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Weighted L” convergence of Hermite—Fejér interpolation based on the zeros of
generalized Jacobi polynomials is investigated. The main result of the paper gives
necessary and sufficient conditions for such convergence for all continuous
functions. © 1985 Academic Press, Inc.

1. INTRODUCTION

The purpose of this paper is to investigate weighted L, (0 <p < )
convergence of Hermite—Fejér interpolating processes based on the roots of
generalized Jacobi polynomials. If x,,, k=1, 2,..,n, are n distinct points
and f is a bounded function, then the Hermite—Fejér interpolating polynomial
H,(f) is defined to be the unique polynomial of degree at most 2n — 1 which
satisfies

Hy(fs %) =f Okn)s Hy(fi %) =05 k=1,2,...n. (1)

Although, for any practical purpose, there are endlessly many papers in the
literature dealing with convergence and divergence of Hermite—Fejér inter-
polation, most of these papers are based upon nice identities resulting from
the specific choice of the interpolation nodes. Even when the interpolation
nodes are chosen to be roots of ortogonal polynomials, most of the research
has dealt with classical orthogonal polynomials and pointwise convergence
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HERMITE—FEJER INTERPOLATION 27

and/or divergence. The only exception is given by three papers of G. Freud
[3-5] where pointwise convergence of H,(f) is investigated when the inter-
polation nodes are zeros of general orthogonal polynomial systems. It is even
more astonishing that though

[H,(f)da~ [ fda

when the nodes are zeros of orthogonal polynomials corresponding to da
where da has a bounded support and f is Riemann—Stieltjes integrable with
respect to da [7, p. 89], L? convergence of H,(f) to f has never been dealt
with in the literature. This is in great contrast with Lagrange interpolation
where sufficient attention seems to have been given to L? convergence and/or
divergence and its applications for general orthogonal polynomial systems.
(See references in [1,9~11, 15, 16].) The reason for the lack of the general
theory appears to be the complicated structure of the explicit representation
for the Hermite—Fejér interpolating polynomial which has been successfully
overcome only by G. Freud. In this paper we present several theorems about
weighted mean convergence and divergence of Hermite—Fejér interpolation
processes, the most important being Theorem 5 where we give necessary and
sufficient conditions for weighted mean convergence of H,(f) to f when the
nodes are zeros of generalized Jacobi polynomials and f is continuous
satisfying some prescribed growth condition.

2. NOTATIONS

General Notations. R and N denote the set of real numbers and positive
integers, respectively. The symbol “const” denotes some constant which is
positive and independent of the variables and indices. Whenever “const” is
used it will always be clear what variables and indices it is independent of.
In each formula “const” may take a different value. The symbol “~” is used
as follows. If A and B are two expressions depending on some variables and
indices then

A~B<|AB7'|<const and |47 'B|< const.

Orthogonal polynomials. Let da be a positive distribution on the real line
such that the support of da is infinite and all the moments of da are finite.
The corresponding set of orthogonal polynomials is denoted by {p,(da)}:

p.(do, x)=y,(da) x" + lower degree terms, ya(da) > 0 and

[ Pu(da)p,(da)da=3,,.
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If da is absolutely continuous, say da = w dx, then in the above and in all
the subsequent notations da is replaced by w. For example, we write p,(w),
7.(w), etc. The zeros of p,(da) are denoted by x,,(de) and they are indexed
so that

Xy,(da) > x,,(da) > -+ > x,,(da).

The reproducing kernel functions of the orthogonal system {p,(da)} are
denoted by K,(da). Hence

n—1

K,(da,x, )= > p.da, x)pda,?).
k=0

According to the Christoffel~-Darboux formula [14, p.43] K,(da) can be
written as

yn — l(da)
Ya(da)

= Pn-(da, x) p(da, 1)) (x — 1) .
The Christoffel function A,(da) is defined by

K,(do, x,t) = [ pn(da, x) p,_(da, 1)

A(da, x)™' =K, (da, x, x).

It is well known [7, p. 25] that
holda, x) = min | [P} da(z)
R

where the minimum is taken over all polynomials P of degree less than n
such that P(x) = 1. The numbers 4,,(da) defined by

lkn(da) = }'n(da’ xkn(da))
are called the Cotes numbers. By the Gauss—Jacobi quadrature formula |14,
p- 47]

n

Y Pxyy(da) bup(da) = | Pda

k=1

holds for every polynomial P of degree less than 2. If supp(da)=[—1, 1]
and log a’(cos @) is integrable over [0, 7| then by Szegd’s theorem (14,
p. 309]

0< lim 27",(da) < o0. )
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Lagrange interpolation. The Lagrange interpolating polynomials
corresponding to the distribution da and bounded function f are denoted by
L, (da,f). They satisfy

L(da.f, X n(da)) = f (%4n(d@))s

n€ N, 1€k n The polynomial L,(da,f) can, conveniently be written in
the form

Ldaf)=S f(ten(da)) Ln(da)

k=1

where the fundamental polynomials /,,(de:) are defined by

Da(da, x)
I {da,x)= i 1€kgn
) = e T de))(x — ga(da))

1t is well known [14, p. 48] that

yn — l(da)

halda, X) = 22200 55 1, (d2) P, (das X do)) _Palde %)

X xkn(da) '

&)

Hermite—Fejér interpolation. If the interpolation nodes {x,,} in (1) are
taken to be the zeros {x,,(da)} of the orthogonal polynomials p,(da), then
we denote the corresponding Hermite—Fejér interpolating polynomial by
H,(da, x). Hence

H,(da.f,x)= Y [f(xn(da))
k=1

PL(da, x,,(da))
X [1 ~ pida, x,,(da))

[14, p. 330]. G. Freud |3, p. 113] noticed that

(x —xk,,(da»] Lo(de,x) (4)

_ Pa(da, x,,(da)) _ 4,(da, x,,(da))

prll(da’ xkn(da)) j’kn(da)

s0 we can rewrite (4) as

H,(do, f, x) = kZl S (Xn(da))

Al(de, x,,(d 2
x |1+ HEED, (¢, (o a9
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If P is a polynomial of degree less than 2n then

P()= Hy(da, P,x) + N P (x(de))(x — ¥0n(da)) oy(da, 5)°

which is the Hermite interpolation formula [14, p. 331].

