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The purpose of this paper is to study the approximation of vector-valued mappings
defined on a subset of a normed space. We investigate Korovkin-type conditions
useful to recognize if a given sequence of linear operators is a so-called
approximation process. First, we give a sufficient condition for this sequence to
approximate the class of bounded, uniformly continuous functions. Then we present
some sufficient and necessary conditions guaranteeing the approximation within the
class of unbounded, *weak-to-norm continuous mappings. We also derive some
estimates of the rate of convergence. We apply concrete approximation processes to
derive representation formulae for semigroups of bounded linear operators. © 2002
Elsevier Science (USA)
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1. INTRODUCTION

Korovkin’s well-known result [2] states that if (L,),-, is a sequence of
positive linear operators on %([a, b]) then ||L,(f) — f||., — 0 for every f €
%([a,b]), provided the same is true for the following test functions: f(u) =
1,u,u*. Shisha and Mond [8] present a quantitative version of Korovkin’s
theorem, containing some estimates of the rate of convergence of ||L,(f) —
f] in terms of the corresponding rate of convergence computed for the test
functions. Many authors have contributed to understanding the possible
enlargement of the domain of approximation operators, in particular to
include classes of unbounded functions. Ditzian [1] deals with continuous
real-valued functions, defined on a closed and unbounded subset of the real
line, which satisfy the growth condition | f ()| < M/ (1 + v*)pu(u) with u>1.
He estimates the rate of the approximation in terms of the rate of
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convergence for the test functions 1,u,u? and (u — £)*u(u). Shaw and Yeh [7]
study the case of functions defined on an open interval [a,b] of R and
satisfying |/ ()] = O(ga(w))(u — a*) and | f(u)| = O(gs(u))(u — b) (for
some suitable convex functions g, and g;). The test functions determining
the convergence rates are now the following: 1,u,4?, g, and g,. Shaw [6]
considers continuous functions on R” with a prescribed growth at infinity.
More precisely, he treats operators L, defined by means of measures:
L, (f)(t) = [f(u)dp,,(u), and the following classes of functions f". The first
class consists of those real-valued functions whose growth is controlled by a
convex function g. The second admissible class contains functions of the
form T(u)x, where x belongs to a Banach space E, and T(u) is a linear
continuous operator from FE into itself such that 7'(u) is bounded on
bounded subsets of R” and ||T(u)||<Mg(u). Many authors have also
studied the case of vector-valued mappings defined on a compact Hausdorff
space X see, e.g. [3-5]. The former studies the convergence of a net of quasi-
positive linear operators to an operator 7', that can be the identity on
%(X; E). Actually, in [4] the value space E is a Dedekind complete normed
vector lattice with normal unit order and, in [3] E is a normed linear space.
Always in the setting of compactness of X, Prolla studies the approximation
processes for the identity on %(X; E) by monotonically regular operators
(that is the operators that are S-regular with S positive, see Section 2).
Moreover, he gives a rate of approximation when X is a compact subset of a
normed space and the process is made of dominated operators.

The purpose of this article is to give a generalization of the above results
for classes of mappings defined on a convex subset of a vector space taking
their values into a normed space. The paper is organized as follows.

In Section 2 we introduce the notation and definitions used in the sequel.

Replacing the previous assumption on the positivity of the operators L,
by the concept of the so-called dominated operators we proceed to find
Korovkin-type conditions, as described in Section 3. We also derive there a
Korovkin-type theorem on the approximation process within the class of
bounded and uniformly continuous functions defined on a convex set, and
find an estimate of the rate of convergence. In the end of the section we
deduce a Korovkin-type theorem for *weak-to-norm continuous maps on
bounded sets.

Section 4 deals with the case of unbounded functions. With X being a
*weakly closed or open convex subset of a dual space Y = Z’, we present a
Korovkin-type theorem for *weak-to-norm continuous maps on X, whose
growth is controlled by a convex function. Under the additional assumption
of the dimension of Y to be finite, we establish some new estimates of the
rate of convergence. Theorems 4.1 and 4.2 generalize the corresponding
results in [6, 7]. The main result in [1] is an easy consequence of our Theorem
4.2 under the additional requirement that the control function (1 4 #2)u(z) is
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strictly convex. Moreover, Theorem 4.2 extends the results of [6], providing
them with estimates of the corresponding rate of convergence.

