 0. They obtain the
existence of one or two positive solutions by using a fixed-point index theorem in cones. But, whether or not we
can obtain countable many positive solutions of m-point boundary value problem on the half-line (1.1) and (1.2) still
remain unknown. So the goal of the present paper is to improve and generate p-Laplacian operator and establish some
criteria for the existence of countable many solutions.

The motivation for the present work stems from both the practical and theoretical aspects. In fact, boundary value
problems on the half-line occur naturally in the study of radially symmetric solutions of nonlinear elliptic equations,
see [4,12], and various physical phenomena [3,10], such as unsteady flow of gas through a semi-infinite porous media,
the theory of drain flows, plasma physics, determining the electrical potential in an isolated neutral atom. In all these
applications, it is frequent that only solutions that are positive are useful. Recently, many papers have been published
that investigate the positive solutions of boundary value problem on the half-line, see [1,14–17]. They discuss the
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existence and multiplicity (of at least three) positive solutions to the nonlinear differential equation. However, to the
best knowledge of the authors, there is no paper concerned with the existence of countable many positive solutions to
the boundary value problems of differential equation on infinite intervals so far.

So in this paper, we use fixed-point index theory and a new fixed-point theorem in cones to investigate the existence
of countable solutions to boundary value problems (1.1) and (1.2).

The plan of the paper is as follows. In Section 2, for the convenience of the reader we give some definitions. In
Section 3, we present some lemmas in order to prove our main results. Section 4 is developed to presenting and proving
our main results. In Section 5 we present the example of the increasing homeomorphism and positive homomorphism
operators.

2. Some definitions and fixed-point theorems

In this section, we provide some background definitions cited from cone theory in Banach spaces.

Definition 2.1. Let (E, ‖.‖) be a real Banach space. A nonempty, closed, convex set P ⊂ E is said to be a cone
provided the following are satisfied:

(a) if y ∈ P and λ ≥ 0, then λy ∈ P;
(b) if y ∈ P and −y ∈ P , then y = 0.

If P ⊂ E is a cone, we denote the order induced by P on E by ≤, that is, x ≤ y if and only if y − x ∈ P .

Definition 2.2. A map α is said to be a nonnegative, continuous, concave functional on a cone P of a real Banach
space E , if

α : P → [0,∞)

is continuous, and

α(t x + (1− t)y) ≥ tα(x)+ (1− t)α(y)

for all x , y ∈ P and t ∈ [0, 1].

Definition 2.3. Given a nonnegative continuous functional γ on a cone P of E , for each d > 0 we define the set

P(γ, d) = {x ∈ P : γ (x) < d}.

The following fixed-point theorems are fundamental and important to the proofs of our main results.

Theorem 2.1 ([5]). Let E be a Banach space and P ⊂ E be a cone in E. Let r > 0 define Ωr = {x ∈ P : ‖x‖ < r}.
Assume that T : P

⋂
Ωr → P is a completely continuous operator such that T x 6= x for x ∈ ∂Ωr .

(i) If ‖T x‖ ≤ ‖x‖ for x ∈ ∂Ωr , then

i(A, Ωr , P) = 1.

(ii) If ‖T x‖ ≥ ‖x‖ for x ∈ ∂Ωr , then

i(A, Ωr , P) = 0.

Theorem 2.2 ([18]). Let P be a cone in a Banach space E. Let α, β and γ be three increasing, nonnegative and
continuous functionals on P, satisfying for some c > 0 and M > 0 such that

γ (x) ≤ β(x) ≤ α(x), ‖x‖ ≤ Mγ (x)

for all x ∈ P(γ, c). Suppose that there exists a completely continuous operator T : P(γ, c)→ P and 0 < a < b < c
such that

(i) γ (T x) < c, for all x ∈ ∂P(γ, c);
(ii) β(T x) > b, for all x ∈ ∂P(β, b);

(iii) P(α, a) 6= ∅, and α(T x) < a, for all x ∈ ∂P(α, a).

Then T has at least three fixed points x1, x2, x3 ∈ P(γ, c) such that

0 ≤ α(x1) < a < α(x2), β(x2) < b < β(x3), γ (x3) < c.
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3. Preliminaries and lemmas

In this paper, we will use the following space E to the study of (1.1) and (1.2), which is denoted by

E =

{
u ∈ C[0,+∞) : sup

0≤t<+∞

|u(t)|

1+ t
< +∞

}
.

Then E is a Banach space, equipped with the norm ‖u‖ = sup0≤t<+∞
|u(t)|
1+t < +∞.

Define cone K ⊂ E by

K = {u ∈ E : u(t) is a nondecreasing and nonnegative concave function on [0,+∞)}.

