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Abstract—We construct an important transform to obtain sufficient conditions for the oscillation
of all solutions of delay partial difference equations with positive and negative coefficients of the form

Am+1,n + Am,n+l — Amn +pmﬂAm—k,n—-l - qmnAm—k’,n—l' =0,
where m,n = 0,1,..., and k, &, I, [ are nonnegative integers, p, g € (0,00), the coefficients {gmn}
and {pmn} are sequences of nonnegative real numbers. (© 2002 Elsevier Science Ltd. All rights

reserved.
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1. INTRODUCTION

Partial difference equations are difference equations that involve functions with two or more
independent integer variables. Such equations arise from considerations of random walk problems,
molecular structure problems [1], and numerical difference approximation problems [2]. Recently,
the problem of oscillation and nonoscillation of solutions of delay partial difference equations is
receiving much attention. See papers [3-10) by Zhang and Liu.

In this paper, we consider the delay partial difference equation with positive and negative
coefficients of the form

Am+1,n + Am,n+1 - Amn +pmnAm—k,n—l - anAm—k’,n—l’ = 07 (1~1)
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and let N; = {i,i+1,4+2,...]i=0,1,2,...}, where m,n € Ny and
k,k',U,1 € No,  Pmn,Gmn € [N§,(0,00)], k>k +1, I>U+1. (1.2)

We note that g, = 0, the results for the oscillation of (1.1) have been obtained in {3,4]. To the
best of our knowledge, there are not any results for the oscillation of (1.1) in the literature. In
this paper, an important transform is being used to obtain sufficient conditions for the oscillation
of all solutions of equation (1.1).

A solution {A,,,} of (1.1) is said to be eventually positive if A,,, > 0 for all large m and n.
It is said to be oscillatory if it is neither eventually positive nor eventually negative. Regarding
definition of the initial value problem of (1.1), see [3] or [4].

In fact, we remark further that equation (1.1) may also be regarded as a discrete analog of
partial differential equations of the form

0A 0OA
Frs By + Az, y) + p(z, y)A(z — 0,y — 7) — q(z,y) Az ~ £,y — 1) = 0.

Therefore, qualitative properties of (1.1) may yield useful information for this delay partial
differential equation.

2. LEMMAS

Consider the delay partial difference equation
Am+1,n + Am,n+1 ~ Amn + pmnAm—k,n—l =0. (2'1)

From [3, pp. 217-223] and [4, pp. 482-486], we have the following lemmas.

LEMMA 1. Assume that one of the following two conditions is satisfied.

(i) (See[3].)

m—-1 n-1 )

o 1 w

i=m—k j=n-—|
(ii) (See [4].) For all large m and n, there exists a positive number £ such that

(k + 1)k+D

(k+ 1+ 1)E++1)° (23)

Pmn =& >

where k,l € Ny, w = 2kl/(k +1).

Then every solution of equation (2.1) oscillates.

LEMMA 2. (See [5, pp. 65-71].) Assume that either (2.2) or (2.3) is satisfied. Then partial
difference inequalities

Am+1,n + Am,n+1 - Amn + pmnAm—k,n—l <0
cannot have eventually positive solutions and
Am+1,n + Am,n+1 = Amn + pmnAm—k,n—l >0

cannot have eventually negative solutions.
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LEMMA 3. (See [3].)

m
i=m-—

n
Y (Airrg +Aiger = Ay)

k j=n-l
m+1 n m
= Z Z Ay + Z Aintl — Am—kin—1 + Amg1n-i.
i=m+1-k j=n+1-1 i=m—k

Assume that there exist positive integers s, ¢ such that

and
m+k’ n+l’
Cor = Ag = @)™ | 37 GinAibn-t + ), GmjAmoi gt
=8 j=t 25
m+4-k’ n+4l’ ( ' )
~3 Z Qitk'—kntl —1Aick 1 + Z mtk'—k 40 1 Am_k, j~1
i=g j=t
Let
Qmn = Pmn — Qm+k'—kn+l' =1 > 0, form >k — kl, n>1- . (26)

From (2.5), we obtain the following results.