In the last section we apply developed theorems to same approximation
process and improve a result of Shaw [6] on representation of semigroups.

2. NOTATION AND PRELIMINARY DEFINITIONS

In this work Y, Z and E will denote real or complex normed spaces, with
their norms denoted by same symbol || - ||. As usual, Z’ stands for the dual
space of Z and n(Z) stands for the dual space of Z’' with *weak topology
0(Z',Z), so Z is reflexive if and only if n(Z) = Z". If ¢ € n(Z), and X is a
nonempty subset of Z', then by ¢y we mean the restriction of ¢ to X.

We will often address to the following two functional spaces: 7 (X; E)
and 4(X; E) that are, respectively, the vector space of all mappings F : X —
E and its subspace containing only the bounded mappings. The latter space
is normed by the uniform norm || - ||

1F |y = sup ||F(u)]].
ueX

For F belonging to the former space, ||F||: X — R denotes the real-valued
function ||F||(u) = ||F(u)||.

With the usual symbol € (X;E) we denote the subspace of Z(X;E)
consisting of all continuous mappings.

Fix g: X — R a strictly positive function. Then % (X; E,g) denotes the
subspace of all mappings F € €(X; E) such that ||F(u)||<M,(u) for every
u € X and some constant M > 0, depending only on F. Finally, UCB(X; E)
is the subspace of all mappings of €(X; E) which are uniformly continuous
and bounded.

In case E = R we abbreviate the above notation, writing (X, g) instead
of 4(X;R,g), 7 (X) instead of 7 (X;R) and so on.

We also adopt the following notation: if ¢ € E, then, we shall denote
again by c¢ the constant mapping F(u) = ¢ (u € X).

Iff € #(X)and x € E, f ® x denotes the mapping of # (X; E) defined by
(f @ x)(u) = f(u)x (u € X).

For t € Y, define y,: X — R by the formula ,(«) = ||u — t||. Observe
that if npfo €%(X,g), for some ty € Y, then the same holds for every r € Y.

DErINITION 2.1. Let Z be normed space, Y its dual space and X C
Y =27 We say that F: X — E is *weak-to-norm continuous if it is
continuous from X equipped with the *weak topology o(Y,Z) in Y, into
E with the norm topology. By 2#(X;E) we denote the space of all
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*weak-to-norm continuous mappings from X into E. We set 4 (X E, g) =
H(X;E)NG(X;E,g).

We remark that every *weak-to-norm continuous mapping is in
particular continuous and maps *weakly closed and bounded subsets of
X in compact subsets of E. Moreover, if the dimension of Y is finite, then
obviously #'(X; E) = €(X; E).

For F € UCB(X;E), as usual, we denote with w(F,-) its modulus of
continuity,

o(F,h) =sup{||F(u) — F(0)|| | t,u € X, ||t — u||<h} (h > 0).

The following definitions are based on the analogous ones in [5].

DEFINITION 2.2. Let L:D(L) — Z(X;E) and S:D(S) — Z(X) be
linear operators defined on some subspace D(L) and D(S) of ¢(X; E) and
%(X), respectively. We say that

(a) L is dominated by S if ||F|| € D(S), and

ILE)DII<SAFID ()

forall F € D(L) and 1 € X;
(b) L is S-regular if f ® x € D(L) and

Lfeox)=S{f)ex

for all f € D(S) and x € E;
(c) L preserves the constants if ¢ € D(L) and L(c)(¢) = ¢, for all ¢ € E and
teX.

Below we present some examples of dominated and regular operators.