Lemma 3.1. Suppose that (C2) holds. Then
(i) for any constant θ ∈ (1,+∞) which satisfies

0 <
∫ θ

1
θ

a(t)dt < +∞,

(ii) the function

H(t) =
∫ t0

t
ϕ−1

(∫ t0

s
a(τ )dτ

)
ds +

m−2∑
i=1

αi
∫ t

1
t0

ϕ−1
(∫ t

s a(τ )dτ
)

ds

1−
m−2∑
i=1

αi

is continuous and positive on [ 1
t0
, t0]. Furthermore,

L = min
t∈[ 1

t0
,t0]

H(t) > 0.

Proof. Firstly we can easily obtain (i) from the condition (C2).
Next we prove that conclusion (ii) is also true. It is easily seen that H(t) is continuous on [ 1

t0
, t0]. Let

H1(t) =
∫ t0

t
ϕ−1

(∫ t0

s
a(τ )dτ

)
ds,

H2(t) =

m−2∑
i=1

αi
∫ t

1
t0

ϕ−1
(∫ t

s a(τ )dτ
)

ds

1−
m−2∑
i=1

αi

.

Then from condition (C2), we know that H1(t) is strictly monotone decreasing on [ 1
t0
, t0] and H1(t0) = 0. Similarly

function H2(t) is strictly monotone increasing on [ 1
t0
, t0] and H2(

1
t0
) = 0. Since H1(t) and H2(t) are not equal

to zero at the same time. So the function H(t) = H1(t) + H2(t) is positive on [ 1
t0
, t0], which implies that

L = mint∈[ 1
t0
,t0]

H(t) > 0. �

Lemma 3.2. Let u ∈ K and [a, b] is any finite closed interval of (0,+∞), then u(t) ≥ λ(t)‖u‖, where

λ(t) =

{
σ, t ≥ σ,
t, t ≤ σ,

and σ = inf
{
ξ ∈ [0,+∞) : supt∈[0,+∞)

|u(t)|
1+t =

u(ξ)
1+ξ

}
.
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Proof. From the definition of K , we know that u(t) is increasing on [0,+∞). Moreover the function u(t)
1+t achieves its

maximum at ξ ∈ [0,+∞). So we divide the proof into three steps:
Step (1). If σ ∈ [0, a], then we have t ≥ σ , for t ∈ [a, b]. Since u(t) is increasing on [0,+∞). So we have

u(t) ≥ u(σ ) = (1+ σ)‖u‖ > σ‖u‖, for t ∈ [a, b].

Step (2). If σ ∈ [a, b], then we have t ≤ σ , for t ∈ [a, σ ]. By the concavity of u(t), we can obtain

u(t)− u(0)
t

≥
u(σ )− u(0)

σ
,

i.e.,

u(t)

t
≥

u(σ )

σ
−

u(0)
σ
+

u(0)
t
≥

u(σ )

1+ σ
= ‖u‖.

Therefore u(t) ≥ t‖u‖, for a ≤ t ≤ σ . If t ∈ [σ, b], similar to Step (1), we have

u(t) ≥ σ‖u‖, for σ ≤ t ≤ b.

Step (3). If σ ∈ [b,+∞). Similarly by the concavity of u(t), we also have

u(t)− u(0)
t

≥
u(σ )− u(0)

σ
,

which yields u(t) ≥ t‖u‖, for a ≤ t ≤ b ≤ σ . The proof is complete. �

Remark 3.1. It is easy to see that

(i) λ(t) is nondecreasing on [a, b];
(ii) 0 < λ(t) < 1, for t ∈ [a, b] ⊂ (0, 1).

Now, we define an operator T : K → C[0,+∞) by

(T u)(t) =
∫ t

0
ϕ−1

(∫
+∞

s
a(τ ) f (u(τ ))dτ

)
ds +

m−2∑
i=1

αi
∫ ξi

0 ϕ−1
(∫
+∞

s a(τ ) f (u(τ ))dτ
)

ds

1−
m−2∑
i=1

αi

. (3.1)

Obviously, (T u)(t) ≥ 0, for t ∈ (0,+∞) and (T u)′(t) = ϕ−1
(∫
+∞

t a(τ ) f (u(τ ))dτ
)
≥ 0, furthermore

(ϕ(T u)′(t))′ = −a(t) f (u(t)) ≤ 0. This shows that (T K ) ⊂ K .
To obtain the complete continuity of T , the following lemma is still needed.

Lemma 3.3 ([17]). Let W be a bounded subset of K . Then W is relatively compact in E if {W (t)
1+t } are equicontinuous

on any finite subinterval of [0,+∞) and for any ε > 0, there exists N > 0 such that∣∣∣∣ x(t1)

1+ t1
−

x(t2)

1+ t2

∣∣∣∣ < ε,

uniformly with respect to x ∈ W as t1, t2 ≥ N, where W (t) = {x(t) : x ∈ W } , t ∈ [0,+∞).

Lemma 3.4. Let (C1) and (C2) or (C3) hold. Then T : K → K is completely continuous.