L? and L% spaces. If 0 <p< oo then fEL” on some interval 4 if
|l.fl, < o where

it =[ rora”, o<p<a,

and

1/ leo = ess sup | f ()l
ted
Ifv>0and 0 <p< oo then fE L) if| f],, < co where

uﬁw=U2uwwmmr7 ©)

Naturally, when 0 <p <1, ||-||,, and |||, are not norms, nevertheless we
retain this notation for convenience. Also, in all of our L’ spaces v will have
a bounded support so that the integration in (6) will actually be done only

over some finite interval.
The function u is called a Jacobi weight function if # can be written as

u = w'%d where
w(“*”’(x):(l—x)“(l +x)b, -1 <x<1,

and w@?(x)=0 if |x| > L.

Generalized Jacobi weights. The function w is called a GJ weight
function if w € L' and w = gu where g > 0 and u is a Jacobi weight function.
Moreover,

WEGIA =g €L® on [-1,1],
wEGI/B<«gECandm(t)t~' € L! on [0,1],

where m is the modulus of continuity of g, and

WEGIC«gE€Clandg' €ELip 1 on [-1,1}.
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3. AUXILIARY PROPOSITIONS
LEmMMA 1. Let A be a fixed interval. Let g be a positive continuous
Sfunction in 4 such that g is differentiable on some set D A and both
sup | g'(x)| when x € D and sup| g(x) — g(t) — g’ (x)(x — £)| (x — £)~* when

x € D and t € 4 are finite. Let da be supported in A and let da, be defined
by da, = gda. Then

d d
g(x) -d?Kn(dag, X, Xx)— EK,,(da, X, x)

< const - [| p,_,(da, x)| +| p,_,(de, x)| + | p,(da, x)|]
X | pn—1(da, x)| + | pr(da, x)|]

uniformly for x € D and n € N.

Proof. For simplicity, we will use the notation p,(x)=p,(da, x),
Yuldo) =7,, K,(da,x,0)=k,(x,1), k,(x)=k,(x,x), P,(x)=p,(da,x),
Yo(da)=T,, K,(da,, x, ) = K,(x, ) and K,(x) =K,(x, x). Since K, and &,
are reproducing kernels, we have for every number ¢

K3, 9) = kal0,3) = | Ko 0) Kl 0)[e — 8(0)] da(e)

Differentiating this identity with respect to x and substituting y =x and
¢ = g(x) we obtain

80 i) — ki) =2 K, 50) -yl )] 206) — () da)

which we rewrite in the form

6) Kilo) — K1) = 28/(9) | K, 5 D — 1) 5y 1) @)

0
+2[ Ky 0 5ok )] 80) — 8 ()
~g@Wx-0lda()=2'C) L, + 28, (7)

for x € D. Expression I, can be directly evaluated by noticing that
K, (x, t)(x — t) is polynomial in 7 of degree n so that

409/105/1-3
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1= [ Ko 00— 0) o (30 )
= 2i) | Koo, 0 = 0 p,(0) de()

= % (K, (x, £)(x — )] |, —p;(X)j K, (x, )(x — 1) p,(t) da(t).
A

Here the first term on the right-hand side equals K,(x). Applying the
Christoffel-Darboux formula to K,,(x, #) we obtain

[ Kl 00 = £) po(0) dae) = F;—l

n

P.(x) | Pus(©Pol0) dalt)

T

B, ()] PP dal) == LR, (),

Hence

rn—l

I, =K,(x)+ P, (x) pp(x). ®)

n

In order to estimate /, in (7), let us define M by

M= sup |g(x)—g(t)—g' )x—0x—17"

xeD,teA

Then by Schwarz’ inequality
a 2
(I,)? < M? j K(x, )*(x — 1) da(t) - j [—k,,(x, t)(x—t)] da(t)
A alox

Mz 2 2
<20 L K, (x, )*(x — t)* da, ()

a 2
. — — . 9
L [ax K(x, £)(x t)] da(t) 9)
By the Christoffel-Darboux formula the first integral on the right-hand side

of (9) equals

r,_;
I-v2

[, 1Pa) o i) = P (0 P (0] dty(0)

Lot p? + P, 0] (10)

n
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whereas the second integral on the right-hand side of (9) can be evaluated by
noticing that as a consequence of the Christoffel-Darboux formula we have

ks 0= 0 =222 (51 (5) 5,0 =381 2,(0] — s )

n

so that by orthogonality relations

2 2

3 2
J, [kt 00e=0)] ot =225 g + 222257 4 k0

2

Va1 2, Z 2
2 p'lx n— x = nx n—- x
" (X)Pp_1(x)= yz P( )"+ yz P (%)

_ yn—l

n

Yai , |
<[l 3 | i

n

[27(X) Py i(X) + Po(x) Py 1(x)]

[pn(x) +pn I(X)]

(11)
From (9), (10) and (11) we obtain
M I, )
I%<m F2 [P (x)*+P,_ 1(x)]
x[Lt 5] e i
4Tt [P.x)* +p (x)’} : (12)
2)}31 n n—1

Writing the recurrence formula for p, as

%pn(x) = (x—b,) Py (%) — ; Pa_a(x)
n n—1

where

bu={ tp, ()" da(o),



34 NEVAI AND VERTESI

we can see that

721 y r
72 “’ﬁ(")“rpn-x(x)zK§2[|x_b,,|+y—"iJ +-—"5'£

n n—1

n

P (X) + ()]

n—1 n

Yn—2 2 yrzl—l
<2 lx—bnl'*"y— +7“ k,(x)

2 2
- 32 [1x=b+ 2| Figt | o
n—1 Vn Vn

X | Pux) Py (X) = Pjp_ 1 (X) P ()]

2 2
<;2[(x—bn|+y”2} +)’n;1€]’n—l
’anl yn yn

X [PX)* + Py ()] 2 [p5x)* + ()72
Since the zeros of p, and p,_, interlace, p,(x)* + p, ,(x)?> >0, and we get