ExampLE 2.1(Interpolation Operators). Let Z(E) be the Banach
algebra of the continuous linear operators on E and I be an index set.
For every i € I fix a point #; € X and an application @; € ¢(X; #(E)), and
set ¢; = ||@i|| () € €(X). We consider the operators L: D(L) — 7 (X} E)
and S: D(S) — 7 (X), defined by

L(F)(1) =Y ®i(1)(F(t;))  for any F € D(L),

iel

S()(6) =Y &) (1) for any f € D(S)

icl
for all € X. The domain D(S) is the space of those functions /" € ¥(X) for
which the family (¢;(¢)f (%)), is summable for all # € X. The domain D(L)
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is the space of the maps F € €(X; E) such that ||F|| € D(S). The inequality

ILEYD)1< D (19:(0)]] g [1F (1)]] = SIFI(2)
iel
implies that L is well defined on D(L) and that L is dominated by S.
If for every i€ I, there exists y; € ¥(X) such that &;(¢)(v) =y, (t)v
(t € X,v € E), then setting ¢, = \;, we have that L is S-regular. Moreover,
if ;>0 then L is also dominated by S.

ExampLE 2.2 (Integral Operators). Let (E,||-||) be a Banach space and
assume that for any ¢ € X, a positive finite measure y, : Zx — R. on the o-
algebra of all Borel subset of X is given. Define D(L) = %(X;E)N
Niex L' (1 E), and D(S) =% (X) N(,ex L'(1,). Consider the operators
L:D(L) — Z(X;E) and S: D(S) — Z (X) given by

L(F)(t) = /X F(u)dp,(u) for any F € D(L),

SO = [ gt for any g < D(S)

for all # € X. Trivially, L and S are linear and S is positive.
L is dominated in natural way by S:

Lol = || [ F0 dua

Using the above estimate, we note that for an arbitrary F € €(X; E),
S(||F]|) is well defined provided L(F) is defined.

By properties of the Bochner integral it is easy to verify that L is S-
regular.

Moreover, we observe that L preserves the constants if and only if the
measures u, have unit masses or, equivalently, S(1)(z) = 1 for all 7 € X.

We will also make use of the following notation: if ? € D(S) then we

write 77(r) = S(Y7)(1).

/||F )| i) = S(IFIN():

3. A KOROVKIN-TYPE THEOREM FOR BOUNDED UNIFORMLY
CONTINUOUS MAPPINGS BETWEEN NORMED SPACES

In this section we approximate vector valued, bounded and uniformly
continuous mappings defined on a convex subset of a normed space.
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THEOREM 3.1. Let Y and E be normed spaces, X a convex subset of Y and
L,:D(L,) — F(X;E) a sequence of linear operator dominated by some
positive linear operators S, :D(S,) — F(X). We suppose that, for every
n=1 UCB(X;E) c D(L,), UCB(X) C D(S,) and y? € D(S,) for some (and
hence for all) t € Y. Then for each F € UCB(X;E), t € X and 6 > 0 one has
[Ln(F) (1) = F(O)|| < |[La(F (1)) (1) = F(2) + Su(||[F = F(1)][)(2)
S |ILa(F(0)(0) = FO)|| + o(F, 0)[Sa(1)(1) + 6 3(1)], (1)

where yﬁ(t) = Sn(lﬁ?)(l‘)

Moreover, if L, preserves the constants, then
ILa(F)(1) = F(Ol| S @(F, 8)[Su(1)() + 6 *y(0)].
In particular, taking 6 = y,(t) we obtain
Ln(F)(2) = F(D)|| S @(F, 7,(0))[Sa(1)(2) + 1],
and if 'y, and S,(1) are bounded on K C X, then
1 Ln(F) = Fllg <o (F, [[7|[ ) Sa (D]l +1]-

Proof. Fix F € UCB(X;E). For every u€ X and >0, by the
definition of w(F,-), we get the inequality

|F () = F)l| < o(F, ||t = ul) < (1467 ||u— 1| ))oo(F, 5).
Applying the positive operator S, we have
Su(|lF = F(OIN)(1) S (F, 8)(Sa(1)(1) + 69 (0))
and
ILu(F)(t) = FO|I< [|La(F = F(O))()]| + [|La(F(1))(2) = F(1)]]
< Su(llF = F@)I[)(0) + ||La(F(2))(2) = F(2)]],
as L, is dominated by S,. 1

Note that the Theorem 3.1 yields the uniform convergence of (L,(F)),

to F on those subsets of ¥ where the sequence y2(7) = S, (%)(¢) converges

to 0 uniformly.
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When X is *weakly closed, convex and bounded subset of the dual space
Y = Z', then by Theorem 3.1 and the inclusions

A (X:E) C UCB(X;E),

y? € UCB(X) C D(S,),
one obtains the following Korovkin-type theorem for *weak-to-norm
continuous maps.

