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Weighted L” convergence of Hermite-FejCr interpolation based on the zeros of 
generalized Jacobi polynomials is investigated. The main result of the paper gives 
necessary and suffkient conditions for such convergence for all continuous 
functions. in 1985 Academic Press, Inc. 

1. INTRODUCTION 

The purpose of this paper is to investigate weighted L, (0 <p < 00) 
convergence of Hermite-FejCr interpolating processes based on the roots of 
generalized Jacobi polynomials. If xk,,, k = 1, 2 ,..., n, are n distinct points 
and f is a bounded function, then the Hermite-Fejkr interpolating polynomial 
H,(f) is defined to be the unique polynomial of degree at most 2n - 1 which 
satisfies 

ff,(f, X/c”) ==fc%lh qf, x/J = 0; k = 1, 2 ,..., n. (1) 

Although, for any practical purpose, there are endlessly many papers in the 
literature dealing with convergence and divergence of Hermite-Fejix inter- 
polation, most of these papers are based upon nice identities resulting from 
the specific choice of the interpolation nodes. Even when the interpolation 
nodes are chosen to be roots of ortogonal polynomials, most of the research 
has dealt with classical orthogonal polynomials and pointwise convergence 
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and/or divergence. The only exception is given by three papers of G. Freud 
[3-51 where pointwise convergence of H,Cf) is investigated when the inter- 
polation nodes are zeros of general orthogonal polynomial systems. It is even 
more astonishing that though 

when the nodes are zeros of orthogonal polynomials corresponding to da 
where da has a bounded support and f is Riemann-Stieltjes integrable with 
respect to da [7, p. 891, Lp convergence of H,df) to f has never been dealt 
with in the literature. This is in great contrast with Lagrange interpolation 
where sufficient attention seems to have been given to Lp convergence and/or 
divergence and its applications for general orthogonal polynomial systems. 
(See references in [ 1,9-l 1, 15, 161.) The reason for the lack of the general 
theory appears to be the complicated structure of the explicit representation 
for the Hermite-Fejer interpolating polynomial which has been successfully 
overcome only by G. Freud. In this paper we present several theorems about 
weighted mean convergence and divergence of Hermite-FejCr interpolation 
processes, the most important being Theorem 5 where we give necessary and 
sufficient conditions for weighted mean convergence of H,(f) to f when the 
nodes are zeros of generalized Jacobi polynomials and f is continuous 
satisfying some prescribed growth condition. 

2. NOTATIONS 

General Notations. [R and N denote the set of real numbers and positive 
integers, respectively. The symbol “const” denotes some constant which is 
positive and independent of the variables and indices. Whenever “const” is 
used it will always be clear what variables and indices it is independent of. 
In each formula “const” may take a different value. The symbol “N” is used 
as follows. If A and B are two expressions depending on some variables and 
indices then 

A-BoJAB-‘](const and IA -‘II ( ( const. 

Orthogonal polynomials. Let da be a positive distribution on the real line 
such that the support of da is infinite and all the moments of da are finite. 
The corresponding set of orthogonal polynomials is denoted by {p,(da)}: 

p,(da, X) = y,(da) x” + lower degree terms, y,(da) > 0 and 

5 p,(da)p,(da) da = 4,. R 
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If da is absolutely continuous, say da = w  dx, then in the above and in all 
the subsequent notations da is replaced by W. For example, we write p,,(w), 
y,(w), etc. The zeros of p,(du) are denoted by x,,(da) and they are indexed 
so that 

x,,(da) > x,,(da) > .a+ > x,,(da). 

The reproducing kernel functions of the orthogonal system {p,(da)} are 
denoted by K,(da). Hence 

n-1 

K,(da, x, r) = x pk(da, x)pk(& t). 
k=O 

According to the Christoffel-Darboux formula [ 14, p. 431 K,(da) can be 
written as 

K,(da, x, t) = ‘+tg) [p,(da, x)p,-,(da, t) 
n 

-Pn-,(da, x)p,(da, t>l(x - V’. 

The Christoffel function I,(da) is defined by 

I,(da, x)-l = K,(da, x, x). 

It is well known [7, p. 251 that 

&@a, x) = min j, Ip( da(t) 

where the minimum is taken over all polynomials P 
such that P(x) = 1. The numbers I,,(da) defined by 

Akn(da) = &dda9 xkn(da)) 

of degree less than n 

are called the Cotes numbers. By the Gauss-Jacobi quadrature formula [ 14, 
P* 471 

5 p(xkn(da)) Akn(da) = i,P da 
k=l 

holds for every polynomial P of degree less than 2n. If supp(da) = [--I, l] 
and log a’(cos 0) is integrable over [0, n] then by Szego’s theorem [ 14, 
p. 3091 

0 < lim 2-“y,(da) < 00. 
n-a, (2) 
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Lagrange interpolation. The Lagrange interpolating polynomials 
corresponding to the distribution da and bounded function f are denoted by 
L,(da, f ). They satisfy 

n E N, 1 < k < n. The polynomial L,(da,f) can, conveniently be written in 
the form 

L(daJ) = i f(xk,(daN ~kn(d4 
k=l 

where the fundamental polynomials I,,(da) are defined by 

p,(da, 4 
‘k’(da’ x) = pA(da, x,,(da))(x - xkn(da)) ’ 

1 <k<n. 

It is well known [ 14, p. 481 that 

Z,,(da, x) = ‘;-tg) *kn(da)Pn- Ada9 Xkn(da)) 
p,(da, 4 

n X - x,,(da) ’ (3) 

Hermite-Fejb- interpolation. If the interpolation nodes {x,,} in (1) are 
taken to be the zeros {x,,(da)} of the orthogonal polynomials p,(da), then 
we denote the corresponding Hermite-Fejer interpolating polynomial by 
H,(da, x). Hence 

HA&S, X> = 5 ftxkntda)) 
k=l 

x 1 _ pAWa9 X,,(da)) 

p!(da xk (da)) cx -xkn(da))] Ikntda9 ‘1’ t4) 
n 3 n 

114, p. 3301. G. Freud 13, p. 1131 noticed that 

&Vat -&@a)) Wa9 %,@a)) - 
PXda, x,,(W) = &dda) 

so we can rewrite (4) as 

H,(da,.A X) = ,f f(x,,,(da)) 
k=l 

1 + Wav X/m(da)> 

htn(da> 

(X - Xdda))] t&da, X)‘. (5) 
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If P is a polynomial of degree less than 2n then 

P(x) = H,(da, P, x) + f P’(x,,(da))(x - x&da)) E,,(da, x)” 
k=l 

which is the Hermite interpolation formula [ 14, p. 3311. 