LEMMA 4. Assume that (1.2) holds and {An,,} is an eventually positive solution of (1.1), then
there exist positive integers M, N such that A, >0asm > M, n > N. Then

(i) Cmn Is monotone decreasing in m,n, that is,
Cm+1,n < Cmns Cm,n+1 < Cmna (27)
(ii) Cmn S Amn’
(111) Cm+1,n + C'm,n-{-l —Cmn = —amnAm—-k,n—l - ,an(A);

where )
,an(A) = BanAm—k’,n—l’ + 54, + §A27
m+k’ n+l’

Ay = Z QinAi—Ic’,n—l’ + Z QmjAm—k’,j——l’7 2.8
i=m+1 j=n+1 (28)

m+4k’ n+l’

BDo= D Giekrkmit—tAikn—t T O Gtk —k 4t —1Am—k 1.
i=m j=n
ProoOF.
(i) From (2.5), we obtain
1 1
Cm+1,n = Am+1,n - 3A1 - §A2 - 3anAm—k’,n—l’ + EQm+k'—k,n+l'—lAm—k,n—l,
2.9)
1 (
Crmn = Amn — 81 — §A2 - 2anAm—Ic’,n—l’-
We note that A, > 0, thus we have
Cm+1,n - Cmn < Am+1,n + Am,n+1 - Amn - 2A1 - qmnAm—k’,n_['
1
+ ‘2‘Qm+k'—k,n+l'~1Am—k,n—t

< _pmnAm—lc,n—l + anAm—k’,n—l’ - 24, (210)

- anAm—k',n—l’ + QTn+k’—k,n+l’—lAm~k,n—l
= _amnAm—k,n-—l -2A, < _amnAm—k,n—l <0,
that is, Cpm+1,n — Cmn < 0. Similarly, we have also Cp pt1 — Cmn < 0.
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(ii) From (2.9), we immediately obtain (ii).
(iii) From (2.5), we have also

1 1
Cm,n+1 = Am,n+1 —3A; - §A2 - qunAm~k’,n—l’ + §Qm+k’—k,n+l’—lAm—k,n—l»

and using above Cypp11,n and Cp,p,, We obtain that

1
Cm+1,n + C'm,n+1 - Cmn = _amnAm—k,n—l - 3qmnAm—k’,n—l’ - 5A1 - §A2

= _amnAm—k,n—l - ﬁmn(A)

Hence, Crmy1,n +Cmnt1 — Cmn = —CmnAm—k,n—t — Bmn(A). Note that G,,,(A) > 0, thus
we have also

C'm+1,n + Cm,n+l — Cmn < “‘amnAm—k,n—-l < 0. (2.11)

LEMMA 5. Assume that (1.2) and (2.6) hold, and form > k — k', n > 1 —l', we have

m+k’ n+l’ 1 m+k’ n+l’
Z Qin + JZ;I qmj -+ 5 l—zm Qit k' —kn+l' -1 + Z Qm+k’_k,j+['_l < 1. (212)

i=m j=n
Let {Amxn} be an eventually positive solution of equation (1.1). Then {Cmyn} by the definition
of (2.5) is decreasing and eventually positive in m,n.