COROLLARY 3.1. Let Z and E be normed spaces, Y the dual space of Z, X
a *weakly closed, convex and bounded subset of the dual space Y = Z', and
L,:D(L,) — F(X;E) a sequence of linear operator dominated by some
positive linear operators Sy, : D(S,) — 7 (X). We suppose that, for every n>=
1 UCB(X;E) C D(L,), UCB(X) C D(S,) and set y(t) = S,(7)(¢). If for
every ¢ € E the following convergences hold:

L,(¢c)—c¢ [resp. uniformly in ¢ € EJ,
y.(1) — 0 [resp. uniformly in ¢ € X],
then for each F € A (X;E)
L,(F)(t) — F(1) [resp. uniformly on X]
and moreover the inequalities of the Theorem 3.1 hold.

REMARK 3.1. In the setting of Corollary 3.1, X results to be a compact
space with *weak topology and, in order to study the approximation
process of the identity on #"(X; E), the above result is slightly different from
the analogue in [5, Theorem [; 3, Corollary 5, Remark 4]. Prolla, dealing
with dominated operators, requires that (X, d) is a metric space and the test
functions depend on the metric d. In our case, of * weak-to-norm continuous
mappings, this means to require the separability of Z and to use the metric
d, given for every x, y € X by

d(x,y) — Z |<X _2’);7fn>|,

n=1

where f, € Z,|| || = 1 and (f,),~, is dense on the unitary sphere of Z. In
Corollary 3.1 one does not need the separability of Z, and the test functions
are based on the easier to use norm of the space. Nishishiraho tests the
sequences of quasi-positive operators on a greater test set that in our context is

{C¢\1€X|¢ €n(Z), k=0,1,2 and c € E}.
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The cases of X closed and unbounded, or open are treated in the next
section.

4. KOROVKIN-TYPE THEOREMS FOR UNBOUNDED MAPPINGS
BETWEEN NORMED SPACES

As in the scalar case, where it is necessary to control the growth of the
approximated functions (cf. [1]), for vector-valued mappings defined on
subsets of Banach spaces we will have to assume appropriate conditions
estimating the growth near the boundary of their domains of definition.

Since now we assume that (Z,||-||) is a real normed space, Y its dual
space, (E,|| - ||) a normed space, and X a convex subset of ¥ = Z’, *weakly
closed and unbounded or open. Fix K C X *weakly closed and bounded
and g: X — R a function satisfying the following conditions:

(go) g 1s strictly positive, strictly convex, * weak-to-norm continuous on X
and Fréchet differentiable on K such that ¢’ : K — Y’ is *weak-to-norm
continuous and ¢'(K) C n(Z).

We make the following growth hypothesis on g:

(g,) for every n>1 there exists a *weakly closed, convex and bounded
subset B, of X containing K such that for every ¢ € X\B, one has g(t)>n
(or equivalently, for every n>1 setting B, = ¢g~'([0,n]) and requiring that
K C B,, B, is bounded and X\B,#0). In case X is unbounded, we
additionally require

im 90 _ 4o )
llel=o0 |[2]]
teX

Define the function /: K x X — R by setting
h(t,u) = g(u) = [g(t) + (g (1), u — 1)]. (3)

If hypothesis (g,) holds, by the *weak-to-norm continuity of ¢’ and the
strict convexity of g, & is * weak-to-norm continuous and strictly positive for
UFL.

In the remaining part of this section we state and prove two Korovkin-
type theorems for *weak-to-norm continuous mappings with growth
prescribed by g.

THEOREM 4.1. Let Z, Y, E, X, K, g and h be as above and there holds
conditions (g,) and (g,). For eachn=1let L,,: D(L,) — 7 (K; E) be a linear
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operator dominated by a linear positive operator S, : D(S,) — F(K), with
H(X,E,g) C D(Ly) and # (X, g) C D(S,).