Proof. Firstly, it is easy to check that T : K → K is well defined. From the definition of E , we can choose r0 such
that supn∈N\{0} ‖un‖ < r0. Let Br0 = sup{ f ((1+ t)u), t ∈ [0,+∞), u ∈ [0, r0]} and Ω be any bounded subset of K .
Then there exist r > 0 such that ‖u‖ ≤ r , for all u ∈ Ω . Therefore we have

‖T u‖ = sup
t∈[0,+∞)

1
1+ t

∣∣∣∣∣∣∣∣∣
∫ t

0
ϕ−1

(∫
+∞

s
a(τ ) f (u(τ ))dτ

)
ds +

m−2∑
i=1

αi
∫ ξi

0 ϕ−1
(∫
+∞

s a(τ ) f (u(τ ))dτ
)

ds

1−
m−2∑
i=1

αi

∣∣∣∣∣∣∣∣∣
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≤ sup
t∈[0,+∞)

1
1+ t

∫ t

0
ϕ−1

(∫
+∞

s
a(τ ) f (u(τ ))dτ

)
ds

+ sup
t∈[0,+∞)

1
1+ t

m−2∑
i=1

αi
∫ ξm−2

0 ϕ−1
(∫
+∞

s a(τ ) f (u(τ ))dτ
)

ds

1−
m−2∑
i=1

αi

≤ ϕ−1
(∫
+∞

0
a(τ ) f (u(τ ))dτ

)1+

m−2∑
i=1

αiξm−2

1−
m−2∑
i=1

αi


≤ Cϕ−1(Br ), ∀u ∈ Ω .

So TΩ is bounded. Moreover for any T ∈ (0,+∞) and t1, t2 ∈ [0, T ], we have

∣∣∣∣ (T u)(t1)

1+ t1
−
(T u)(t2)

1+ t2

∣∣∣∣ ≤
m−2∑
i=1

αi
∫ ξi

0 ϕ−1
(∫
+∞

s a(τ ) f (u(τ ))dτ
)

ds(
1−

m−2∑
i=1

αi

) ∣∣∣∣ 1
1+ t1

−
1

1+ t2

∣∣∣∣
+

∣∣∣∣ 1
1+ t1

∫ t1

0
ϕ−1

(∫
+∞

τ

a(s) f (u(s))ds

)
dτ −

1
1+ t2

∫ t2

0
ϕ−1

(∫
+∞

τ

a(s) f (u(s))ds

)
dτ

∣∣∣∣
≤ Cϕ−1(Br )

∣∣∣∣ 1
1+ t1

−
1

1+ t2

∣∣∣∣+ Cϕ−1(Br ) |t1 − t2|

→ 0, uniformly as t1 → t2.

We can get that TΩ is equicontinuous on any finite subinterval of [0,+∞).
Next we prove for any ε > 0, there exists sufficiently large N > 0 such that∣∣∣∣ (T u)(t1)

1+ t1
−
(T u)(t2)

1+ t2

∣∣∣∣ < ε, for all t1, t2 ≥ N ,∀u ∈ Ω . (3.2)

Since
∫
+∞

0 a(τ ) f (u(τ ))dτ < +∞. Therefore we can choose N1 > 0 such that

m−2∑
i=1

αi
∫ ξi

0 ϕ−1
(∫
+∞

s a(τ ) f (u(τ ))dτ
)

ds

N1

(
1−

m−2∑
i=1

αi

) <
ε

5
.

We can also select N2, N3 > 0 are satisfied respectively

N2 >
5
∫
+∞

0 ϕ−1
(∫
+∞

s a(τ ) f (u(τ ))dτ
)

ds

ε
, ϕ−1

(∫
+∞

N3

a(τ ) f (u(τ ))dτ
)
<
ε

5
.

Then let N = max{N1, N2, N3}. Without loss generality, we assume t2 > t1 ≥ N . So it follow that∣∣∣∣ (T u)(t1)

1+ t1
−
(T u)(t2)

1+ t2

∣∣∣∣
≤

∫
+∞

0
ϕ−1

(∫
+∞

s
a(τ ) f (u(τ ))dτ

)
ds

∣∣∣∣ 1
1+ t1

−
1

1+ t2

∣∣∣∣+
∫ t2

t1
ϕ−1

(∫
+∞

t1
a(τ ) f (u(τ ))dτ

)
ds

1+ t2
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+

m−2∑
i=1

αi
∫ ξi

0 ϕ−1
(∫
+∞

s a(τ ) f (u(τ ))dτ
)

ds

(1+ t1)

(
1−

m−2∑
i=1

αi

) +

m−2∑
i=1

αi
∫ ξi

0 ϕ−1
(∫
+∞

s a(τ ) f (u(τ ))dτ
)

ds

(1+ t2)

(
1−

m−2∑
i=1

αi

)

≤
2ε
5
+
ε

5
+
ε

5
+
ε

5
= ε.