PROOF. By Lemma 4, {Cp,,} is decreasing in m,n. Next, we shall show that the {Cr,n} is
eventually positive in m,n. Because {A,,,} is an eventually positive solution of equation (1.1)
and the {Cpm, } is monotone decreasing in m,n, thus {Cp,,} exists limit as m,n — oo. If

liMyn 100 Cmn = —00, 88 m,n — 00, then {Am,} must be unbounded. There exists {(my, ng)}
such that limg oo M = 00, liMg_ 0o nk = 00, and Am, n, = max {Am—kn-1} — 00 as
M<m<m+k,
k — 00. On the other hand, N<n<ng+l
mk+k' nk.+l'
kank = |Ampn, — Z quAi—k’,nk—l’ + Z kajAmk—k',j—l'
i=my j=ni
my+k’ ny+1
~3 Z Gitk' =kl =1 Ai—knp -t + Z Tk —k 4+l =1 Ay ke j -1
i=my Jj=ng
mi+k’ ng 4l 1 mr+k’
Z Amknk 1-— Z Qing, + Z qu] - 5 Z Qit+k'—kn+1'~1
i=my, Jj=ng i=my
ng+l’
+ Z Qo +k' —k,j+
J=nw
>0

L]

a contradiction. Hence, limy, nooo Cmn = B exists. As before, if {Amn} is unbounded, then
B > 0. Now we consider the case that {4} is bounded. Let 8 = limsup,, n oo Amn =
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limy n' =00 Am?,n- Then

m'+k’ n'+l’
At = Cott = | S iAo v 4 3 ottt
i=m’ j=n’
m'+k’
1
t3 > Gtk kg —tAiok -t
i=m/'
ne+
+ Z Um' k' —k, g+l ~1Am —k,j 1
j= (2.13)
ml+kl nl+l,
< A(ém, nn) Z Qin’ T Z qm';j
i=m/ j=n’
m'+k' n/+l'
+3 Z Qitk'—k,n'+1—1 T Z Gm/ k' —k,j+1' =1
i=m/' j=n'
< A(gmann)7

where A(€m,Mn) = max{Ai_g 1, [i=m/ m' +1,... m'+¥&, j=n/,n"+1,...,n +'}. Taking
superior limit on both sides of the above inequality, we have 8 — 3 < 3, therefore, 8 > 0. Hence,
Cpn >0form>M,n>N.

3. ASYMPTOTIC BEHAVIOR OF
NONOSCILLATORY SOLUTIONS OF (1.1)

The next result provides sufficient conditions so that every nonoscillatory solution of equa-
tion (1.1) tends to zero as m,n — 0.

THEOREM 3.1. Assume that either
(i) (2.12) holds and there exists a positive integer oy such that

Pmn — Gm—k4+k' n—14l 2> oy, form >k — kla n>l-— [I, (3.1)

or

(ii) there exists a positive constant By € (0, 1) such that

m+k n+l 1 m+-k n4t
(Z Qin + ZQmj> + 5 Z Qitk' —kntl'—1 + Z Am+k! ~k,j+1' =1 3.9
i=m i=n i=m j=n ( . )
<1 - By, form>k—k, n>l-10,
and
o0 o0
Z z (Pij — Qi—ktk j~131) = 0. (3.3)
i=k+k! j=l+1’

Then every nonoscillatory solution of equation (1.1) tends to zero as m,n — oo.

Proor. By Lemma 5, the sequence {Cprn} is eventually decreasing and positive. Hence,

lim Cpn=€€RT, (3.4)

m,n—o0

where R* = [0,00). By Lemma 4, it is easy to see

Cm—H,n + Cm,n—H —Cmn < _(pmn - Qm—k+lc’,n—l+l’)Am——k,n—l~ (3'5)



956 ‘ S. T. Liv AND B. G. ZHANG

Taking m1,n, sufficiently large, and summing both sides of (3.5) from m;, n; to infinity, we find

m n [eo} [e o)
i Z Y (Citr+Ciger1—=Ciy ) S = D 3 (Pij — Gimhikr jotst)Aiok ot (3.6)

i=my j=m i=my j=n,

By Lemma 3, we have

m+1 n m
mylrizl:r-.loo Z Z Cij + Z Cint1 = Cminy + Crgiing
i=mi+1 j=ni+1 i=m
7

<=3 N (05— Giokarr jorrr) Aick gt

i=mi j=n

In view of (3.4), we obtain

m+1 n m
lim Z Z Cij + Z Cin+1 +Cmyin, | =L,
m,n—00
t=mi+1 j=n1+1 i=my

L is finite. Therefore, from (3.7), we have

[o ]

o0
L-Cpipn <~ Z (Pij = Gimbothr gt JAimk -1 (3.8)

i=m1 j=ni

First assume that (3.1) holds. Then (3.8) implies that

[o o} o
Z Z (Pij — Giekk j—131 ) Aimk j—1 < 0O.