Vy— [Pa(¥)? + Po_y(x)?]

n

< 32 [lx—b,,n ¥ Z] +ly—§ 2400 + 2, ()]

n—1 n

which substituted in (12) yields

M I,
Ll < —= ot
ming e g(t) "

I
IPL + P N 22 + | 2y (13)

Because g is positive on 4, we have [7, p. 26]

K,(x) < [min g(1)] ™" &, (x).
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Thus by the Christoffel-Darboux formula

K, (5) < [min £(0] ™ 2L [246) Py 10) = P 1(5)2,(0)]
< [ming()] ™' =1 | p, ()
+1 2,0 P4+ 2HN) (14)
Similarly,
I,y < [ming(®)] ™"y, (15)

[14, p. 39]. Hence from (8), (14) and (15) we obtain

1
|11‘ < yn—l

1
Vo (min,, g(r) * v/min, ., g(t)
X APy 1) +1Pp(X)] + | P (X))
+ 2, Prz 1 GO+ [ PA(]- (16)

Substituting inequalities (13) and (16) in (7), and noticing that
yn—-l/‘y't< |A|/2’ Fn—l/rn < IAI/29 |bn‘ < |r| + |S| (ifA = [r,s]), we get

| g(x) K (x) — k()| < const[| Py, _, (x)] + [Py(x)| + | P ()]
+ 1 P[Py -1 (x) + | pr(x)]

uniformly for x€ D and n € N. Now the lemma follows directly from
Korous’ theorem [14, p. 162] according to which if the support of da is
contained in 4 and

g(x) —g() :

_— ) H>0
i = A LU
teD

then
|P,,(x)| < const{| p,_(x) + | p,,(x)|]

uniformly for x €D and n € N.

LemMMA 2. Let w€ GJA and let x,,(w)=cos O, (xo,=1, Xx,,,,=—1,
0< 0O, <7) Then
1

@k+1,n_@kn~7 (17)
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uniformly for 0< k< n, nE€N,
1
";‘W(x)vl—xz, |x'<l_nA2a
1 -2 -2
A (W, x) ~ Fw(l—n ) l—n?gxg1, (18)

1
Sw=l+4n7%),  —I<x<=1+n7%

uniformly for n € N and

1
Aen#) ~ — Wy 0)) /T = (W)’ (19)
uniformly for 1 <k n, n€N. If w€& GJB then

[wex) V1 —x?]7"2, x|

<
| p(w, x)| < const { \/n [w(1 —n=%)]""2, 1-n2<x<1,  (20)
Vaw=1+r"2)]72, -1 1+

2
1—n—%,

\
X< —

uniformly for n€ N,

o)~ Vv [w( —n‘z_)]“_“, 1+ x,(w)<2x< 2, an
Vi w1+ 2K~ 4 X, (),
uniformly for n € N and
| P s (W, X (W) ~ Wxin(W)) ™21 — x,0(W) ) (22)
uniformly for 1 <k n,n€N. If we& GJC then
%w(x)(l—xz)“”, x| <1—n"2
|A2(w, x)| < const w(l —n-2), | —n-tg<x<l, 23)
w(—=1+n"?), —-1<x<-1+n77%,

uniformly for n € N and

1A%, Xi())] < const -rl;- W (W)L — X (9)*) ™12 (24)
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uniformly for 1 <k<n,neN. If w€ GJA then
|An(w, Xa(W))| < const w(x,(w)) (25)

uniformly for 1 k< n,ne N.

Proof. Equation (17) was proved in [9, p. 367], (18) in 13, p. 336] and
(19) follows directly from (17) and (18). Inequality (20) was proved in [2,
p- 226] whereas (21) follows from Theorem 9.33 in [12, p. 171}, (17) and
(18). Equation (22) was proved in [12, p. 170]. The estimate (24) follows
from (17) and (23). Now let us prove (23). Since w € GJC we can write w
as wdx=gda where da is a Jacobi distribution and g is a positive
continuous function in [-1,1] with g’ € Lipl. Hence setting
A=D=[—1, 1], we see that g satisfies the conditions of Lemma 1. Conse-
quently,

| K, (w, x, x)| < const [IK w(da, x, x)|

+ 3 pan)s S pdax], < @6)
j=n~2 j=n-1

The polynomials pj(da,x) are themselves Jacobi polynomials with
distribution (1 —x?)da. Hence the two sums in (26) can be estimated by
(20). By proceeding this way we obtain

n n
Y Ipfda,x) Y |pjda,x)
jene2 eyt
aw) (1 —=xH)7L x| €1=n"7,
Lconst{ n’w(l—n"%)"", 1-n"2<x<1, (27
m*w(=1+n"?2)7", —1<x<~-1+n"2

In order to estimate X, (da, x, x) we notice that, in fact, it can be evaluated in
a closed form as follows. By the Christoffel-Darboux formula

K (det ,3)= P20 | pi(da x) py 1 (da ) — it ) s )

so that

n_1(d
Kifde,5) = L2=0ED | i x) (o) = pi.(da ) p.(ds ).
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If a and b denote the parameters of the Jacobi distribution da then p,(da)
satisfies the differential equation [14, p. 60]

(1-x)Y' =—nn+a+b+1)Y+]a—-b+(@+b+2)x|Y.
Thus

a—-b+(@+b+2)x
2

K/ (da,x,x)= i

K, (da, x, x)

 ay(de) 2mta+b
yn(da) 1 __x2

Py-1(da, x) p,(da, x).