That is (3.2) holds. By Lemma 3.3, TΩ is relatively compact. Therefore we know that T is a compact operator.
Thirdly we prove that T is continuous. Let un → u as n → +∞ in K . Then by the Lebesgue dominated

convergence theorem and continuity of f , we can get∣∣∣∣∫ +∞
t

a(s) f (un(s))ds −
∫
+∞

t
a(s) f (u(s))ds

∣∣∣∣ ≤ ∫ +∞
t

a(s) | f (un(s))− f (u(s))| ds → 0, as n→+∞,

i.e., ∫
+∞

t
a(s) f (un(s))ds →

∫
+∞

t
a(s) f (u(s))ds, as n→+∞.

Moreover

ϕ−1
(∫
+∞

t
a(s) f (un(s))ds

)
→ ϕ−1

(∫
+∞

t
a(s) f (u(s))ds

)
, as n→+∞.

So

‖T un − T u‖

≤ sup
t∈[0,+∞)

1
1+ t

∫ t

0

∣∣∣∣ϕ−1
(∫
+∞

τ

a(s) f (un(s))ds

)
− ϕ−1

(∫
+∞

τ

a(s) f (u(s))ds

)∣∣∣∣ dτ

+

m−2∑
i=1

αiξm−2

1−
m−2∑
i=1

αi

∣∣∣∣ϕ−1
(∫
+∞

s
a(τ ) f (un(τ ))dτ

)
− ϕ−1

(∫
+∞

s
a(τ ) f (u(τ ))dτ

)∣∣∣∣
→ 0, as n→+∞.

Therefore T is continuous. In summary T : K → K is completely continuous. �

4. Main results

For notational convenience, we denote by

λ1 =
1+ t0

L
> 0, λ2 =

1−
m−2∑
i=1

αi

ϕ−1
(∫
+∞

0 a(τ )dτ
)(

1−
m−2∑
i=1

αi +
m−2∑
i=1

αiξm−2

) > 0.

The main results of this paper are the following.

Theorem 4.1. Suppose that conditions (C1) and (C2) hold. Let {θk}
∞

k=1 be such that θk ∈ (tk+1, tk) (k = 1, 2, . . .).
Let {rk}

∞

k=1 and {Rk}
∞

k=1 be such that

Rk+1 <
λ( 1
θk
)

1+ θk
rk < rk < mrk < Rk, k = 1, 2, 3, . . . .

Furthermore, for each natural number k we assume that f satisfies:
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(C4) f ((1+ t)u) ≥ ϕ(mrk), for all
λ( 1
θk
)

1+θk
rk ≤ u(t) ≤ rk;

(C5) f ((1+ t)u) ≤ ϕ(M Rk), for all 0 ≤ u(t) ≤ Rk,

where m ∈ (λ1,+∞),M ∈ (0, λ2). Then the boundary value problem (1.1) and (1.2) has infinitely many solutions
{uk}

∞

k=1 such that

rk ≤ ‖uk‖ ≤ Rk, k = 1, 2, . . . .

Proof. Since 1 < t0 ≤ tk+1 < θk < tk < +∞, k = 1, 2, . . ., then, for any k ∈ N and u ∈ K , by Lemma 3.2, we
have

u(t) ≥ λ(t)‖u‖, t ∈

[
1
θk
, θk

]
. (4.1)

We define the sequences {Ω1,k}
∞

k=1 and {Ω2,k}
∞

k=1 of open subsets of E as follows:

Ω1,k = {u ∈ K : ‖u‖ < rk} , k = 1, 2, . . . ,

Ω2,k = {u ∈ K : ‖u‖ < Rk} , k = 1, 2, . . . .

For a fixed k and u ∈ ∂Ω1,k . From (4.1) we have

rk = ‖u‖ = sup
0≤t<+∞

|u(t)|

1+ t
≥ sup

1
θk
≤t<θk

u(t)

1+ t
≥

u(t)

1+ t
≥ inf

1
θk
≤t<θk

u(t)

1+ t

≥
u( 1
θk
)

1+ θk
≥
λ( 1
θk
)

1+ θk
‖u‖ =

λ( 1
θk
)

1+ θk
rk, for all t ∈

[
1
θk
, θk

]
.

By condition (C4), we have

f (u) ≥ ϕ(mrk), for all t ∈

[
1
θk
, θk

]
.