i=m; j=n;

Hence,

lim A,,=0.
m,n—00

Next assume that (3.2) and (3.3) hold. From (3.8), it follows that

liminf A4, , = 0.
m,n—oo

Also (2.9) implies that Cpun < Amn, and in view of (3.4), £ = 0. Now we claim that {A4,,,} is

bounded. Otherwise, there exists a subsequence {Am, .} of {Amn} such that

Anmynn = rr.lax{Am_k,n_l Im<m.+k, n<n,. +1, forr=1,2,...}

and lim Apm, n, = 0.
T OO *

Then by (2.9) and (3.2), we have

my+k n,.+l1
Cm,~n,. = Amrnr - Z qinrAi—k’,n,‘—l’ + Z Qm,.jAm,-—k',j—l’

i=m, i=n,
mrtk n,.+l
-3 > Gk kit —tAickn—t + Y Gmotki—k g+t —1Am, k1
i=my Jj=n,
m,+k ny+1
> Am,.nr 1- Z Qin, + Z Im..j
i=m, =1,
1 my+k n.-+!
~3 Z Qitk'—kynp+l/'—1 + Z Gk’ k41—
i=my j=n,

2 IBOAm,"‘nr - OO, asr — 00,
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which contradicts the fact that ¢ = 0, and hence, {Amn,} is bounded. Set

A=limsup A, n
m,n—o0

and let {An,, .} be a subsequence of {A,,,} such that

lim Ay, n, = A
8§—00 T

Then for any € > 0, there exists sufficiently large s, it follows from (2.9) and (3.2) that

my+k n.+l
Cm,..n,, = Am,,n,, - Z qm,,Ai—k:’,ns—l' + Z QM,.jAm,,—k’,j—l’
i=m, i=n,

1 ms+k natl
~3 3 Gitk—kina 1Akt Y Gmatk -kt —1Am,—k j 1
i=m, j=n.

> Ay, = O )1~ o).
By taking limits as s — oo and by using the fact that { = 0, we obtain
0>A—(A+e)(1-fBo).
As € > 0 is arbitrary, we conclude that A = 0, and the proof is complete.

4. OSCILLATION OF EQUATION (1.1)

In this section, we will establish sufficient conditions for the oscillation of all solutions of
equation (1.1).

THEOREM 4.1. Assume that (1.2), (2.5), and (2.6) hold, and assume that either
(i)

w

m-—1 n—1
. 1 w
lim inf ] Z Z (Pij = Qimk+k/ j—140) | > ——(w e (4.1)

m,n—oo .
i=m—k j=n-I

m—1 n—1
Z Z (Pij — Gimksk' j—1411) > 0, for all large m,n
i=m—k j=n-|
and (4.2)
m—1 n—1

lim sup Z Z (Pij — Qimktk' j—t417) > 1.

MO0~k j=n—I

Then every solution of equation (1.1) oscillates.

PROOF. Assume, for the sake of contradiction, that equation (1.1) has an eventually positive
solution {A,}. By Lemmas 4 and 5, it follows that the sequence {C,.} is eventually decreasing
and positive and

Crmtin + Cmnt1 — Cmn + (Prmn — Gm—bktk/ n—i4t ) Am—kn—1 < 0. (4.3)

Also,
0 < Crmn < Amn, (4.4)
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thus, Cp—kn—1 < Am—k,n—1, using (4.3), we obtain

Cotin + Cmpnt1 — Cmn + (Pmn — Qm—k+k’,n—l+l’)cm—lc,n—l <o0. (4-5)

However, by Lemmas 1 and 2, inequality (4.5) cannot have an eventually positive solution. This
contradicts (4.4), and the proof is complete.