Since K,=1,! we can apply (18) to estimate K,, whereas p, can be
estimated by (20). By doing so we get

|K!(da, x, x)| <const - n- w(x)~'(1 —x¥)"¥?,  |x|<1—n"% (28)

When 1 —n~"%?|x|< 1 then we write

n—1
Ki(da,x,x)=2 > pi(da, x)p/da, x)

j=0

and, since p;(da) is also a Jacobi polynomial with distribution (1 —x*) da,
we can use (20) to obtain

n*w(l —n=2)"4 l—n2<x<,
| K (da, x, x)| < const (29)
nw(—=1+n"9"1 —1<x<-1+n"2%

Comparing (27) and (28)-(29) we can conclude that the right-hand sides of
(28) and (29) are larger than that of (27) so that (26) becomes

nw(x) (1 —x)~¥2, |x{<1—n"7,
| KL (w, x, x)| < const { n*w(l —n=?)"", 1—-n"2<x<1, (30)
n*w(—=1+n"%)"", —1<x<~1+n"2

Observing that K, = —4,4, 7, (23) follows from (18) and (30). In order to
prove (25), we write w = gw@? so that by (18)

A w,x)" ' <constn(y/1—x +n~") 27 '(/1+x+n" )", |x|<L
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Applying a weighted version of Markov—-Bernstein’s inequality to the
polynomial A,(w)~" [8, p. 51] (see also [12, p. 161]) we obtain
[AL(w, x)| A (w, x) "2 < const - n?(\/1 —x + n~1)~2a72
X/ 1T+x+n"1)"272  |x|<1

Substituting here x = x,, and using (17) and (19), inequality (25) follows
immediately.

LeEMMA 3. Let da be such that supp(da) = [—1, 1] and log a’(cos §) €
L. Then for every function f which is Riemann integrable in [—1, 1],

pn— l(da9 'xkn(da))2
X — Xy (da)

fim 3" dyde) e
=2 o5 G

uniformly for 1 + x,,(da) < 2x <2 and

r}l—gnlo ,;1 Akn(da) f(xkn(da)) pn—;(ia;:’zi(j;l))

———[ roNEa (32)

uniformly for —2 < 2x < —1 + x,,,(da).

Progf. In order to prove (31) we point out that for x=1 it has been
proved in [12, p. 39]. For 1 + x,,(da) < 2x < 2 we will show that

n

X b o) P 5 4 ) PG o (3

n—0
kn

But

n

S b PG ) Prctli)”

— _ pn—l(x n)2
- (1 x) ; Aknf(xkn) (1 _xk")(xk_ xkn)
< sup 1£O) - (1=x,) Z A—’f—(’ﬂ 42, <2x<2

kn)2 ’



40 NEVAI AND VERTESI

Hence, if we prove that

lim (1-x,,) Z Ak,,-lg%‘(x—’"'))z_o (34)

then (33) holds and consequently so does (31). Let € € (0, 1) be fixed. Then
obviously

n_1\X —X X
xln) Z Aknp l(xll:n))2 <( l)n2 + z A. pnl l_(xI;n)

and applying (31) with x = 1 we obtain

. Pacifaa)’ \/
1“:14%‘}) (l _xln) kZ' 'lkn (1 X, )2 < l—t

Letting here ¢ » 1 we can see that (34) is satisfied and thus (31) holds
uniformly for 1+ x,, < 2x < 2. The proof of (32) is analogous to the proof
of (31).

LEMMA 4. Let we€ GJC and let 0 < o < 1. Then

Z L,,(w, x)* < const [1+1—-n—w(x) '(1- 2)“’2] (35)

and
S [ = 0] o 20* < const [ 4+ B0 =) 2| 36)
k=1

uniformly for n > 2 and |x|<1—on™2

Proof. Let w= gw“’ ® and let 0 < x< 1 —on~2. First we will consider
the case when a > —3. We have

S ) =1- 2 (= X (""") Blta) p iy,

k=1

Thus by (19) and (24)
n n
3 La(x)? < 1+ const Y |x— x| (1 —x2 )7 )2 (37
k=1 k=1
If x,,< —3 then by (3), (19) and (22)

2
5 Xy (1 = 3 ) < comst 2204,
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so that by the Gauss—Jacobi quadrature formula

S x5k ae? <cons 2 g

Xpn< —1/2

If x,, > —3 then by (3), (19) and (22)

Pp\x a/2—
5= il (1= 550) ™ ) < const 22N (g yomvi g
Thus,
Z |x _xknl (1 _xin)—l lkn(x)2
Xyn —1/2

<eonst 2N S+ (1, - g )
k=1
n 1/2 n 1/2
<const’—’3'1’fx—)| [ 3 —x,m)““m] [ 3 lkn(x)z] . (39)
k=1 k=1
Combining (37), (38) and (39) we can conclude that

n 2
3 L)< 1+ const‘M
k=1 n

1/2

+ const |22 |P,.( x) [ Z (1- xk,,)"’”z]m : [ I(ZZI lkn(x)l]

Solving this inequality for " I}, we obtain

n

élk,,(x)z const[1+p"(x) ”"(x)2 Y- ,,)0—1/2]. (40)

Applying (17) we see that

n'-2, —1<a<o,
n as12 n k 2a-1
1—x ~ — ~ {nlogn, a=0, 41
kn
k=1 k=1 \ 1
n, a>0.

If a >0 then 0 < x < 1 —on~? formula (35) follows directly from (20), (40)
and (41). If — < a < 0 then by (40) and (41)

n

2 I,n(x)* < const [1 + 112‘, D) ]
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so that by (20)

S t 42
Jmax kzllkn(x) < cons (42)

which again implies (35) for 0 < x < 1 —on~% Now let —1 <a < —3}. Then
by (19)

const [ a(x)?
Y la®)’< . Y W) V1 — Xk, kﬂ.k

Xynp —1/2 Xxn» —1/2

const " Lia(x)?
T (1 el “3)

Now we apply Holder’s inequality withp=—(a+ %) 'andg=(a+12)"'to
the right-hand side of (43). We get

n

| 27 —-(a+1/2)
Z lkn(x)2 const [Z (1 kn)_l—'&i(k—%]

Xyn» —1/2
2 +3/2
, [ & ) ]