Since ( 1
t0
, t0) ⊂ [ 1

θk
, θk], if (C2) holds, in the following, we consider three cases:

(i) If ξ1 ∈ [
1
t0
, t0]. In this case, from (3.1), condition (C4) and Lemma 3.1, we have

‖T u‖ = sup
t∈[0,+∞)

1
1+ t

∣∣∣∣∣∣∣∣∣
∫ t

0
ϕ−1

(∫
+∞

s
a(τ ) f (u(τ ))dτ

)
ds +

m−2∑
i=1

αi
∫ ξi

0 ϕ−1
(∫
+∞

s a(τ ) f (u(τ ))dτ
)

ds

1−
m−2∑
i=1

αi

∣∣∣∣∣∣∣∣∣
≥

1
1+ t0

∫ t0

ξ1

ϕ−1
(∫ t0

s
a(τ ) f (u(τ ))dτ

)
ds +

1
1+ t0

m−2∑
i=1

αi

1−
m−2∑
i=1

αi

∫ ξ1

1
t0

ϕ−1
(∫ ξ1

s
a(τ ) f (u(τ ))dτ

)
ds

≥
1

1+ t0
(mrk)


∫ t0

ξ1

ϕ−1
(∫ t0

s
a(τ )dτ

)
ds +

m−2∑
i=1

αi

1−
m−2∑
i=1

αi

∫ ξ1

1
t0

ϕ−1
(∫ ξ1

s
a(τ )dτ

)
ds


=

mrk

1+ t0
H(ξ1) >

Lmrk

1+ t0
> rk = ‖u‖.

(ii) If ξ1 ∈ (0, 1
t0
). In this case, from (3.1), condition (C4) and Lemma 3.1, we have

‖T u‖ ≥ sup
t∈[0,+∞)

1
1+ t

∫ t

0
ϕ−1

(∫
+∞

s
a(τ ) f (u(τ ))dτ

)
ds
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≥
1

1+ t0

∫ t0

1
t0

ϕ−1
(∫ t0

s
a(τ ) f (u(τ ))dτ

)
ds

≥
mrk

1+ t0

∫ t0

1
t0

ϕ−1
(∫ t0

s
a(τ )dτ

)
ds

=
mrk

1+ t0
H

(
1
t0

)
>

Lmrk

1+ t0
> rk = ‖u‖.

(iii) If ξ1 ∈ (t0,+∞). In this case, from (3.1), condition (C4) and Lemma 3.1, we have

‖T u‖ ≥
1

1+ t0

m−2∑
i=1

αi
∫ t0

1
t0

ϕ−1
(∫ t0

s a(τ ) f (u(τ ))dτ
)

ds

1−
m−2∑
i=1

αi

≥
mrk

1+ t0
H(t0) >

Lmrk

1+ t0
> rk = ‖u‖.

Thus in all cases, an application of Theorem 2.1, implies that

i(T, Ω1,k, K ) = 0. (4.2)

On the another hand, let u ∈ ∂Ω2,k , we have u(t)
1+t ≤ sup0≤t<+∞

|u(t)|
1+t = ‖u‖ = Rk , by (C5) we have

f (u(t)) ≤ ϕ(M Rk), for all t ∈ [0,+∞).

So,

‖T u‖ = sup
t∈[0,+∞)

1
1+ t

∣∣∣∣∣∣∣∣∣
∫ t

0
ϕ−1

(∫
+∞

s
a(τ ) f (u(τ ))dτ

)
ds +

m−2∑
i=1

αi
∫ ξi

0 ϕ−1
(∫
+∞

s a(τ ) f (u(τ ))dτ
)

ds

1−
m−2∑
i=1

αi

∣∣∣∣∣∣∣∣∣
≤ sup

t∈[0,+∞)

1
1+ t

∫ t

0
ϕ−1

(∫
+∞

s
a(τ ) f (u(τ ))dτ

)
ds +

m−2∑
i=1

αi
∫ ξm−2

0 ϕ−1
(∫
+∞

s a(τ ) f (u(τ ))dτ
)

ds

1−
m−2∑
i=1

αi

≤ ϕ−1
(∫
+∞

0
a(τ ) f (u(τ ))dτ

)
+

m−2∑
i=1

αiξm−2

1−
m−2∑
i=1

αi

ϕ−1
(∫
+∞

0
a(τ ) f (u(τ ))dτ

)

≤ M Rk

ϕ−1
(∫
+∞

0
a(τ )dτ

)1+

m−2∑
i=1

αiξm−2

1−
m−2∑
i=1

αi




≤ Rk = ‖u‖.

Thus Theorem 2.1 implies that

i(T, Ω2,k, K ) = 1. (4.3)
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Hence since rk < Rk for k ∈ N , (4.2) and (4.3), it follows from the additivity of the fixed-point index that

i(T, Ω2,k \ Ω1,k, K ) = 1, for k ∈ N .

Thus T has a fixed point in Ω2,k \Ω1,k such that rk ≤ ‖uk‖ ≤ Rk . Since k ∈ N was arbitrary, the proof is completed.
�

In order to use Theorem 2.2, let 1
θk
< rk < θk and θk of Theorem 4.1, we define the nonnegative, increasing,

continuous functionals γk , βk , and αk by

γk(u) = max
1
θk
≤t≤rk

u(t) = u(rk),

βk(u) = min
rk≤t≤θk

u(t) = u(rk),

αk(u) = max
1
θk
≤t≤θk

u(t) = u(θk).