Lp and Lt spaces. If 0 <p < co then f E Lp on some interval A if 
Ilf lip < ~0 where 

Ilfllp = [I INI” ,,I”‘, o<p<oo, 
A 

Ilfll, = es;,;v If(t 

If v > 0 and 0 < p < 00 then fE L: if Ilfljv,p < 00 where 

Naturally, when 0 <p < 1, I(. jlv,p and (I a IIp are not norms, nevertheless we 
retain this notation for convenience. Also, in all of our Li spaces u will have 
a bounded support so that the integration in (6) will actually be done only 
over some finite interval. 

The function u is called a Jacobi weight function if u can be written as 
u = w@*~) where 

W@,b)(X) = (1 - x)“( 1 + X)b, -l<x<l, 

and w@+~)(x)=O if 1x1 > 1. 

Generalized Jacobi weights. The function w  is called a GJ weight 
function if w  E L’ and w  = gu where g > 0 and u is a Jacobi weight function. 
Moreover, 

wEGJAog*‘ELL”O on l-1,11, 
wEGJBogECandm(t)t-‘EL’ on [O, 11, 

where m is the modulus of continuity of g, and 

wEGJCogEC’andg’ELip1 on I--1,1]. 
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3. AUXILIARY PROPOSITIONS 

LEMMA 1. Let A be a fixed interval. Let g be a positive continuous 
function in A such that g is dlflerentiable on some set D c A and both 
sup ( g’(x)\ when x E D and sup ( g(x) - g(t) - g’(x)@ - t)l (x - t)-* when 
x E D and t E A are finite. Let da be supported in A and let da, be defined 
by da, = gda. Then 

g(x) $K,(da,, x,x) - -&K,(da, x, x) 

< const . [I pnp2(da, x)1 + I pn- ,@a, x)1 + I p,(da, x)1 I 

X [IzLIG-kx>l + IpXda, XIII 

unl@rmly for x E D and n E N. 

ProoJ: For simplicity, we will use the notation p,(x) =p,(da, x), 

%ida) = L 7 K,(da, x, t) = k,(x, t), k,(x) = k,(x, x), P,(x) =p,(da,, x), 
y,(da,) = r,, , K,(da,, x, t) = K,(x, t) and K,(x) = K,(x, x). Since K, and k, 
are reproducing kernels, we have for every number c 

%(x~Y) - k,k~) =IA K,(Y, OkAx, t>[c -g(t)] da(t). 

Differentiating this identity with respect to x and substituting y = x and 
c = g(x) we obtain 

g(x) W-4 - KM = 2 j4 &(x9 4 g kk tM-4 - &>I da(t) 

which we rewrite in the form 

g(x) K(x) - K(x) = W(x)/ 
A 

J&(x, t)(x - 0 &k,@, 4 da(t) 

+2 AK”(x,t)~k,(x,t)lgo-g(r) 
5 

-g/(x)(x - t)] da(t) = 2g’(x) I, + 21, (7) 

for x ED. Expression I, can be directly evaluated by noticing that 
K,(x, t)(x - t) is polynomial in t of degree n so that 

409/105/l-3 
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I, = I A 
K,(x, t)(x - t) $ k,, ,(x, t) da(t) 

-ICI(x) j fG(x, 0(x - ~)PnW W) 
A 

= $ [K,(x, t>(x - 41 Itzx -Pit(X) I, K&T ax - OAW Wt). 

Here the first term on the right-hand side equals K,(x). Applying the 
Christoffel-Darboux formula to K,(x, t) we obtain 

I K,(x, t)(x - 9&(t) w4 = f+p.W j P,-IW~n(O Wt) 
A n A 

r 
-*P,-,(x) I, P,(t)p,(t) da(t) = - +Pnvl(x). 

rll n 

Hence 

I, = K”(X) + y-l(x) p;(x). 
” 

In order to estimate I, in (7), let us define M by 

M= x,SoUQ,A I g(x) -g(t) - g’(x)(x - t)l (x - t>-*- 

Then by Schwa& inequality 

(I~)* GM* I, K(X, t)‘(x - t)* da(t) - I, [ $ k,(x, t)(x - I)] ’ da(t) 

M2 
< . 

mintEA dt) 5 
K,(x, t)*(x - t)* da,(f) 

A 

1 * da(t). 

(8) 

(9) 

By the Christoffel-Darboux formula the first integral on the right-hand side 
of (9) equals 

P,(x) P,- I@) -P,-,(x) p,(t)]* da,(t) 

= 9 [P,(x)' t P,-l(x>2] 
n 

(10) 
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whereas the second integral on the right-hand side of (9) can be evaluated by 
noticing that as a consequence of the Christoffel-Darboux formula we have 

2 k,(x, t)(x - t) = y M,Wp,-,tt) -zk,Wp,Wl - 4,(x, 6 
n 

so that by orthogonality relations 

; k,(x, t)(x - t) ’ da(t) = +p;(x)’ t +,;-I(,)2 t k,,(x) 1 ” n 

- y [PXX)P,-Ax) tP,(x)P:-,(x)] 
” 

< [q t +] [PXX)’ +PALwl t gg [P,(X)’ tPnA4’l. 