Then for every t € K the following statements are equivalent:

(a) For every c € E,

Loc)(t) = ¢, Su(1)(1) =1 and S,(h(t,"))(t) — 0.
(b) For every ¢ € E, and every continuous linear functional ¢ € n(Z),
Lu(c)(t) = ¢, Su()(1) = 1, Su(@x (1) = ¢(1) and  Su(g)(1) — g(1).
(c) For every F € A (X;E,g) and f € A(X,¢g),
Ly(F)(t) = F(1) and  S,(f)(1) = f(1).

If the convergences in (a) are uniform with respect to t € K and with respect to
¢ € E then (c) holds uniformly for t € K.

Moreover, if the operators L, are S,-regular, then the above conditions are
equivalent to one of the further statements:

(d) For every F € 4 (X;E,g),

Ly(F)(1) — F(1).
(e) For every F € #'(X,g),
Sa(f)(1) — f(2).
(f) For every continuous linear functional ¢ € n(Z),
Su(M)(1) = 1, Su(x)(1) = ¢(1) and  S,(g)(1) — g(1).

REMARK 4.1. We remark that, if Y has finite dimension m, then
denoting by (pri),;<;c,, the coordinate projections on Y, the above
condition (b) reduces to the following one:

(b") For every ¢ € E, and every i:1...m,

Ly(e)(1) = ¢, Su(D)(1) = 1, Su(pri) (1) — pri(t) and  S,(g)(1) — ¢(1),

and the convergences in (a) are uniform if and only if the same holds true for
(b').

This follows from the fact that (pr;), ;.,, forms a base of the space Y.

REMARK 4.2. If the space Z is reflexive, it is possible to simplify the
hypotheses dropping the ““ =", substituting n(Z) with ¥’ and forgetting of Z.
So X will be a convex subset of the real reflexive Banach space Y, that
is closed and unbounded or open; K C X weakly closed and bounded;
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g: X — R strictly positive, strictly convex, weak-to-norm continuous on X
and Fréchet differentiable on K such that ¢': K — Y’ is weak-to-norm
continuous and satisfying the same growth hypotheses.

REMARK 4.3. Actually, as it is easy to check from the proof of the
previous theorem, the hypothesis on g may be weakened. More precisely, if
we substitute hypothesis (g,) with the following:

(g,) ¢ is strictly positive, strictly convex, Fréchet differentiable on K,
g (K) c n(Z),4'(K) is bounded in Y’ and the function 4, defined in (3), is
lower semicontinuous with respect to *weak topology;

and leave the growth hypothesis (g,), in the setting of Theorem 4.1, with
further hypothesis that g, & € D(S,), we obtain the implications (b) =
(a) = (c). Moreover if the operator L, are S,-regular, then we have the
further implications (f) = (b) = (a) = (¢) < (d).

THEOREM 4.2. In the same setting of Theorem 4.1 assume in addition that
Y has finite dimension and that zﬁ,z € 6(X,g) for some (and hence for all)
teY. If K is convex and Ky C K is a closed subset, then for any F €
€(X; E,qg) there exists a constant M > 0 depending only on F, K, K| and g
such that the estimate

1L (F)(1) = F(OII <[[La(F(2))(2) = F(1)]]

+ o(F,8)(Sy(1)(1) + 62 Su (W) (1) + MS,(h(z,)(2) @
4

holds for all 6 >0 and t € K, (here o(F,-) stands for the modulus of

continuity of F on K). When L, preserves the constants and S, (1)(t) = 1, the
above estimate becomes

[Lu(F)(2) = F(O)||<20(F,7,(1)) + MSu(h(t,-))(1). (5)
Finally, if S, preserves the linear functionals, then
ILn(F)(2) = F()|| <20(F,,(1)) + M (Su(9)(1) — 9(1)). (6)
In case dim(Y) =1, X = [a,+oo][resp.X =] — 00,b]] and K = [a,b],
the previous estimates hold with K, =[a,b]| for any bi<b
[resp. Ki = [a1,b] with a<ay].