I::l 'lkn

By a result of G. Freud [6, p. 251]

i (1 —x, )~ Jen) Ikn(x)2 —1

=1 kn

W, )7

x

where W(x) = (1 — x) w(x) so that w € GJC. Also, we have

n

S

k=1 kn

[7, p. 25]. Hence

t
S ) S AR x)T 2 Ay (w, x) T

Xn> —1/2
and by (18)
> Lia(x)* < const, 0<xg L 44)
Xgp» —1/2

If x,,, < — 1 then by (4), (19), (20) and (22),

Lin(x)* < constn™?
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so that

1
N L)< const—-,  0<x<1. (45)

Xkn< ~1/2

From (44) and (45) inequality (42) follows also for —1 < a < —}. Hence
(35) holds for every w € GJC when 0 < x < 1—on"? Applying (35) with
w*(x) = w(—x), we see that it also holds for —1 + on~?  x < 0. In order to
prove (36), we write

n

}: ix —xkn| lkn('x)z = Z |x _xkni lkn(x)2
k=1 [x—xgpl < 1/logn
+ Z Ikn(x)2
[x—Xgnl >1/l0g n
1 n n
<E§7z kZ lin(%)* + log n kZ (¢ = X4n)” Len6)
=1 =1

It follows from (3), (19) and (22) that
2
(x — X1n)? Lin(X)? < const - piffl
Hence

i " logn
3 1% = Xl ben)? S—— 3 L) + const — p (x)?
k=1 logn (= n

and (36) follows from (20) and (35).

LEMMA 5. Let w€ GJA and let w be continuous in (—1, 1). Then for
every fixed nonnegative integer m there exist two polynomials R, and R, of
the form R (x) = (1 —x*)™ I1,(x) and R,(x) = (1 — x*)™ IT,(x) such that I,
and II, are polynomials and

lim inf np,(w, x) "2 |R,(x) — H,(w, R, x) > 1 (46)
n-oo

uniformly for 1 + x,,(w)<2x <2 and

lim infnpn(w’ x)“2 [RZ(x)_Hn(waRst)|> 1 (47)
n-+00

uniformly for -2 € 2x € —1 + x,,,(w).
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Proof. 1If R is a polynomial and 2n > deg R then
R(x)— H,(w,R, x)= 3" R'(X;u(W))x — X0 () Lin (W, X)*.
k=1

Onmitting the unnecessary parameters, we can write this as

np,(x)"*[R(x) — H,(w, R, x)]

n (x " 2
= 6" kZ (nlkn)R,(xkn)'lkn p'_lx l( - ) (48)
=1

— Xgn
for 1 4+ x,, < 2x < 2 where 8, =y%_,/y%. Let p be defined by

_ 1 2 —1/2
p= sup n'ljnw( n) (l_xjn) .
nenN
1<j<n

Then by (19) p is finite. If ¢ fixed and 0 < & < 1 then by (48)
npn(x)_2 |R(x) - Hn(w’ R’ X)‘

pn 1( kn)2
xkn

Y (nh) R'(xy,)

|xxpl€ e

>a,.§

b Y W) VT Ry D) ‘("k")§

1Xgpl >&
for 1 + x,, < 2x < 2. By Theorem 6.2.22 in [12, p. 85]

lim [nd;, — aw(x;,)\V/1—x5,]=0
uniformly for |x;,| < &. Thus, if § > 0 is fixed and n > ny(9), then

np,(x)~* |[R(x) — H,(w, R, )|

5o, S ) VTR R Gr0) Ay P22t
| Xl < € X —Xpn
) D1 (Xin)’
-0 Z |R (xkn)llkn 'jx—l-—xk
|Xpni <€ kn
T Pae1(¥kn)’
—p Z w(xkn) xkn |R (xkn)l ;Lkn - 1_ hn
Ixpnl<e

for 1+ x,,<2x<2. By (2), §,—~ 3 as n— co. Assuming without loss of
generality that m > 2, we can apply Lemma 3 to conclude that all three sums
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inside the brackets converge uniformly for 1+ x,,<2x<2 as n— oo and
passing to the limits we obtain

linmainfnp,,(x)‘2 |R(x)— H,(w, R, x)|
= jj_ﬁR w1 +t)dt| ——j R (t)!\/—— d
—EL@K”R O w()( + 1) dt
uniformly for 1+ x,, < 2x < 2. Letting ¢ > 1 and 6 - 0 we get
im infnp, (1) R() — 0. R, 00> 5 | [ IR w001 +0d] (89

uniformly for 1 + x,, < 2x < 2. If we can show the existence of a polynomial
R, of the form R (x) = (1 — x?)™ II,(x) such that

f LR w1 + 1 dE =2 (50)

then (46) will follow from (49). If (50) holds for no R, then for every
Jj=0,1,2,..

Ozfil [ﬂ;;—l ! (1—t)" ]I w(t)(1 + ) dt

=f (1= w(t)(1 + 1) dt

1 tj+1_1
e S Ot Y

=£ ti 3(1—t2)"' w(t)(1+t)—f [(1 —=s)™]" w(s)(1 + s)ds{ dt
so that
(=m0 + 0= (A=) Wit +5)ds

for —1 <¢< 1, and hence w(f)(1 +£) is absolutely continuous on every
closed subinterval of (—1,1) and also [w(t)(1+¢)]' =0 for —1<t< 1.
Consequently, w(f)=const(1+¢)"' &€ L'. This contradiction proves the
existence of R, satisfying (50). The second part (47) of the lemma can be
proved by analogous reasoning.
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The following lemma is a partial case of a more general theorem proved in
[11, Theorem 1].

LEMMA 6. Let wE€ GJB and let w be a Jacobi weight. If 1 < p < oo and
(1 —x%)~Y*wtV2 & L? then for every bounded function fin |1, 1]

L (w, F)|,,,<const| fll,, nEN,

where F(x)=f(x)v/w(x) - (1 —x*) "4

4. MAIN RESULTS

THEOREM 1. Let A4 be an interval. If suppwcd then
lim,_  H,(w,R)=R in L for every polynomial R.

Proof. If R is a polynomial and deg R < 2n then

R — Hyw Rox)= S R (ein)E — Xen9)) hya(, 1)

_ —y';;(l»(v‘v)v') Pa9,3) X0 R G10(09) P (0 5s00) Brn) an09,)
— yn— l(w)

P ) Ly, Ry () (), ).