(11) 

From (9), (10) and (11) we obtain 

2 

1: < =i-1 [P,(x)' t p,-,(x)'] 
mihA g(t) 7 

x!; I 
Jp t + [p;(x)' -t-p;-*(x)'] 

n 

t !$ [P,(X)” tPn-,(xq 1. 
n 

Writing the recurrence formula for pn as 

+lJx) = (x - b,)p,-,(x) - F 
n 

n , Pn--2(x) 

(12) 

where 

b, = 
I 

tp,- l(t)* da(t), 
A 
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we can see that 

< 2 
I L 

lx-b,/+fy * + YL 
k,(x) 

n 1 I I x- 

= 2 Ix-b,l+F 
I[ 1 t- * + Yi-1 Yn-I 

n 1 rf Y,  

x [PXX)Pn-l(X) -PL,(X)P,(X)l 

1 I- 

* + r:-1 Yn-I 

7 Y, 

x lP,W2 +P,-,(x)211’2[P:wtP:,-~(x)21”2. 

Since the zeros of Pn and pn- 1 interlace, p,(x)’ -t-p,- ,(x)’ > 0, and we get 

9 lP,W +p,-,(x)*1 
n 

< 2 lx-b,) tp 
I [ 

*+Y:-, * 
lP~(x~* -ok,Wl 

n 1 I I y:, 

which substituted in (12) yields 

Because g is positive on A, we have [7, p. 261 

K,(x) < b$ &)I -’ k,(x). 
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Thus by the Christoffel-Darboux formula 

K”(X) G ry$f m - l y MX)P”-l(X) -PLwbwl 
n 

Similarly, 

(14) 

(15) 

[14, p. 391. Hence from (8), (14) and (15) we obtain 

x mt-&>l + IP,@>l + I z-h-dx)l 

+ I P”c4ll[l PA- l(X>l + I PXXIl* (16) 

Substituting inequalities (13) and (16) in (7), and noticing that 
Y~-,/Y~~I~I/~,~,-~/T,~I~I/~, I~,I<l~l+l~l W= [r,sl), we get 

I g(x) Kl(x) - u-d G conW,&I + P&>l + Ikl(x)l 

+ IPnwIlbL1(xH IP:,(-4l1 

uniformly for x E D and n E N. Now the lemma follows directly from 
Korous’ theorem [ 14, p. 1621 according to which if the support of da is 
contained in A and 

then 

$p(t)>O 
teD 

RW G constb,&)l+ I hMl1 

uniformly for x E D and it E N. 

LEMMA 2. Let w  E GJA and let xkn(w) = cos 0,” (x0” = 1, x,+~,~ = -1, 
0 < Ok, < 7~). Then 

@ -oknNl 
k+l,n n (17) 



36 NEVAI AND VJ?RTESI 

+ w(x) &=-T, Ix/< 1 -n-*, 

A”(W, x> N -$ w(1 -n-*), 1-n-*<x<l, (18) 

-$ w(-1 + n-*), -l<x<--l+n-*, 

uniformly for n E N and 

(19) 

uniformly for 1 < k < n, n E N. Zf w  E GJB then 

[w(x) \/i_;;T] -l’*, Ixl< 1 -n-*, 

( pn(w, x)1 < const &i [w(l - n-*)I-‘I*, 1 -n-*<x< 1, (20) 

fi [w(-1 + n-*)1-“*, -l<x<-l-j-C*, 

uniformly for n E N, 

Ip~(w~x)l - I 
$i [w(l -n-*)1-l’*, 1 +x,,(w) Q 2x < 2, 
fi [w(-l + n-2)]-1/2, -2 < 2x < -1 + XJW), 

(21) 

uniformly for n E N and 

I Pn--1(w x,,(w>)l N w(x/r”bw”2(l -x,“(w)2)1’4 

u@@rmly for 1 < k < n, n E N. Zf w E GJC then 

(22) 

+ w(x)(l -x2)--1/2, [xl< 1 - n-*, 

IAA(w, x)1 < const w(1 - n-*), l-n-*<x&l, (23) 

~(-1 + n-*), -1 <x<--1 +n-*, 

uniformly for n E N and 

I%(w, x,,(w))/ < const t w(x,,(w))(l - x~~(w)*)-~/~ (24) 
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uniformly for 1 < k < n, n E N. If w  E GJA then 

K(w, xdw)>l < cona w(x,,(w>) (25) 

uniformlyfor l<k<n,nEN. 

ProoJ Equation (17) was proved in [9, p. 3671, (18) in [13, p. 3361 and 
(19) follows directly from (17) and (18). Inequality (20) was proved in [2, 
p. 2261 whereas (21) follows from Theorem 9.33 in [ 12, p. 1711, (17) and 
(18). Equation (22) was proved in [ 12, p. 1701. The estimate (24) follows 
from (17) and (23). Now let us prove (23). Since w  E GJC we can write w  
as w  dx = g da where da is a Jacobi distribution and g is a positive 
continuous function in [-1, 1 ] with g’ E Lip 1. Hence setting 
A=D= [-1, 11, we see that g satisfies the conditions of Lemma 1. Conse- 
quently, 

IK;(w, x, x)1 < const 
[ 
JKA(da, x, x)1 

+ ,f I~j(da,x)l * i lP;(da,x)l], Ixl< 1. (26) 
j=n-2 j=n-1 

The polynomials p;(da, x) are themselves Jacobi polynomials with 
distribution (1 -x2) da. Hence the two sums in (26) can be estimated by 
(20). By proceeding this way we obtain 

j=$e 2 I P&h XI f I pj (da, x>l 
j=n-1 

nw(x)-‘(1 -x*)-l, /XI< 1 - n-2, 

< const n3w(l -n-*)-l, 

I 

1-n-*<x<l, (27) 

n3w(-1 + n-*)-l, -1 <x(-l +n-*. 

In order to estimate K;(da, x, x) we notice that, in fact, it can be evaluated in 
a closed form as follows. By the Christoffel-Darboux formula 

K,(da, x, x) = ‘;-ig’ bXda, x)Pn-lW9 xl -Ll(da, x)p,(da, x)1 n 

so that 

KA(da, x, x) = ‘t-t$) [A’(& x)p,-dda, x> -A-,(da, x)p,(da, x)1. 
n 
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If a and b denote the parameters of the Jacobi distribution da then p,(da) 
satisfies the differential equation [ 14, p. 601 

(l-xZ)Y”=-n(n+a+b+ 1>u+ [a-b+(a+b+2)x] Y’. 