ExaMPLE 1. Consider the partial difference equation

3 1

1
Am+1,n + Am,‘n+1 - Amn + (Z - %) Am—2,n—1 - EAm—l,n =0. (46)

In this example, m > 2, n > 4, ppn = 3/4 - 1/2n, gp = 1/, k=2, k' =1 =1, ' = 0. Since
k=2>1=Fk,l>1and for m > 2, n >4, we have

3 1 1
1°. Pmn — Qm—k+k! n—1l4l’ = Z - 57; - n—1 > 0.
20, liminf Z Z Pij = Qi—k+k’ j—1+1')

m,n—oo
1—m k j=n-I

. 1 1 1
385 (2-2- 1)

i=m—2j=n—-1

= lim inf 3 ! 1 —3>1—2 4 1/3— w”
T mmnooo\4 2(m—1) n-2/) 47 49\7 INCES

Hence, all the hypotheses of Theorem 4.1 are satisfied. Therefore, all solutions of equation (4.6)
are oscillatory. In fact, (4.6) has an oscillatory solution {Am,} = {(~1)™(1/2")} for m > 2,
n > 4.

Before we establish the next oscillation theorem, we need the following result about partial
difference inequalities which is interesting in its own right.

LEMMA 6. Assume that for s = 1,2,...,p, ks,l; € Ny and {r,(f;zz} are sequences of nonnegative
real numbers such that for every mg,ng € Ny, there exists an sy € {0,1,2,...,p} with the

property that
mo+k.g notlsg

Z Z Tiiol)J (4'7)

i=mg ]no

Let k = max{ko, k1,...,kp}, [ = {lo,11,12,...,1,} and assume that the inequality

p 00 00
>0 Z 3Bkt < bran, for{mzml’ (4.8)

8=0 i=m j n2n,

has a positive solution b = {bmn}m1 Finy 1 such that

by ny < bmn, formy—k<m<m;, n—-Il<n<ng (4.9)

Then there exists a positive solution ¢ = {cpmn }>> of the equation

m]— kn1

ki m>m1a

P [e,9)
Z Z Zrz(i)l,j Cimky,j—l. = Cmn, for { ~ (4.10)

n > ni.
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PROOF. Define the set of nonnegative sequences
A = {¢= {Cmn}mmin=n; | 0 < Emn < by for m > my, n>ni}.

For every & € A, define the sequence ¢ = {¢mn }> + by

mi— kn1 ]

{c :m,n € [my,00) X [ng,00),
Cmn = 7 ]
" Cmyn, + byn — bm1n1 tm,n e [ml - k,ml) X [nl —l,nl) .

Clearly,
0 £ emn < bm, form>m; -k, n>n; -1

and in view of (4.9},

Cmn > 0, for m,n € [my — k,m1) x [ny —l,n;). (4.11)

Now define the mapping T on A as follows: for every & = {Gnn} € A, let the term of the sequence

T¢ be
P )
Z Z z+1161 ~kai=le

=0 i j=n

™8

I
3

Then one can see that T is monotone in the sense that if ),z € A and &b < &2 (that is,
g8, < &, for m > my, n > ny), then TeM) < T&?. From (4.8), Tb < b, from which it follows
that

T:A— A

Define
&0 = {bmn}tomin, and & = 7r=1, for m,n=1,2,....

Then one can see by induction that the sequence {&("} C A satisfies
o<tV < <p. form>my, n>n;.