Hence by Schwarz’ inequality
yn—l(w) !
IR — Hy(w, R),,,, < ) | a2 ILa(w, R’y (W) A, (W))l,.2
W) [ G, 2 2 3 .
= L= [ 5 RYG000) a0 500 a9’
Va1 (W)
< a(W)
— yn—l(w)
a(W)

n 1/2
IRl 209 [ 3 a0 %, 0 A,m(w)]

IR M 1 An ()l o G

where the co-norm is taken over 4. Since supp w < 4, y,_,/7, <3 |4} Also,
since w is an absolutely continuous weight distribution with compact
support, A,(w,x) | 0 as n— oo for every real x [7,p. 63] so that by Dini’s
theorem || 1,(w)||., = O as n— co. Thus, the theorem follows from (51).
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THEOREM 2. Let v be a Jacobi weight, not necessarily integrable.
Suppose that f is Riemann integrable in [—d, 8] for every 0< d < 1 and

|fe)<eonsto(x), —1<x<L (52)

Then lim,_,  H,(w,f)=fin L., if either of the following two conditions are
satisfied:

(i) weGJ4 and wo\/1—x*€L® in |[-1,1],
(i) we& GJB and wo//1—x* €L in [-1,1].

Proof. Let € > 0 be fixed. Let us choose a Jacobi weight u with positive
integer parameters such that u(x)v(x) for —1<x<1 and w=
wiu*\/1 —x*€L" in [~1,1]. Then fu ' €L if either (i) or (ii) is
satisfied. Thus we can pick a polynomial S (e.g., a partial sum of the
orthogonal Fourier expansion of fu~! in {p,(w)}) such that

Ifu=" = Sl, <& (53)

If R = usS then R is a polynomial and by Theorem 1 lim,, ,, H,(w,R)=R
in L) Since by (53)

1f=Rllwa=If—uS|ly = (™" = S)ull,.,
= (™! = 8) Vo (1=x) 4 (™ = S (1= x4,
=V =S < Ve (54)
we have

lim sup ./ — Hy (/) < lim sup || /=R, ,
+ llm il;lp ”R - Hn(w’ R)Ilw,l + llm Sllp ”Hn(wxf——R)”w,l
n- n-00

<7 e + lim sup | H,(w, f— R),,., (53)
n—oo

if either (i) or (ii) is satisfied. Our next goal is to estimate the second term on
the right side of (55). For this purpose let ¢ =f— R. Then, because of the
choice of u,

) <cv(x), —1<x<1, (56)

where the constant ¢ depends on the constant in (52) and || S|, in [—1, 1].
Applying (5) and omitting the unnecessary parameters, we obtain

H,(w, ¢, x) = Z 510) ha6)" + P2, ) Ly 0 15,1 3)

n

409/105/1-4
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so that by Schwarz’ inequality

n

D Pk i
k=1

”H,,(W, ¢)”w.l <

+“Ln(w’¢}‘rltpn&l)“w.z (57)

w,l

since y, ,/7,<1 and |/ p,|, ,=1. We will estimate the two terms on the
right side of (57) separately. By the triangle inequality

Z ¢(xkn) lin < Z |¢(xkn)l 'llm’ (58)
k=1 w,1 k=1

since ||lgull,y.1 = Agn- If 0 <9 < 1 is fixed then

in Y 6 b= 601w d

20 ) xpal <8

because ¢ is Riemann integrable on [—4, ] (see |7, p. 89]). Thus by (54)

lim Y [§Ceka)| A < Ve (59)
"0 gl <8
Furthermore, by (56),
Z |$(Xien)| An < € Z U(Xkn) Ain- (60)
| Xknl >0 | Xknl >0

Let k, be the largest index k for which x,, , > d, and let k, be the smallest
index k for which x,_, , < —d. Applying (19) we obtain

1
v(xkn) lkn ~ ‘n_v(xkn) W(xkn) V 1 —xlzm s k= 1’ kl’ kz’ n,

if either (i) or (ii) is satisfied. Also, under the same conditions, v(x) w(x) <
const - (1 — x*)~%*, Hence by (17)
0(Xgy) Agn < const n= V2, k=1,k, k,,n 61)
It follows from (17) that
o(f) ~ v(xkn)s Xyt SES Xi_ 1m0 (62)

for k =2, 3,...,n — 1. Another inequality we will need is the Markov—-Stieltjes
inequality [7, p. 29], according to which

ha< [ w@yds,  k=2,3n— 1. (63)

Xk+1.n
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Combining (60), (61), (62) and (63) we obtain

D' [90ka)l Agn < comst U o(t) w(t) dt + n—l/z]

[Xknt > 8 <1

so that

limsup 3 900 Ain < constj _ pwydr (64)

|xkn| >4

If either (i) or (ii) holds then vw € L' and then letting 6~ 1 in (64), it
follows from (58), (59) and (64) that

Ve (65)

w,1

lims 2
ll’:l"o.}lp ” kgl ¢(xkn) lkn

Now we turn to estimating the second term on the right-hand side of (57).
By the Gauss—Jacobi quadrature formula

”L (W’ ¢A’ pn l)” 2= z ¢(xkn)2 'u:(xkn)zpn—l(xkn)2 lkn'

k=1

Noting that in both cases (i) and (ii) w € GJA4, we can apply (25) to obtain
“L (W, ¢A’ Dy_ 1)“ COﬂSt Z ¢(xkn) w(xkn) pn l(xkn) j'kn
so that if we write w=gw@? then

”Ln(w’ ¢'1’Pn l)” COHSt Y‘ ¢(x )2 w(2a 2b)(xkn)zpn l(xkn) )'kn

k—l
(66)
Now if (i) holds then we rewrite (66) as

ILa(w, 845 Py 1 l5.2 Const— Z [60xin) WP (Xi) V1 — Xiy |2

1 1 )
X (1 +xkn + 1 _xk")pn—l(xkn) 'lkn' (67)