Thus 

KA(da, x, x) = 
a-bt(utbt2)x 

1-x2 K,(da, x, x) 

_ y,-,(da) 2n ta+b 

y,(da) 1 -x2 p,-&h x)pn(da9 4. 

Since K, = I;’ we can apply (18) to estimate K,, whereas p,, can be 
estimated by (20). By doing so we get 

JK;(da,x,x)i < const . n . w(x)-‘(1 -x2)-3/z, 1x1< 1 -n-‘. (28) 

When 1 -n-‘< Ix] < 1 then we write 

n-1 

K;(da, x, X) = 2 c pj’(da, x)pj(da, x) 
j=O 

and, since pj(da) is also a Jacobi polynomial with distribution (1 - x2) da, 
we can use (20) to obtain 

/ 

?Pw(l -n-2)-1, 1 -n-2<x< 1, 
I K;(da, x, x)1 < const 

n4w(-1 + n-2)-1, -l<x<--1 +n-2. 
(29) 

Comparing (27) and (28)-(29) we can conclude that the right-hand sides of 
(28) and (29) are larger than that of (27) so that (26) becomes 

nw(x)-‘(1 -x2)-3/2, Ix/ < 1 -K2, 

) KA(w, x, x)1 < const n4w(l -n-‘)-‘, 1 -n-‘<x< 1, (30) 

n4w(-1 t n-‘)-l, -1 gx<--1 tn-‘. 

Observing that K; = -A;A;‘, (23) follows from (18) and (30). In order to 
prove (25), we write w  = gw((lVb) so that by (18) 

A,(w, x)--l < const n(&X + n-1)-2u-1(~ t n-1)-2b-1, lx/ < 1. 
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Applying a weighted version of Markov-Bernstein’s inequality to the 
polynomial L,(w)-’ [8, p. 511 (see also [12, p. 1611) we obtain 

I qw, x)1 L(w9 x> -2 < const . n’(fl+ n-l)-*=-* 

x (G + n-y*-*, I4 < 1. 

Substituting here x = xk,, and using (17) and (19), inequality (25) follows 
immediately. 

LEMMA 3. Let da be such that supp(da) = [-1, 1 ] and log a’(cos B) E 
L ‘. Then for every function f which is Riemann integrable in [- 1, I], 

uniformly for 1 + x,,(da) < 2x < 2 and 

lim 5 httda> f (x&da)) 
Pn- ,tda, X&a))* 

n-+a, k=l X - X&a) 

=-ajf,f(t)gdt 

(31) 

(32) 

uniformly for -2 < 2x < -1 + x,,(da). 

Proof In order to prove (31) we point out that for x = 1 it has been 
proved in [ 12, p. 391. For 1 + x,,(da) < 2x < 2 we will show that 

i ‘$y,,f (Xkn) “n;$n)2 - f 1,” f (x,,) Pn-1(Xkn)2 n’tor 0. (33) 
k=l kn k=l X-xkn 

But 
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Hence, if we prove that 

lim (1 -xi,) 2 I,, Pn-l(Xk”)* = 0 
n-m k=l t1 - Xkn)2 

(34) 

then (33) holds and consequently so does (31). Let E E (0, 1) be fixed. Then 
obviously 

n 
Pn- dXkn)* 1 -x1n 

(l -x’,) kzl ‘kfi (1 _ Xkn~* G (1 - El2 + x&Ak” 

h-l(Xkn)2 

1 -Xkn 

and applying (31) with x = 1 we obtain 

Letting here E + 1 we can see that (34) is satisfied and thus (31) holds 
uniformly for 1 + xl,, < 2x < 2. The proof of (32) is analogous to the proof 
of (31). 

LEMMA 4. Let w  E GJC and let 0 < u < 1. Then 

i lkn(w9x)* < const 
log n 

1 + y w(x)-‘(1 -x2)-“* 1 (35) 
k=l 

and 

i IX - xkn(w)l lkn(w, x)’ < const & + T w(x)-l(l -x*)-r/*] (36) 
k=l 

uniformly for n > 2 and 1x1< 1 - un-*. 

ProoJ Let w  = gw(a7b) and let 0 < x < 1 - UIZ -*. First we will consider 
the case when a ) -4. We have 

5 l,,(x)* = 1 - Zi (x - Xkn) +) ikn(X)*. 
k=l 

Thus by (19) and (24) 

$, lkntX)* < ’ + const 5 lx-xkI (1 -xi,)-’ lkn(x)2s (37) 
k=l 

If xkn < -1 then by (3), (19) and (22) 

(x-xknI (1 -x:,)-’ lkn(x)* < constp+ik, 
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so that by the Gauss-Jacobi quadrature formula 

c lX-XXknI (1 -X:.)-r[Xn(X)*gcOnstP.02. 
Xk,,< - 112 n 

If xkn > -4 then by (3), (19) and (22) 

(38) 

Ix -xknI (1 -xi,)-’ Ikn(x)* < const y (1 -Xkn)a’*-“4 Ilk,(X)l. 

Thus, 

z k-XknI (1-4,r’ w>* 
x,,> - 112 

<consty i: (1 -Xkn)a’*-1’4 IIkn(X)I 
k=l 

<constJP”oJ i (1 -Xkn)a-l’* ] I’*[ g, I,.tx)*] “** (3g) 
n k=l 

Combining (37), (38) and (39) we can conclude that 

2 lkn(x)2 < 1 + constP”02 
k=l 

+ const I “(‘)’ +[ 21: t1 -xk.)a-1’2]1’2 * [ $, i&)‘] “*. 
k=l 

Solving this inequality for C I:,, we obtain 

P,(X)’ P,(X)’ n 1 + - 
n + n* 

- ;I t1 - xk.)a-1’2] * t40) 

Applying (17) we see that 

k=l 
a = 0, 

a > 0. 

(41) 

If a > 0 then 0 Q x < 1 - UK* formula (35) follows directly from (20), (40) 
and (41). If-f <a < 0 then by (40) and (41) 

5 Zkn(x)* < const 
k=l 



42 
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n 

max Y Ikn(x)* < const 
D<X<l p1 (42) 

which again implies (35) for 0 <x < 1 -UK*. Now let -1 < a < -$. Then 

by (19) 

Now we apply Hblder’s inequality withp = -(a + f>-’ and 4 = (a t !)-’ to 
the right-hand side of (43). We get 

c 
xk,> - 112 

4Jx)* <?!!f% [ i (1 -Xkn)-l ‘kf”] -(at”2) 

k=l 

kn . [ $, yq”+“*. 