It is obvious that for each u ∈ K ,

γk(u) ≤ βk(u) ≤ αk(u).

In addition, by Lemma 3.2, for each u ∈ K ,

γk(u) = u(rk) ≥
1
θk
‖u‖.

Thus

‖u‖ ≤ θkγk(u), for all u ∈ K .

In the following, we denote by

ρk = ϕ
−1
(∫
+∞

0
a(τ )dτ

)θk +

ξm−2

m−2∑
i=1

αi

1−
m−2∑
i=1

αi

 ,
ηk =

1
θk
ϕ−1

(∫ θk

rk

a(τ )dτ
)
.

Theorem 4.2. Suppose that conditions (C1) and (C2) hold. Let {θk}
∞

k=1 be such that θk ∈ (tk+1, tk) (k = 1, 2, . . .).
Let {ak}

∞

k=1, {bk}
∞

k=1 and {ck}
∞

k=1 be such that

ck+1 < ak <
λ( 1
θk
)

θk + 1
bk < λ

(
1
θk

)
bk < ck, and ρkbk < ηkck, for k = 1, 2, . . . .

Furthermore for each natural number k we assume that f satisfies:

(C6) f ((1+ t)u) < ϕ
(

ck
ρk

)
, for all 0 ≤ u(t) ≤ 1

λ( 1
θk
)
ck;

(C7) f ((1+ t)u) > ϕ
(

bk
ηk

)
, for all bk

1+θk
≤ u(t) ≤ 1

λ( 1
θk
)
bk;

(C8) f ((1+ t)u) < ϕ
(

ak
ρk

)
, for all 0 ≤ u(t) ≤ 1

λ( 1
θk
)
ak .

Then the boundary value problem (1.1) and (1.2) has three infinite families of solutions {u1k}
∞

k=1, {u2k}
∞

k=1 and
{u3k}

∞

k=1 satisfying

0 ≤ αk(u1k) < ak < αk(u2k), βk(u2k) < bk < βk(u3k), γ (u3k) < ck, for k ∈ N .
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Proof. We define the completely continuous operator T by (3.1). So it is easy to check that T : K (γk, ck)→ K , for
k ∈ N .

We now show that all the conditions of Theorem 2.2 are satisfied. To make use of property (i) of Theorem 2.2, we
choose u ∈ ∂K (γk, ck). Then γk(u) = max 1

θk
≤t≤rk

u(t) = u(rk) = ck , this implies that 0 ≤ u(t) ≤ ck for t ∈ [0, rk],

i.e., 0 ≤ u(t)
1+t ≤ ck . If we recall that ‖u‖ ≤ 1

λ( 1
θk
)
γk(u) = 1

λ( 1
θk
)
ck . So we have

0 ≤
u(t)

1+ t
≤

1

λ( 1
θk
)
ck, 0 ≤ t < +∞.

Then assumption (C6) implies that

f (u) < ϕ

(
ck

ρk

)
, 0 ≤ t < +∞.

Therefore

γk(T u) = max
1
θk
≤t≤rk

(T u)(t) = (T u)(rk) =

∫ rk

0
ϕ−1

(∫
+∞

s
a(τ ) f (u(τ ))dτ

)
ds

+

m−2∑
i=1

αi
∫ ξi

0 ϕ−1
(∫
+∞

s a(τ ) f (u(τ ))dτ
)

ds

1−
m−2∑
i=1

αi

≤

∫ θk

0
ϕ−1

(∫
+∞

0
a(τ ) f (u(τ ))dτ

)
ds +

m−2∑
i=1

αi
∫ ξm−2

0 ϕ−1
(∫
+∞

0 a(τ ) f (u(τ ))dτ
)

ds

1−
m−2∑
i=1

αi

= ϕ−1
(∫
+∞

0
a(τ ) f (u(τ ))dτ

)θk +

ξm−2

m−2∑
i=1

αi

1−
m−2∑
i=1

αi



<
ck

ρk
ϕ−1

(∫
+∞

0
a(τ )dτ

)θk +

ξm−2

m−2∑
i=1

αi

1−
m−2∑
i=1

αi


= ck .

Hence condition (i) is satisfied.
Secondly, we show that (ii) of Theorem 2.2 is fulled. For this we select u ∈ ∂K (βk, bk). Then, βk(u) =

minrk≤t≤θk u(t) = u(rk) = bk , this means u(t) ≥ bk , for rk ≤ t ≤ θk . So we have ‖u‖ ≥ u(t)
1+t ≥

bk
1+t ≥

bk
1+θk

,

for rk ≤ t ≤ θk . Noticing that ‖u‖ ≤ 1
λ( 1
θk
)
γk(u) ≤ 1

λ( 1
θk
)
βk(u) = 1

λ( 1
θk
)
bk , we have

bk

1+ θk
≤

u(t)

1+ t
≤

1

λ( 1
θk
)
bk, for rk ≤ t ≤ θk .