Before proving the theorems, we present two useful lemmas:
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LEmMMA 4.1. Let Z, Y, E, X, K, g and h be as in the Theorem 4.1 and
consider F € A (X;E,g). Then there exist an integer v=1 and a constant
M > 0 such that

||[F(t) — F(u)||<Mh(t,u)  foranyt€ K and uec X\B,. (7)
Moreover, for any 6 > 0 and any finite set { C Z one gets
[|[F(t) — Fu)||<o(F,K,X,Is) + Mh(t,u) forany r€ K and u € X,
(8)
where 1,5 is the following neighborhood of 0 in the * weak topology on Y:
L5 ={y € Y|VC € £ [y(¢)| <6}
and
o(F,K, X, I;5) =sup{||[F(t) —F(w)|||t€ K, ueX, uet+1Is}. (9

Proof (Estimate (7)). From the * weak-to-norm continuity of F, g, ¢’ and
the boundedness of K, it follows that there exists a positive constant M; > 0
such that for all 1 € K one has ||F(f)|| <M, |g(t)| <M, ||g'(?)|]y, <M and
||7|| < M,. Thus for r € K and u € X we get

(g'(0),u— 1) _Millu—t]] _ My

(llul| + M)

gw) T gl g
and then
h(lau)>17le forallte K and ue€X.
g(u) g(u)

Hence, by the hypotheses on the growth of g, it follows that

1 M, M+ M?

el + My MMl any u € X\B,. (10)
g(u) n g(u)
Fix ¢ € [0, 1]. If X is bounded, that is ||u|| <N for u € X and some constant
N, then taking n greater than an appropriate integer v we obtain

0< M,

1+||u||+M1<M11+N+M1<M11+N+M1<8
g(u) g(u)

for alln>v and u € X\B,. If X is unbounded, then by (2), there exists a > 0
such that for any ||u|| >a we have M1%<3/2. Setting v := 2M| max{a, | +

M,

M.} /e, we claim that M1%<3/2 for any n>v and u € X\ B,. Then one also
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has M1%<M1;—’<M1%<3/2. Now, looking at (10) we obtain

1 M, M, + M?
Ll + My My ME ]
g(u) n

g(u)
for n>v and u € X\B,. Hence for n>v, u € X\B, and ¢ € K we have

|F() = F(u)l| _[I[F(1) = F(u)]| g(u)

M +

=&

NS

h(t,u) g(u) h(t,u)
IF@I +Mi (L ] + My
< W (1 M= )
IF@)ll +M
<—g(u) (I—¢) .

The above inequality together with ||F(u)|| < Mg(u) and (g,) accomplishes
the proof of (7).
Estimate (8): Set

A={(t,u)|te K, ue B, and u¢ t+ I, 5}.

A is *weakly closed and bounded, because the same holds for K and B,.
Since 4 is *weak-to-norm continuous, then by Weierstrass’ theorem, we
deduce that # has a minimum m on A, and m > 0 because h(t,u) = 0 only
for u = t. Moreover, since F' is *weak-to-norm continuous, the same holds
true for the function ||F||, and, consequently, ||F|| is bounded on the
bounded set B,. Hence we obtain

h(t,u)

1F (1) = F(u)|| <2||F||5, = Mah(t,u)
for every t € K and u € B\ (¢ + I;5).
Recalling estimate (7) and definition (8), we conclude the proof of (8). 1

The next lemma explains an important property of w(F, K, I;5), that will
be used in the sequel.

LEmMMA 4.2. Let X be a convex subset of Y = Z', K a *weak closed and
bounded subset of X, and let F be a *weak-to-norm continuous mapping from
X to E. Then for any ¢ > 0 there exist a finite set £ C Z and a constant 6 > 0
such that o(F,K, X, I; 5) <e.

Proof. By the *weak-to-norm continuity of F, for a fixed ¢ € K there
exist a finite set ¢, C Z and 6, > 0 such that ||F(¢) — F(u)||<¢/2 for u €
t+ 1,5, Trivially K C U,ex ¢+ 1y, 5,/2- Since K is compact in the *weak
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topology, there are ¢, ,...,t, € K, such that
n

KclJti+Lsp
i=1

where we set ¢; .= ¥, and 0; = J;,. Let == %min{éi, i=1...n} and ¢ =
U?:l ¢;. We Prove that I, is the desired neighborhood of zero.