By a result of G. Freud [ 6, p. 25 1 ] 

1 (4’ 2 (1 -Xk”)-l*= 1,(&x)-’ 
k=l kn 

where 3(x) = (1 - x) w(x) so that I? E G./C. Also, we have 

f’ lkntX)* 

k=l kn 1 
= q&v, x)-’ 

[7, p. 251. Hence 

c 
Xk”> - 112 

lkn(X)Z Q qh,(lj, xy 1’2 &(W, X)-(=+3’*) 

and by (18) 

xk,z ,,* lkn(X)* < const, 0 < x < 1. 

If xkn < - f then by (4), (l9), (20) and (22), 

(44) 

lkn(x)* < const n-* 
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so that 

From (44) and (45) inequality (42) follows also for -1 < a < -4. Hence 
(35) holds for every w  E GJC when 0 <x < 1 - unW2. Applying (35) with 
w*(x) = w(-x), we see that it also holds for -1 + on -’ < x < 0. In order to 
prove (36), we write 

’ 
k=l 

Ix - Xkn 1 l,&)2 = 
,x-x,“; I/log” Ix - Xkn’ 1kn(X)2 

+ 1kn(X)2 
Ix--xk”l> l/log n 

' -+ l,,(x)2 t log n i (x -.$,)2 i,&)2. 
k=l 

It follows from (3), (19) and (22) that 

(x - xkJ2 l,,(~)~ < const p,(x)’ 
*T’ 

Hence 

2 ix - Xkn 1 ikn(X)2 < 
k=l 

& g, jkdXj2 + const TPn(,)2 

and (36) follows from (20) and (35). 

LEMMA 5. Let w E GJA and let w be continuous in (-1, 1). Then for 
every fixed nonnegative integer m there exist two polynomials R, and R, of 
the form R,(x) = (1 - x2)m n,(x) and R,(x) = (1 - x2)m II,(x) such that II, 
and n, are polynomials and 

lim inf npn(w, x)-’ (R,(x) - H,(w, R,, x) > 1 
n+cc (46) 

uniformly for 1 t x,,(w) < 2x < 2 and 

liz&fnP,(w, x)-’ IRz(x) - H,(w, R,, x)1 > 1 (47) 

uniformly for -2 < 2x < -1 + x”,(w). 
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ProoJ: If R is a polynomial and 2n > deg R then 

R(x) - H,(w, R, x) = i R’&,(w))@ - x,,(w)) Mw, 4’. 
k=l 

Omitting the unnecessary parameters, we can write this as 

rip,(x)-‘[R(x) - H,(w,R, x)1 

= ‘PI k$, tnnkn) R ‘(xk,) I,, “;ITx;‘2 

for 1 + xi,, < 2x < 2 where 6, = yE-,/yi. Let p be defined by 

P= “,I\ djnW(Xjn)-‘(1 -Xfn)-“‘. 

ISj<n 

Then by (19) p is finite. If E fixed and 0 < E < 1 then by (48) 

w,(x)-’ IR(x) - H,(wR, xl 

c (dkn) R/(X,,) Pn-1(Xkn)2 

IXk”l<E X-xkn 

Pn- dXkn)* 
-P c w(xkn> d=% iR’(xkn)i x _ Xkn 

i+nl >& I 

for 1 + xi,, < 2x < 2. By Theorem 6.2.22 in [ 12, p. 851 

lim [nJjzj, - 7tw(xj,) d-1 = 0 
n+m 

uniformly for ]xjnl < E. Thus, if 6 > 0 is fixed and n > n,(6), then 

rip,(x)-’ IR(x) - H,,(w R, x)1 

for 1 + xi, < 2x< 2. By (2), 6, -t f as n -+ co. Assuming without loss of 
generality that m > 2, we can apply Lemma 3 to conclude that all three sums 



HERMITE-FEJkR INTERPOLATION 45 

inside the brackets converge uniformly for 1 + x,, < 2x < 2 as rr + oc and 
passing to the limits we obtain 

1izEf rip,(x)-’ ]R(x) - iY,(w, R, x)1 

uniformly for 1 + x,, < 2x < 2. Letting E -+ 1 and 6-O we get 

liz?f rip,(x)-* JR(x) - H,(w, R, x)1 > i 
I 

’ JR’(r) w(t)(l + t)dt) (49) 
-1 

uniformly for 1 + x,, Q 2x < 2. If we can show the existence of a polynomial 
R, of the form R,(x) = (1 - x*)~ n,(x) such that 

I 1 R i(t) w(t)( 1 + t) dt = 2 (50) 
-1 

then (46) will follow from (49). If (50) holds for no R, then for every 
j = 0, 1, 2,... 

o=(’ y;’ 
-1 

(1 - t*)m 1’ w(t)(l + f) dt 

I 
1 

= tj( 1 - L*)~ w(t)( 1 t t) dt 
-1 

[(l -t2)m]’ w(t)(l +t)dt 

= +t)-j’ [(l-s*)*]‘w(s)(l +s)ds 
--I 

so that 

(1 - z*), w(t)(l + t) =(’ [(l - s*)~]’ w(s)(l + s) ds 
-1 

for -1 < t < 1, and hence w(t)(l + t) is absolutely continuous on every 
closed subinterval of (-1, 1) and also [w(t)(l +t)]‘=O for -1 <t < 1. 
Consequently, w(t) = const(1 + t)-’ & L’. This contradiction proves the 
existence of R, satisfying (50). The second part (47) of the lemma can be 
proved by analogous reasoning. 
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The following lemma is a partial case of a more general theorem proved in 
[ 11, Theorem 1). 

LEMMA 6. Let w  E GJB and let w  be a Jacobi weight. If 1 ( p ( 03 and 
(1 -x2)-1/4 wil/2 E LP, then for every bounded fun&&f in r--i, 11 

L(w, F)lI,,p < cona Ilfll,, nE N, 

where F(x) =f(x) m . (1 - x~))“~. 