Thus,

Cmn = lim cﬁ,';zl, m>my, n>n
r—00

exists and & = {Cmn }oeS, n=n, belongs A. Also T¢ = ¢ and so c is a solution of equation (4.10).
It remains to show that

Cmn > 0, form>mi—k, n>n~1L (4.12)
If (4.12) is false, then there exist some mq > m, ny > np such that
Cmama =0 and cmn > 0, for m,n € [my — k,mz) x [n1 =1 no).
Then from (4.10),

Y4 o0 o0
> Z Z ) Cimknjot. = 0. (4.13)

But by (4.7), there exists an s; € {0,1,2,...,p} such that

matka, natl.,

Z Z rf-?l)J

-—mg .——ng
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Hence,
ma+ka, natle,

o N ()
82 . . (s2) N
Z Z Z Tit1,jCimkagri=lay 2 Z Z Ti41,jCimkagri—ley > 0,

§=0 i=my j=ng i=mg  j=na
which contradicts (4.13) and completes the proof.
LEMMA 7. Using equation (1.1) and the transform (2.5), we have
Crm+1,n + Cmnt1 — Cmn + 0mnCrmok,n-t

kl
1 (4.14)
+ §amn § qm—2k+i+k’,n—2l+l’Am—2k+i,n—2l <0.
=0

ProoF. From (iii) of (2.7), we have
C'm+1,n + Cm,n+1 — Cmn + amnAm—k,n—l + ﬂmn(A) =0

or
Cm+1,n + Cm,n+1 — Cmn + amnAm_k,n_l <0. (415)
From (2.5), we have
m+k’ n+l’
Apn =Cin + Z GinAi—k -t + Z QmjAm—k’,j—l’
i=m i=n
1 m+k’ n+l’
+ 3 ; Qitk'— kil —1Ai—kn_1 + ; Gtk =k, j4l —1Am_k j—1

We can improve it for the following case:

K v
Amn = Chmn + ZQm+i,nAm+i—k',n—l' + ZQm,n+jAm—k’,n+j—l’
i=0 im0
1 [ E v
t3 Z Tmtitk —kntl 1 Amyi-kn—1 + z Gmk' —kntj+l —lAm—k,ntj—t
i=0 =0
and
Am—k,n—l = Cm—k,n—l
K L
+ ZQm—k+i,n—lAm—k+i—k’,n-l——l’ + Z m—k,n—t4+5 Am—k— k' n—isj—1
i=0 i=0 (4.16)
A v
+3 S Gm-tktitk mooist Am-gktin-2t + ) Gm-2k+k n-2i+5+0 Am-2k 0214 |
=0 =0
therefore, we have
k,
(a) Am-kn-t 2 Om—kn-1 + 5 > Gm-sktitk mo2itt Am—2kin—at;
i=0
ll
1
(b) Am-kn-1 2 Cm—kn-1 + 3 D Gmosk ik mo2tt Am2k,n-21 455
=0
B (4.17)
(c) Am—tkn-t 2 Crmknct + O Gmektin—tAm—krimk/ noi=t's
=0
ll
(d) Am—kn—-t 2 Cr—kpn—t + Z Gm—kn—l4jAm_k—& mlrj-1-

3=0
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Substituting (a) into (4.15), we obtain
kl
1
C'm-{\-l,n + Cm,n+1 - Cmn + amncm—k,n—l + Eamn ZQm—2k+i+k',n—2l+l’Am—2k+i,n—2l < 0.
=0
Similarly, using (b)-(d) in (4.17), we will also obtain similar results as (4.14). The proof is
complete.
Let
K’ 1 &