Fix t€ K and ue (t+1I;5)NX. Let i be the index for which 7e
ti +1y,5,2- For any ¢ € /; the inequality

|E(u — 1) <|¢(u = D) + [E(1 — 1) <0+ 6i/2<;
holds, and thus u € t; 4 I, 5,. Therefore
1F(t) = F)l[ < ||F(t) = F()|| + [[F (1) = F(u)|| <&/2 +¢/2,
which yields the desired estimate for o(F, K, X, I;5). 1

Now we prove our main results.

Proof of Theorem 4.1. First of all, observe that for given F € # (X} E,
g) and ¢ € K, applying S, to both sides of (8) of Lemma 4.1, we obtain

Su([[F = F(O)I) (1) <Su(D) (D) (F, K, I5) + MSu(h(t,-))(1).
Consequently,
ILu(F)(2) = F)l <|[La(F(2)) (1) = F(O)|| + Su([|[F — F(2)|])(2)
< |[La(F(0))(2) = F(0)[| + Sa(D) (1) o(F, K, 15)
+ MS,(h(t,)(1). (11)

We prove the implication (a) = (c). Take ¢ > 0 and consider the zero
neighborhood I;5 for which w(F,K,I;5)<¢/6. By Lemma 4.1, there
exists a constant M such that relation (8) holds for I;s. In view of (a),
for n sufficiently large we have S,(h(z,-))(¢)<e/(3M), S,(1)(1)<2 and
[|L.(F(2))(t) — F(¢)]| <¢/3, and thus, using (11) we deduce

| La(F)(t) = F(1)||<e/3 + 26/6 + Me/(3M) = e,

that proves the convergence of L,(F)(z) to F(z). It is clear that the
convergence is uniform if the same holds for (a).

Fix f € #(X,g). In order to prove the convergence of S, (f)(¢) to f () we
proceed in the manner we made before substituting the norm || - || in E with
the absolute value.
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In order to prove the implication (c) = (b), it is sufficient to observe that
the constant functions are *weak-to-norm continuous, and the function ¢
and all continuous functionals in 7(Z) belongs to #'(X,g) (by (2)).

The implication (b) = (a) follows directly from the identity

Su(h(t,))(1) = Su(9)(1) = g(1)Su(1)(1) = Su({g' (1), -)) (1) + (g (1), ) Su(1) ().
(12)

Now we assume that L, is S,-regular. The implication (d) = (c¢). Fix
fex(X,g). Taking x € E, by definition of S-regularity, we have

Sn(f)([) ®x = Ln(f®x)(t)a

that converges to f(#)x. Since x is arbitrary we have the convergence of
Sy (f)(t) to f(z). The implication (f) = (b) follows from identity

L,(c)(t) = L,(1®c)(t) = S,(1) ® ¢

and the missing implication (e) = (f) is immediate. The proof is
complete. 1§

Proof of Theorem 4.2. Fix F € #'(X;E,g) and 6 > 0. By (7) for every
t € K; and u € X\B, we get

1F (1) = F(u)|| < Mih(t, u). (13)
On the other hand, the inequality
|F (1) = Fu)|| <o (F, ||t —ul ) < (1+ | —ul o (F,6)  (14)

holds for every ¢ € K| and u € K (w(F,J) stands here for the modulus of
continuity of F on K).