4. MAIN RESULTS 

THEOREM 1. Let A be an interval. If suppwcd 
lim n-rm H,,(w, R) = R in Lk for every polynomial R. 

ProoJ: If R is a polynomial and deg R < 2n then 

R(x) - H,(w, R, x> = f R’(x,,(w))(x - -G,,(W)) Mw, 4’ 
k=l 

then 

= Y&l(W) 
Y,(W) 

Pn(W> x> i R’(xkn(w))pn- lcw, xkn(w)> nkn(w) lkdW, x) 
k=l 

= Yn-l(W) 
y (w) ~n(w, x) L,(w, R/P,- l(w) k,(w), x). 

n 

Hence by Schwarz’ inequality 

IIR - H,(w RL,, G y$) II PnWllw,2 lIL”(W9 R/P,- 1(w) ~“WIlW,2 
n 

= ‘,($’ [ iI R’(Xk,(W))2Pn-I(W,Xkn(W))2 ik,(w)3] “2 

< ‘;;$’ IIR’IL k,(w>llm [ $, Pn-l(W, xkn(w>>2 ‘k.tw)] I’* 
” 

= ‘;-($’ IIR’llm IlUwIl, 
n 

(51) 

where the co-norm is taken over A. Since supp w  c A, yn- I/y, Q f IA I. Also, 
since w  is an absolutely continuous weight distribution with compact 
support, Ln(w, x) 10 as n + co for every real x [7, p. 631 so that by Dini’s 
theorem II U4lL + 0 as n + co. Thus, the theorem follows from (5 1). 
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THEOREM 2. Let v be a Jacobi weight, not necessarily integrable. 
Suppose that f is Riemann integrable in [-6,6] for every 0 < 6 < 1 and 

I f(x)1 < const v(x), -l<x< 1. (52) 

Then lim n~co H,(w, f) =f in Lk if either of the following two conditions are 
satisfied: 

(i) wEGJA and wvdmEL”O in [-l,l], 
(ii) w  E GJB and WV/~= E L’ in I-1, 11. 

ProoJ Let E > 0 be fixed. Let us choose a Jacobi weight u with positive 
integer parameters such that u(x) < v(x) for -1 <x < 1 and o c 
w’u*~~E L’ in [-1, 11. Then fu-' E LL if either (i) or (ii) is 
satisfied. Thus we can pick a polynomial S (e.g., a partial sum of the 
orthogonal Fourier expansion off%’ in {p,(w)}) such that 

IW’ - SII,,, G E. (53) 

If R = US then R is a polynomial and by Theorem 1 lim,,, H,(w, R) = R 
in LL. Since by (53) 

lIf-~llw,l=IIf-~~llw,*=llGf~-‘-wllw,, 
= Il(fu-’ - S) fi (1 -xz)-“ql < ]]cfu-’ - S)]]w,z ]](l - x*)-1’4]]2 

=d%.w’ -S)llw,2QhE, (54) 

we have 

liy+zp Ilf - Wwf Ilw,l G liyup Ilf -R Ilw,l 

+ liy+~p IIR - H,(w, Wll,,l + liy+v II4Ocf -RIl,,l 

< h E + liy+zp IIH,(wf - Nll,,l (55) 

if either (i) or (ii) is satisfied. Our next goal is to estimate the second term on 
the right side of (55). For this purpose let q4 =f - R. Then, because of the 
choice of u, 

I d(x)1 < c4X)T -I<X<l, (56) 

where the constant c depends on the constant in (52) and I],!?]], in [-1, 11. 
Applying (5) and omitting the unnecessary parameters, we obtain 

H,(w, q4 x) = i: #(x,J L(x)* + YP~(x) L,(w, $2; Pn-I 3x) 
I=1 ” 

409/105/l-4 
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so that by Schwarz’ inequality 

since Y+&,, < 1 and IIP~II~,~ = 1. W e will estimate the two terms on the 
right side of (57) separately. By the triangle inequality 

since llCnllw,l =1,,.IfO<6<1 isfixedthen 

because # is Riemann integrable on [-6,6] (see [7, p. 89)). Thus by (54) 

(59) 

Furthermore, by (56), 

c IQ)(Xkn)/Akn<C x u(Xkn)Akn- (60) 
IXknl >a lXk”l >s 

Let k, be the largest index k for which xk+ i,” > 6, and let k, be the smallest 
index k for which xk _ i ,n < -6. Applying (19) we obtain 

v(xkn> lkn - + u(x,,> w(xkn) d-=i%, k= l,k,,k,,n, 

if either (i) or (ii) is satisfied. Also, under the same conditions, v(x) w(x) < 
const . (1 - x2)- 3/4. Hence by (17) 

u(x,,) A,, < const n-‘I*, k= l,k,,k,,n. (‘31) 

It follows from (17) that 

u(t> - vtxkn), 

for k = 2, 3,..., n - 1. Another inequality we will need is the Markov-Stieltjes 
inequality [7, p. 291, according to which 

k = 2, 3 ,..., n - 1. (63) 
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Combining (60), (61), (62) and (63) we obtain 

c I I(XkJl1k” G const u(t) w(t) dt + n - “* 
IXknl >a I 

so that 

lim sup n~m c I~(Xkn>l Akn G const j u(t) w(t) dt. (64) 

If either (i) or (ii) holds then uw E L’ and then letting 6 -+ 1 in (64) it 
follows from (58), (59) and (64) that 

(65) 

Now we turn to estimating the second term on the right-hand side of (57). 
By the Gauss-Jacobi quadrature formula 

i $tXkn)* Ah(Xkn)2Pn-dXkn)2 II,,* 
k=l 

Noting that in both cases (i) and (ii) w  E GJA, we can apply (25) to obtain 

lIL,(w Twn-xJ,* G const i #(Xkn>2 W(Xkn)2~n-1(Xkn~2 ‘kn 
k=l 

so that if we write w  = gW(‘**) then 

Now if (i) holds then we rewrite (66) as 

(67) 