By (C7), we have

f (u) > ϕ

(
bk

ηk

)
, for rk ≤ t ≤ θk .
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Therefore

βk(T u) = min
rk≤t≤θk

(T u)(t) = (T u)(rk) =

∫ rk

0
ϕ−1

(∫
+∞

s
a(τ ) f (u(τ ))dτ

)
ds

+

m−2∑
i=1

αi
∫ ξi

0 ϕ−1
(∫ θk

s a(τ ) f (u(τ ))dτ
)

ds

1−
m−2∑
i=1

αi

>

∫ rk

0
ϕ−1

(∫ θk

s
a(τ ) f (u(τ ))dτ

)
ds

≥
bk

ηk

∫ rk

0
ϕ−1

(∫ θk

rk

a(τ )dτ
)

ds

=
bk

ηk
rkϕ
−1
(∫ θk

rk

a(τ )dτ
)
≥ bk .

Hence condition (ii) is satisfied.

Finally, we verify that (iii) of Theorem 2.2 is also satisfied. We note that u(t) ≡ ak
4 , 0 ≤ t < +∞ is a member

of K (αk, ak) and αk(u) =
ak
4 < ak . So K (αk, ak) 6= ∅. Now let u ∈ ∂K (αk, ak). Then αk(u) = max 1

θk
≤t≤θk

u(t) =

u(θk) = ak . This implies that 0 ≤ u(t) ≤ ak , for 0 ≤ t ≤ θk , for t ∈ [0, θk], we have 0 ≤ u(t)
1+t ≤

ak
1+t < ak . Together

with ‖u‖ ≤ 1
λ( 1
θk
)
γk(u) ≤ 1

λ( 1
θk
)
αk(u) = 1

λ( 1
θk
)
ak . Then we get

0 ≤
u(t)

1+ t
≤

1

λ( 1
θk
)
ak, 0 ≤ t < +∞.

By (C8) we have

f (u) < ϕ

(
ak

ρk

)
.

As before, we get

αk(T u) = max
1
θk
≤t≤θk

(T u)(t) = (T u)(θk) =

∫ θk

0
ϕ−1

(∫
+∞

s
a(τ ) f (u(τ ))dτ

)
ds

+

m−2∑
i=1

αi
∫ ξi

0 ϕ−1
(∫
+∞

s a(τ ) f (u(τ ))dτ
)

ds

1−
m−2∑
i=1

αi

≤

∫ θk

0
ϕ−1

(∫
+∞

0
a(τ ) f (u(τ ))dτ

)
ds +

m−2∑
i=1

αi
∫ ξm−2

0 ϕ−1
(∫
+∞

0 a(τ ) f (u(τ ))dτ
)

ds

1−
m−2∑
i=1

αi

≤ ϕ−1
(∫
+∞

0
a(τ ) f (u(τ ))dτ

)θk +

ξm−2

m−2∑
i=1

αi

1−
m−2∑
i=1

αi
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<
ak

ρk
ϕ−1

(∫
+∞

0
a(τ )dτ

)θk +

ξm−2

m−2∑
i=1

αi

1−
m−2∑
i=1

αi


= ak .

Thus (iii) of Theorem 2.2 is satisfied. Since all the hypotheses of Theorem 2.2 are satisfied, the assertion follows. �

Now we deal with the case in which condition (C1) and (C3) holds. The method is just similar to what we have done
above.

Lemma 4.1. Suppose that (C3) holds. Then
(i) for any constant θ ∈ (0, 1), we have

0 <
∫ 1

θ

θ

a(t)dt < +∞,

(ii) the function

H(t) =
∫ 1

t0

t
ϕ−1

(∫ 1
t0

s
a(τ )dτ

)
ds +

m−2∑
i=1

αi
∫ t

t0
ϕ−1

(∫ t
s a(τ )dτ

)
ds

1−
m−2∑
i=1

αi

is continuous and positive on [t0, 1
t0
]. Furthermore,

L = min
t∈[t0,

1
t0
]

H(t) > 0.

Let

λ1 =
1+ 1

t0

L
> 0, λ2 =

1−
m−2∑
i=1

αi

ϕ−1
(∫
+∞

0 a(τ )dτ
)(

1−
m−2∑
i=1

αi +
m−2∑
i=1

αiξm−2

) > 0,

ρk = ϕ
−1
(∫
+∞

0
a(τ )dτ

) 1
θk
+

ξm−2

m−2∑
i=1

αi

1−
m−2∑
i=1

 , ηk = θkϕ
−1

(∫ 1
θk

rk

a(τ )dτ

)
.