H(m,n) = gm-oksitk',n-21+ Cm—2ksin-2t + 3 D Gmoskgitkrn2ir
=0 =0

k 1)\2 K
X Y Gm-skt2i+k' n-3irt:Cm—sks2in-3 + (5) > Gmktivk n-24r

i=0 i=0
k' K’
X ZQm—3k+2i+k',n—3l+l’ Z Gm—dk+3i+k',n—al+l' Cm—ak+3in—at +
=0 =0
(p-1) K K
+ (5) ZQm—2k+i+k’,n—2l+l’ ZQm—3k+2i+k’,n—31+l’ Xoees
i=0 =0
kl
X zqm—(p+1)k+pi+k’,n—(p+1)l—+—l’Am—(p+1)k+pi,n—(p+1)l'
i=0
Then, we obtain that the following results.
LEMMA 8.
kl
ZQm—2k+i+k’,n—2l+l’Am—2k+i,n—2l > H(m,n). (4.18)
i=0
PRrOOF. From (a) of (4.17), we obtain
1 &
Am-2k+in-2 2 Cm-2k+in-2 + 5 D Gkt 2ibkin-t1 Am—3k+2in—30» (4.19)
=0
hence,
kl

ZQm—2k+i+k’,n-2l+l’Am—2k+i,n—2l (substituting (4.19) into Am_ok+in-21)
i=0

K k'
1
> Z Gm—2k+i+k' n-21+1" | Cm—2k4in—21 + 3 Z Qm—3k+2i+k’ n—3l4+1 Am_3k4+2i n—31
=0 i=0
k' %
= Z Gm—2k+i+k’',n-2+1' Cm—2k4in—21 + 3 Z dm—2k+i+k' ,n—204+1'
=0 =0
kl
X ZQm—3k+2i+k’,n-—3!+l’Am-3k+2i,n—3! (substituting (4.19) into A, 3k126n-31)
=0
k/ 1 kl
> Z m—2k+i+k' n—2+0 Cm—2k4in—21 + 3 Z Gm—2k+itk' n~204l
i=0 =0
K %

X E Qm—3k+2i+k! n—31+1 Cm—3k+2i,n—3l+§§ Qm—4k+3i+k’,n—4l+l’Am-—4k+3i,n—-4l
i=0 =0
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2
Repeating the above arguments with (p—1)t" step
and by induction we find that.

> H(m,n).

Therefore, (4.18) holds and the proof is complete.

LEMMA 9. 1
Cm+1,n + Cm,n+1 - Cmn + amncm—k,n—l + ’éamnH(m,n) S 0. (420)

PROOF. Substituting (4.18) into (4.14), then we obtain (4.20).

THEOREM 4.2. Assume that (1.2) holds and there exist positive numbers oy, p and the nonneg-
ative number @) such that

1)
Omn = Pmn — Qm—k4k' n-l4+1 = Qp, form >k - kl, n>\l- l/, (4.21)

(i)

kl

Z Gm—(r41)k+ritk’ n—(r+Di+0 2 &, for m,n sufficiently large, r=1,2,...,p, (4.22)
1=0

(iii) every solution of the delay difference equation
P Q r
Bm+1,n + Bm,n+1 — Bmn + Zamn <_) Bm-k,n—rl =0
r=1 2

oscillates.
Then every solution of equation (1.1) also oscillates.

PROOF. Assume, for the sake of contradiction, that equation (1.1) has an eventually positive
solution {Amn}. By Lemmas 4 and 5, for m, n sufficiently large, the sequence {Cj,} satisfies

0< Cmm C'm+l,n S Cmn’ Cm,n+1 S Cmnv (423)
and
0<Cpin < Amn. (4.24)
From (4.24), using Theorem 3.1, we get
lim Cp,= lim A,,=0. (4.25)
m,n—o00 m,n—oo

Using (4.24), we get

Am—(p+1)k+pin—(p+1)t 2 Cm—(p+1)k+pin—(p+1)1>
and substituting Cr,_ (p41)k+pi,n—(p+1)¢ into the last item of H(m,n), we obtain
kl kl
1
H(m,n) = Zq'"—2k+i+k',n—2l+l’Cm—2k+i,n—2l + 3 Z dm—2k+i+k’ n—20+0
i=0 i=0
k,
X Y Gm-3k42i+k' m-31+1 Cm3kt2im_al + -