By the conditions of the theorem and (56) the function @v@**) dm is 
Riemann integrable in [-1, 11. Hence by Lemma 3, the right side of (67) 
converges as n + co, and evaluating its limit by (3 1) and (32) we obtain 
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(68) 

Since #2w(Za,2b) VT7 =g-‘(jr - S)2 o, we can conclude from (53) 
and (68) that 

lim sup IIL,(w, @AP~-,)II~,~ < const 6 “-02 (69) 

if condition (i) of the theorem is satisfied. If condition (ii) holds then by (22) 
and (66) 

If 0 < 6 < 1 is fixed then by the convergence of the Gauss-Jacobi quadrature 
process [7, p. 891 and by (53) 

= I yam2 w (‘*b)(t) dT7 w(t) dt < const c2. (71) 

Taking (56) into consideration we obtain 

c &%J2 w (O’byXkn) d-lb,, 
lXk”l > 8 

If (ii) is satisfied then UW(“~)/{~ E L1 so that there exists a number 
r > -‘4 such that 

v(x) W(“‘b)(X) &T Q (1 - X2)? -l<x<l. 

Hence 

< c2 ,x;,8 V(Xkn)(l - x~n)’ Akn, 
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r > - a. The right side of this inequality can be estimated in the same way 
as the right side of (60). By proceeding this way we obtain 

< const 
I 

v(t) w(t)( 1 - t*)- 1’4 dt. 
~<111<1 

(72) 

Combining (70), (71) and (72), and letting 6-t 1, we see that (69) holds also 
if (ii) is satisfied. Finally, subsituting (57), (65) and (69) into (55) we see 
that 

if either condition (i) or (ii) holds. Since E > 0 is arbitrary, the theorem 
follows. 

THEOREM 3. Let u be a Jacobi weight function and let f be defined by 
f(x) s x. Then w  - 
satisfied: 

(i) WE GJA, 

(ii) w  E GJB, 
subsequence { nk}. 

I E Lf, if either of the following two conditions are 

1 <p < 00 and lim,,, H,(w, f) =f in Lz, 

0 <p < og and lim,,, H”k(w, f) = f in LP, for some 

Proof: If f (x) = x then 

f(x) - H,(wf, x) = ;I (x - x&v)) L(w x)’ 

and, omitting the unnecessary parameters, we write it as 

f(x) - H,(w,f, x) = ‘;-’ TP”(X)’ k$I A:, p;-fxf2 

so that by Cauchy’s inequality 

If(x) - HPf(wf, x)12 s$P.(X)’ * $ [ k$I 4, I P”-I(%)I] * (73) 
n 

for x1, <x < 1. Let T,, denote the Chebyshev polynomial of degree n. Then 
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/T,,(t)/ < I, --I ,< t < 1 and T,(t) = 2”-*t” + .a.. Thus by the Christof- 
fel-Darboux quadrature formula, 

i Akri IP”-l(XkJl a .f nk,~“-*(Xk”)Pn-*(Xkn) k=l k=l 

I 

1 2”-2 

= ~,-lWP,-l(t) w(t) dt = - 
-1 Yn-I 

and applying this inequality to (73), we obtain 

p-(x) - H,(w,f, x)1 > yp*, x,,<x< 1. (74) 
n 

If condition (i) is satisfied then 

lim n~m s ,:.,,“,, If(x) - Hn(w9.A xl” 4x> dx = 0 

so that by (2) and (17) 

lim n~cO 
I 
,:+,, ),2 lP,@>‘e I”4x)~x=O* 

n 
(75) 

But for 1 <p< co 

(L+x,,, I$$ //I u(x)dx) 1/P 
<+ ;g (j’ 1 Pan d= Ip u(x) dx 

(1 +x1,)/2 i 

IlP 

and, consequently, 

I 
lim 

1 I 
- px)dr=o. (76) 

n-a, (1+x1,)/2 &(w x> 

If we write w  = gw(agb) and u = w(‘*~) then by (17) and (18) formula (76) is 
equivalent to 

lim n2(aPwce1) = 0 
n+m 

so that c - up > -1 which means that wPpu is integrable in [0, 11. The 



HERMITE-FEJiR INTERPOLATION 53 

integrability of wepu in [-I, 0] can be shown by similar arguments. If 
condition (ii) is satisfied then 

and by (2) and (17) 

/!!.tt j(:+x,“k),2 / pn(‘2 IS 4x> dx = cl 
so that by (21) 

,‘ill W(1 -n;‘>-” j1 u(x) dx = 0. (77) 
(1 t Xl”,p 

If we again write w  = gw(‘*‘) and u = w(~*~) then by (17) formula (77) is 
equivalent to 

lim n:(UP-C-l) = 0 

k-+cc 

and thus W-“ZJ is integrable in [0, 11, whereas the integrability of wPpu in 
[-LO] may be proved using analogous arguments. 

THEOREM 4. Let w  E GJB, p > 0, and let u and v be two Jacobi weight 
functions. We have lim,,, H,(w, R) = R in LP, for every polynomial R 
satisfying the condition 

1 R(x)1 < const v(x), -l<x<l, (78) 

ifand only fw-’ E LP,, in particular, p is independent of v. 

Proof: If R is a polynomial and the degree of R is less than 2n, then 

R(x) - H,(w, K x) = i R’@,,(W))@ - x,,(w>) 1kn(W9 x)‘* 
k=l 

By Theorem 6.3.14 in [ 12, p. 1131 for every 0 < p < co and Jacobi weight u 
there exists a constant o = a(p, U) > 0 such that for every polynomial P of 
degree at most 2n 

I’, IP(t u(t) dt < 2 I’-““-’ 1 P(t)lP u(t) dt. 
-1tor1 

(79) 
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Thus 

if, (R(x)-Hn(w,R,x)~pu(x)dx~2j’-o’-2 P(x) - H,(w, R x)1” u(x) dx 
-lion-’ 

so that by (36), if n > 2, then 

I ’ 
-1 

(R(x) - H,,(w, R, x)Ip u(x) dx < const . 1% IR’(t)lP 

(w(x) dm)-p u(x) dx]. (80) 