Theorem 4.3. Suppose that conditions (C1), (C3) hold. Let {θk}
∞

k=1 be such that θk ∈ (tk+1, tk), (k = 1, 2, . . .). Let
{rk}
∞

k=1 and {Rk}
∞

k=1 be such that

Rk+1 <
λ(θk)

1+ 1
θk

rk < rk < mrk < Rk, k = 1, 2, 3, . . . .

Furthermore for each natural number k we assume that f satisfies:

(C9) f ((1+ t)u) ≥ ϕ(mrk), for all λ(θk )

1+ 1
θk

rk ≤ u(t) ≤ rk;

(C10) f ((1+ t)u) ≤ ϕ(M Rk), for all 0 ≤ u(t) ≤ Rk,

where m ∈ (λ1,+∞),M ∈ (0, λ2). Then the boundary value problem (1.1) and (1.2) has infinitely many solutions
{uk}

∞

k=1 such that

rk ≤ ‖uk‖ ≤ Rk, k = 1, 2, . . . .
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Let θk < rk <
1
θk

and θk of Theorem 4.3, we define the nonnegative, increasing, continuous functional γk , βk , and
αk by

γk(u) = max
θk≤t≤rk

u(t) = u(rk),

βk(u) = min
rk≤t≤ 1

θk

u(t) = u(rk),

αk(u) = max
θk≤t≤ 1

θk

u(t) = u

(
1
θk

)
.

It is obvious that for each u ∈ K ,

γk(u) ≤ βk(u) ≤ αk(u)

and

γk(u) = u(rk) ≥ λ(rk)‖u‖ ≥ λ(θk)‖u‖.

Therefore

‖u‖ ≤
1

λ(θk)
γk(u), for all u ∈ K .

Theorem 4.4. Suppose that conditions (C1) and (C3) hold. Let {θk}
∞

k=1 be such that θk ∈ (tk+1, tk) (k = 1, 2, . . .).
Let {ak}

∞

k=1, {bk}
∞

k=1 and {ck}
∞

k=1 be such that

ck+1 < ak <
λ(θk)

θk + 1
bk < λ(θk)bk < ck, and ρkbk < ηkck, for k = 1, 2, . . . .

Furthermore for each natural number k we assume that f satisfies:

(C11) f ((1+ t)u) < ϕ
(

ck
ρk

)
, for all 0 ≤ u(t) ≤ 1

λ(θk )
ck;

(C12) f ((1+ t)u) > ϕ
(

bk
ηk

)
, for all bk

1+θk
≤ u(t) ≤ 1

λ(θk )
bk;

(C13) f ((1+ t)u) < ϕ
(

ak
ρk

)
, for all 0 ≤ u(t) ≤ 1

λ(θk )
ak .

Then the boundary value problem (1.1) and (1.2) has three infinite families of solutions {u1k}
∞

k=1, {u2k}
∞

k=1 and
{u3k}

∞

k=1 satisfying

0 ≤ αk(u1k) < ak < αk(u2k), βk(u2k) < bk < βk(u3k), γ (u3k) < ck, for k ∈ N .

Remark 4.1. If we add the condition of a(t) f (u(t)) 6≡ 0, t ∈ [0,+∞), to Theorems 4.2 and 4.4, we can get three
infinite families of positive solutions {u1k}

∞

k=1, {u2k}
∞

k=1 and {u3k}
∞

k=1 satisfying

0 < αk(u1k) < ak < αk(u2k), βk(u2k) < bk < βk(u3k), γ (u3k) < ck, for n ∈ N .

Remark 4.2. The same conclusions of Theorems 4.1–4.4 hold when conditions (1), (2) and (4) are satisfied.
Especially for p-Laplacian operator ϕ(x) = |x |p−2x , for some p > 1, our conclusions are also true and new.

5. Examples and remark

Example 5.1. As an example we mention the boundary value problem

(ϕ(u′))′ + a(t) f (u(t)) = 0, 0 < t < 1,

u(0) =
m−2∑
i=1

αi u(ξi ), u′(∞) = 0,
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where

ϕ(u) =


u5

1+ u2 , u ≤ 0,

u2, u > 0

and ξi ∈ (0,+∞) with 0 < ξ1 < ξ2 < · · · < ξm−2 < +∞ and αi satisfy αi ∈ [0,+∞), 0 <
∑m−2

i=1 αi < 1,
f ∈ C([0,+∞), [0,+∞)), a(t) : [0,+∞) → [0,+∞) and has countably many singularities in [0,+∞) and f
satisfy the conditions of Theorems 4.1–4.4. It is clear that ϕ : R → R is an increasing homeomorphism and positive
homomorphism and ϕ(0) = 0.

Remark 5.1. From the Example 5.1, we can see that ϕ is not odd, then the boundary value problem with p-Laplacian
operator do not apply to Example 5.1. So we generalize a p-Laplace operator for some p > 1 and the function ϕ
which we defined above is more comprehensive and general than p-Laplace operator.
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