=0
. (4.26)

1 (p—1) K’
+ <5> ZQm—2k+i+k’,n-—21+l’ Z(Im—3k+2i+k’,n—3l+l’ X o
i=0 i=0
K
X Zqm—(p+1)k+pi+k',n—(p+1)l+l’Cm—(P+1)k+pi,n—(P+1)l-
1=0
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From (4.26), using condition (4.22) and the decreasing property of {Cp.}, replacing
Con—(p+1)k+pisn—(p+ 1)1 BY Con— (e Dk+rkin—(r+1)1 = Cm—kn—(r+1)1, T = 1,2,..., p, we get

r—1

P r—1 P
1 1 r
H(m,n)> > (5) Q Crkne(rtyt = (5) Q" Crmkin—ri- (4.27)
r=1 r=1

Substituting (4.27) into (4.20), we have

14 T
Q
Om+1,n + Cm,n+1 — Cmn + amncm—k,n—l + Zamn (5‘ Cm—k,n—rl <0

r=1
or
p Q r
Cm+1,n + Cm,n+1 - Cmn + Zamn (5) Cm—k,n—rl <. (428)
r=1

By summing up both sides of (4.28) from m,n to infinity, we obtain

o0 o p o0 e Q T
Z Z(Ci+1,j + Cij+1 — Cij) + Z Z Z Omm (—2-> Cr-tn—rt <0.
i=m j=n r=1 i=m j=n
In view of Lemma 3, we have
oo

00 o0 r
E Z Ci+1,j - Cmn + Z

i=m j=n+1 r=1i=m j=n

Hence,
)4 o0 00 T
Z E Zamn (%) Cm—-k,n—rl < Crn. (4-29)

In view of (1.2), (4.23), (4.24), it is easy to see that the hypotheses of Lemma 6 are satisfied.

Then the equation
P [c BN o] Q r
2 3 2o (3) Bucton = B w0

has a positive solution {By,,}. Clearly, {Bn,} is also a positive solution of the equation

14 r
Bm+1,n + Bm,n+1 - an + Z QUmn <%) Bm——k,n—rl = 07 (4-31)
r=1
which contradicts the hypothesis and completes the proof.
REMARK 2. We can also replace Cr,_ (p41)k+pi,n—(p+1)t DY

Cm—(r+1)k’+rk’,n—(r+l)l’ = Cm—k’,n—(r+1)l’v r=12,...,p,

to obtain similar results.

ExAMPLE 2. Consider the partial difference equation

1+210 1
Am+1,n + Am,n+1 - Amn +l—t+t— Am—2,n—2
32 n+1
. . (4.32)
| ==+———Am_1n_1= > > 3.
(y+3m+m> motn-1=0, m22 n23
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In this example, take p =1, ap = 21°/32% and k > k', | > I'. Note the following.
(1) Pmn — Gn—k+k' 140 = P — Gm-1,n—1 = 21°/32+2/3(n + 1) > ay.
() YHog Om sk (r-1)isnttrmrt = Limg Gmitno1 = 2/32 +2/3(n +1) < L.
(iii) Taking @ = 2/3%, then, Zf;o Tmtk/—(r—1)imtt—rt = 2/32 +2/3(n+ 1) > 2/32 = Q.
(iv) For equation (4.32), due to p = 1, then (4.31) becomes

1 /210 2
Brtin+ Bmnt+1 — Bmn + 32 ('35' + m) Br_on-2=0. (4.33)
From (4.33), since
e & QVY .o 1 o 2
mint (g = X eo(3) | =tmnt (3 X % 5 (5 spm)
i=m—k j=n-I| i=m-1 j=n-1
28 4 w¥

= > =
38727 (w+ 1)t

using Lemma 1, we obtain that every solution of (4.33) is oscillatory. Therefore, from Theo-
rem 4.2, every solution of (4.32) is also oscillatory.

10.
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