By the conditions of the theorem and (56) the function gw®? \/1 —x? is
Riemann integrable in [—1, 1]. Hence by Lemma 3, the right side of (67)
converges as n— o0, and evaluating its limit by (31) and (32) we obtain
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2
lim sup | L,(8, 945 2l const——f 6(1)? wa (1) \/1— £ dt.
1
(68)

Since ¢2w2a:2 (/1 —* =g~ '(fu~' - §)* w, we can conclude from (53)
and (68) that

lim sup L (. 64 P, )2 < const & (69)
n-0

if condition (i) of the theorem is satisfied. If condition (ii) holds then by (22)
and (66)

”Ln(w’ ¢'ll Pn_ 1)” COHSI v ¢(x n)2 @ b)(x n) V 1'_'xkn 'lkn
(70)

If 0 < 8 < 1 is fixed then by the convergence of the Gauss—Jacobi quadrature
process [7, p. 89] and by (53)

im N (x, 2w V= X5, Ay

noo lxkn|<5
= j (1) W (1) \/1— 1% wit) dt < const 2. (71)
)
Taking (56) into consideration we obtain

Z ¢(xkn)2 w(a’b)(xkn) V 1— xin '1kn

X gl >8

< C2 Z U(xkn)2 w(a,b)(xkn) V 1 - x12<n 'lkn'

[ Xppt>8

If (i) is satisfied then ow@?/\//1 —x* € L' so that there exists a number
7> —4 such that

() W@ (x) /1 —x* (1 — x?)" —-1<x< L

Hence

Z ¢(xkn)2 w(a,b)(xkn) V 1 _xin A‘kn

| Xgnl > 8

<t Y o)1= Xk)" ks

| X gl > 8
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> — 4. The right side of this inequality can be estimated in the same way
as the right side of (60). By proceeding this way we obtain

hm Sup Z ¢(x )2 (@ b)(xkn) V xkn )'kn

| X gnl > 8

< const v(®) w(t)(1 — )~ dt. (72)
5<11I<1

Combining (70), (71) and (72), and letting & — 1, we see that (69) hoelds also
if (ii) is satisfied. Finally, subsituting (57), (65) and (69) into (55) we see
that

lim sup || f— H,(w,f)|,., < const
n—-aoo

if either condition (i) or (ii) holds. Since ¢ > O is arbitrary, the theorem
follows.

THEOREM 3. Let u be a Jacobi weight function and let f be defined by
S(x)=x. Then w™'E€L? if either of the following two conditions are
satisfied:

(i) weGJA,1<p< wandlim,_ H,(w,f)=finL",

(i) weGJB, 0<p< o and lim,, H,w,[f)=f in L’ for some
subsequence {n,}.

Proof. If f(x)= x then
n
SE)—H,w.fix)= 3 (x = x,(W)) L, X)°
k=1
and, omitting the unnecessary parameters, we write it as

Sfx)— H(W,fx)— 2 Lp.(x)? Z a2 P 1 (%)

X — Xpn

so that by Cauchy’s inequality

116 = Hylw o) > 25 Stn | L] 09

k=1

for x,, <x < 1. Let T, denote the Chebyshev polynomial of degree n. Then
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[T, <1, ~1<t< ] and T,(¢)=2""""+.... Thus by the Christof-
fel-Darboux quadrature formula,

Z Aknlpn—l(xkn)|> Z /IknTn—l(xkn)pn—l(xkn)
k=1

n—2

:le T,_«(O)p,_(t)w(t)dt= i

n—1
and applying this inequality to (73), we obtain
22n-5p X 2
DR P TR T N ()

n

If condition (i) is satisfied then
1
lim | f(x)— H,(w,f, x)” u(x)dx=0

200 V(14 x,,)/2

so that by (2) and (17)

lim 1 | Pax)* /1 —x* |Pu(x)dx =0. (75)

R0 V(14 xy,)/2

But for 1 <p< o

1 1— 2 4p 1p
(j v~ u(x) dx)
(+x0/2 | M, (W, X)
1 n-—-1 1 1/p
< S ([l 1 VT ey ax)
n =0 Va+x,2
n—1

1 " i t/p
<SS e VTP u )
n (14x)/2

and, consequently,

1—x2

ni (w, x)

1
lim
B20 V(14 x,,)/2

’ u(x)dx=0. (76)

If we write w=gw® and u = w'?® then by (17) and (18) formula (76) is
equivalent to

lim n2@ == =0
n—-go

so that ¢ —ap > —1 which means that w~"u is integrable in [0, 1]. The
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integrability of w="u in [—1,0] can be shown by similar arguments. If
condition (ii) is satisfied then

1

lim |f(x)—H, (w,f, x)]” u(x)dx =0

k=200 (142,072

and by (2) and (17)

1 2|p
lim Pul) |y ax =0
k=00 /(14 x 1012 ny
so that by (21)
1
fim w(l —n;?)~" | u(x) dx = 0. 7)
k=00

(4 x1)/2

If we again write w=gw'®*? and u=w"“? then by (17) formula (77) is
equivalent to

lim n;® =" "=0
k-0

and thus w~"u is integrable in [0, 1], whereas the integrability of w~Pu in
[—1,0] may be proved using analogous arguments.

THEOREM 4. Let wE€ GJB, p > 0, and let u and v be two Jacobi weight
functions. We have lim,__ H,(w,R)=R in L% for every polynomial R
satisfying the condition

n—=o

|R(x)| < const v(x), -1g<xg ], (78)

if and only if w=' € L%, in particular, p is independent of v.
Progf. If R is a polynomial and the degree of R is less than 2n, then

RO~ HyW R) = S R (r00))(X — X, (9) g, %)%

k=1

By Theorem 6.3.14 in [12, p. 113] for every 0 < p < oo and Jacobi weight u
there exists a constant o = o(p, ) > 0 such that for every polynomial P of
degree at most 2n

-2

ji POPuOd<2| T |POP . (79)
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Thus