If w  E GJB, u is a Jacobi weight and w  -pu E L ’ then there exists a number 
q > 1 such that w  -% E Lq and q- ’ > 1 -p/2. Applying Holder’s inequality 
with this q to the integral on the right side of (80) we obtain 

I 
1-m-2 
-l+o”-2(1 -x2)- p’2 w(x) -P u(x) dx 

[J 
l--on-Z 

1 

(4- I)/4 

s --l+lrn~* (1 -x2)-p4’*(q-‘) dx - IIw-p41q~ (81) 

Simple computation shows that 

[i 

l-W-2 

I 

(Q-1)/q 

-l+~n~z (1 -x2)-pq’*(q-i) dx 

s 
[ 

4(q - 1) 1 
(q--l)/q ~~-P/2+‘4-l~l~~~P~~l-~~l~2~~ 

P4-2(q- 1) 

< const npn(1-q)/2q O-32) 

with the constant depending on q and Q. Combining estimates (80), (81) and 
(82) we get 

IIR - H,t(w RII,,, G const ]]R’]],[(logn)-‘+ ]]~-~~]]i’~logn. ,(1-q)‘2pq] 

for n > 2. Since q > 1, we have lim,,, H,(w, R) = R in L: whenever 
W -’ E Li. If lim,,, H,(w, R) = R in LP, for every polynomial R satisfying 
(78) then we choose m E N so that (1 - x’)~ < u(x) for -1 < x < 1, and 
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applying Lemma 5 we pick a polynomial R, such that R, satisfies (78) with 
R = R, and (46) holds. Then 

I 
1 

n-p p,(x)‘” u(x) dx < 2 1’ IR ,(x1 - H,W R 1, xl” 4x1 dx (1+x1,)/2 (1+x1,)/2 

for n > n, and thus 

I 
1 

!\; n-p 1 p,(x)1 2p u(x) dx = 0. 
(1 tx,tJ/2 

By (21) this is equivalent to 

n’iII w(1 -C’,-pcI u(x) dx = 0. (83) 
(1 tx,,)/z 

Writing w  = gw(‘,b) and u = IV@+‘) and applying (17) we can see that (83) is 
equivalent to c -up > -1 so that 6’~ is integrable in [0, 11. Applying the 
second part of Lemma 5, the integrability of wPpu in [-1, 0] can be proved 
in a similar way. 

THEOREM 5. Let w  E GJC, p > 0, and let u and v be two Jacobi weight 
functions. Then (i) lim,,, Hn(w,f) =f in LP, for every function f which is 
continuous in [-1, 1 ] and satisfies 1 f (x)1 ( const v(x) for -1 < x < 1 if and 
only if (ii) w-r E L t. In particular, p is independent of the rate at which f 
vanishes at fl. 

ProoJ The implication (i) =c- (ii) follows from Theorem 4. Also, if f is a 
polynomial then by Theorem 4(ii) S- limn+ca H,(w, f) =J: Hence, it remains 
to show that if (ii) holds then 

IIK(wf>ll,., G cm Ilfll, (84) 

where the co-norm is taken over [-1, 11. First let p > 1. Applying (5) and 
omitting the unnecessary parameters, we can write 

H~(w,~, x) = 5 f (xkn) I,&)' + YP&) L.(w&P,- 1, x) (85) 
k=l n 

Applying (79) with P = H, we get 

IIH,(w,f >II”,,, < 2 ,(;T,“:,;, IHn(w.6 ~11’ u(x) dx (86) 
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for some u = o(p, u) > 0. It follows from (35) that 

< const Ilfll”, ,f’~:,~~, [l + n-l lognw(x)-‘(1 -x2)-“‘]“U(X)dX 

< const Ilfll”, j+~~.l, [1 +w(x)-l(l +]log(1-x2)])]“u(x)dx. 

Since w  E GJC and u is a Jacobi weight, if w-’ E LP, then also 
w-l log( 1 - x’) E LP,. Consequently, 

x 111 + (1 + Ilog(l -x2)1> w-lIl,,p’ (87) 

Now we turn to estimating the second term on the right side of (85). By (22) 
and (24) 

In~(xkn>~n-l(xkn)l < const $ w(x,,)‘/~( 1 - X:,)-I/~ 

uniformly for 1 < k < n and n E K Hence, if w  = gw(aYb), then we can write 

where 

Thus by (20) and (88) 

Ilfnll, G const Ilfllco~ (89) 

l-on-2 

< const Mwfn w  
(a/2- 1/4,b/2- l/4), x)/~ 

--l+on-2 

x (1 - x2)p’4 w(x)p@ U(X) du 

< const llL~(w,f~W~a’2~1’4~b’2~1’4~~llPw.p 

where w = W(-~a12+~/4, -pb/2+~/4) u. It is clear that w  - ’ E LP, is equivalent to 
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(1 -x2-1/4 W-l/2 ELP,, and also u EL’ means that (1 -x*)-~‘~ w112 ELP,. 
Hence, applying Lemma 6 and (89) we obtain 

I 
l-on-2 
1 +on-2 I P,(X) ~,ht-K P+ 1 9 xl” M-4 do < const IV II”, . (90) - 

Since yn-r/y,, ( 1, inequality (84) follows from (85), (86), (87) and (90). If 
0 (p < 1, then we proceed as follows. If w  = grv(a*b) then we set 
(r = max(O, a), /3 = max(O, b) and define u’ by zi= a(~@*~))~-~. Then 
obviously C E L ’ since u E L ’ and w-r E Li since W-’ E LP,. Thus, by (84), 

II~,hf)ll,,* G const Ilfllm* 

But by Holder’s inequality 

IIeh%f)ll,,, = II l~n(wf))l” 24 II i’” 
= 11 IH,(w,f) fi IP [W’-ap,-4P)U](*--p)‘*ll:‘p 

< Ilff,o%f)ll&2 II M+a3-8) Il:pp)‘* 

< const II~,(~f)lli,~ II~-111~;p)‘2 

(91) 

so that by (91), inequality (84) holds also for 0 <p < 1 whenever w-r E LP,. 
Hence, the proof of the theorem has been completed. 
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