1-on—2

Jl |R(x) — H,(w, R, x)]” u(x)dx < ZJ ) |R(x)— H,(w, R, x)” u(x) dx

—1l+on

n F4
N |x—xkn|1,m(w,x)2] u(x) dx
1

l—on—?
<2 max |R’(t)]”J’ [
k=

<1 —l4on-2

so that by (36), if n > 2, then

1
J |R(x) — H,(w, R, x) u(x) dx < const - max |R'(t)”
-1

X [(log n)P + (k’%")p | T o) T wE) u(x)dx]. (80)

—1+on-2

If we€ GJB, u is a Jacobi weight and w"u € L' then there exists a number
g > 1 such that w™Pu € L? and ¢~' > 1 — p/2. Applying Hélder’s inequality
with this ¢ to the integral on the right side of (80) we obtain

t—on-2

j (1 =xX) P w(x) P u(x) dx

l1-on-2 q-1)/q
< U (1 — x?)~pa2@-b dx] twPull,.  (81)

—1+4+on-2

Simple computation shows that

1—on-2 @-1/q
[J (1 _xz)—pq/Z(q—l) dx]

~1+ogn-2
[ 4g—1) ](q—l)/q0(—p/2+(q—l)/q)npn(l—q)/(Zq)
S lpg-2@-1)

< const nPn'1 -0/ (82)

with the constant depending on ¢ and ¢. Combining estimates (80), (81) and
(82) we get

IR — Hy(w, R),., < const [|R'[|[(log n) =" + | w~?u (|3 log n - n" =724
for n>2. Since ¢ > 1, we have lim,_ H,(w,R)=R in L? whenever

w-leLs. If lim,,  H,(w,R)=R in L? for every polynomial R satisfying
(78) then we choose m € N so that (I —x?)" < v(x) for —1 <x< 1, and
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applying Lemma 5 we pick a polynomial R, such that R, satisfies (78) with
R =R, and (46) holds. Then

1
n‘pj

(1+x1n)/2

PP u(x) dx <2 [ (Ryx) — Hylos Ry 3) () d

A+ x1,)/2
for n > n, and thus

1

lim n=" j | p, (07 ux) dx = 0.
(I4+x,

n-oQ

By (21) this is equivalent to

lim w(1 —n-z)-l’j1 u(x) dx = 0. (83)

(1+x1,)/2

Writing w = gw®? and u = w'*® and applying (17) we can see that (83) is
equivalent to ¢ — ap > —1 so that w™"u is integrable in |0, 1]. Applying the
second part of Lemma 5, the integrability of w " in [—1, 0] can be proved
in a similar way.

THEOREM 5. Let wE GJC, p > 0, and let u and v be two Jacobi weight
Sunctions. Then (i) lim,_  H,(w,f)=f in L% for every function f which is
continuous in [—1, 1| and satisfies | f(x)| < const v(x) for -1 < x< 1 if and
only if (ii) w=' € L. In particular, p is independent of the rate at which f
vanishes at +1.

Proof. The implication (i) = (ii) follows from Theorem 4. Also, if fis a
polynomial then by Theorem 4(ii) = lim,_ , H,(w,f) =f. Hence, it remains
to show that if (ii) holds then

1 H,,(w,/ )., < const || 1], (84)

where the co-norm is taken over [—1, 1]. First let p > 1. Applying (5) and
omitting the unnecessary parameters, we can write

H,(w,f, x)= kZ S Fien) L) + %ipn(x) L, WSy py_y, %)  (85)

n

Applying (79) with P = H, we get

1M, <2 [ H, O o) ) s (36)
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for some o = a(p, u) > 0. It follows from (35) that

jl—an*2
—l+on-2

1—gn-2
< const l|f||’goj [1+n""log nw(x) (1 —x*)""%)? u(x) dx
2

—1l+on-

’ u(x)dx

}:l S Xpn) Lin()?

k=

—on-1?

< const || £1%, fl

—1l40on—

2 [1 4+ wx)'(1 + |log(1 — xH)|))” u(x) dx.

Since we GJC and u is a Jacobi weight, if w™'€L” then also
w ™! log(1 —x?) € L2. Consequently,

1—on—2 n
2
J o | 2 S G o)

X1+ (1 +[log(1 —x)) w1, . 87)

p
u(x) dx < const || 1%

Now we turn to estimating the second term on the right side of (85). By (22)
and (24)

1
|'1:1(xkn)pn— l(xkn)| < const '; w(xkn)l/z(l - 'xlin)?l/4

uniformly for 1 <k < n and n € N. Hence, if w = gw®?, then we can write

f(xkn) A’rll(xkn)pn—l(xkn) =fn(xkn) n—lw(a/Z— 1/“'l,/z_l/l‘)("ckn) (88)
where
[l full o < comst || £l - (89)
Thus by (20) and (88)

1—gn—2

[ PO L0 S Py X ) dx
—1+on~

1-gn-1

< constj |L,(w, f, w2 142218 [ yoyp
—1+on—2
X (1 —x2P"* w(x)""? u(x) dx

< const || L, (w, f, wl@/2 - 14b2= 18y p

where @ = w'=P/2+2/4.=pb/242/9 4 Tt is clear that w™' € L2 is equivalent to
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(1—x*""* w12 € L? and also u € L' means that (1 —x?)""* wY2 € L?
Hence, applying Lemma 6 and (89) we obtain

1-on-2

[ 1P Law A Py 2P ulx) dx < const |11 (90)
~14+on-?

Since y,_,/y, < 1, inequality (84) follows from (85), (86), (87) and (90). If
0<p<g1, then we proceed as follows. If w=gw'®? then we set
a=max(0,a), f=max(0,b) and define & by #=u(w'*?)?~?. Then
obviously # € L' since u € L' and w™' € L since w ™' € L2. Thus, by (84),

1H (W, a2 < const || f 1. o1

But by Holder’s inequality

|09, W = | EE o S P 37
= “ |Hn(W,f) \/E |p [w(_apg*ﬂp)u](z—p)/z ” i/p
< I|Hn(W9f)“,‘;,2 ”W(_a’_[‘)| 2-p)/2

u.p

< const || H,(w,f )|z W]

2-p)/2
u,p

so that by (91), inequality (84) holds also for 0 < p < | whenever w™=' € L2,
Hence, the proof of the theorem has been completed.
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