Now we discuss the case ¢ € Ky and u€ B \K Since Y is of finite
dlrnensmn K convex and K| C K there exists a closed and convex set K, C
K such that K; C K,. From the convexity of B,, K and K,, it follows that

[d,d"] = [u, )N K\K,

for some o« € K\K=0K and ' € dK,. Let P:[0,1] — [u,f] be the
parametric representation of the segment, P(s) = (1 —s)u+st (0<s<1),
and 0<s' <s"<1 such that P(s') =d and P(s") =d". We set § = goP:

[0,1] — [0, 400 and A(r,s) = g(s) — [§(r) + & (r)(s — r)]. Note that § is
strictly convex by the strict convexity of g. This yields h( )<h(1 0).
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Observing that
g'(r) = (g (P(r)),P'(r)) = (g (P(r)), 1 — u),

and P(s) — P(r) = (s — r)(t — u), we get

0<h(d",d) = h(s",s)<h(1,0) = h(t,u),
and consequently
|F (1) = F)l|<|IF O + |[F @)l| <21 Fl|p, h(t,u)/h(d",d').  (15)

Since OKNOK,=0 and both OK and 0K, are compact, surely
inf{h(a",d')|d € OK, a" € OK,} > 0 and therefore

||F(t) — F(u)||< Mah(t,u)  forany t€ K;, uec B\K. (16)

In case dim(Y)=1, X =[a,+o0], K =[a,b] and K, =[a,b;] (with
b1 <) relation (16) is established in the similar manner. One considers K :
= [a, b,]| with by <b,<b and finds ¢’ = b and d” = b,, which yield (16) in
view of (15) and the inequality 0 </h(b,, b) <h(t,u).

Combining inequalities (13), (14) and (16) we obtain

IF(5) = F)ll < (1 + 62|t — ul")oo(F, 6) + Mh(1,u)

for all t € K} and u € X. Now applying S, and using the first inequality in
(11) we obtain estimate (4). The last inequality (6) easily follows from
relation (12). 1

Remark 4.4. We stress the fact that the constant M in (4), (5) and (6)
depends only on F, K, K| and g; in particular, it does not depend on the
operators L, or S,.

Remark 4.5. From the previous theorems we deduce that an approx-
imation process for real-valued functions S,, defined by means of positive
measures, yields another process L,, for vector-valued functions. Note that
the process L, “inherits’ the estimates valid for S),.
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5. EXAMPLES

The following examples deal with operators L, that are S,-regular. We
shall use the same symbol to denote either of them.
In the sequel let ¢,(s) = s?. For r € R" and ¢>1, ||7||, will denote the

norm (37, |#:]%)"/¢. In R™ all the norms are equivalent, but we note that for
m > 1|[-]|1 is not strictly convex, thus both 1+ || -||? and exp(]| -||;) do
not satisfy condition (g).

ExaMmpPLE 5.1 (Bernstein—-Chlodovsky). For every n>1, let a, be a
positive real number. We define

airio =3 (1)e(<4)(2) (-2)"

for every F € 4(R; E) and ¢ € [[0,a,], and set

EXP = U € (R, ; E,exp(wey)).

w>1

THEOREM 5.1.  Assume a, — +oo and a,/n — 0 as n— oo. Then for
every F € EXP

C,(F)—F

uniformly on compact subset of R,.. Moreover, if b<a,, there exists a constant
M > 0 such that the estimate

| Cu(F) (1) —F(l)||<2w<F, la"n_ t) +M%l,

holds for any t € [0,b].
Proof. Fix 0<t<b, n and F € EXP such that ||F(¢)|| <M exp(wt) and

b<ay. In order to apply Theorem 4.2 with g(¢) = exp(wt), we note that C,
preserves the constant and the linear functional, that is

(1) =1, Culen)(t) =t

Hence we will estimate y, and S,(g)(¢) — g(¢) of (6).
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An easy computation shows that

7a(t) = Cule2)(1) = 7 = =——,

n k n—k n
e ~ ! ! Lo t
e <k>/(> (-a) =l e-a]
k=0 n n n n
r ., t -
B N TSR S o |
dn Ay a n

where f,(s) = a,In[l + t/a,(e" — 1)]. The application of mean value
theorem to f,(s) in the interval [0, a,/n] yields

eVen
wey _
Cu(e")(t) = exp [wt . 1)/%]

for some 0< ¢, <a,/n, hence

‘ ‘ eV — 1 — t(ewi” - 1)/61
e wt| __ wt - o

< &"{explwi(e" — 1)) — 1.

From the last inequality and from

S

e —1<sé’ for any s € R, (17)

we obtain

[Cale™)(1) = | < Wit expl(an/n + wie™ "),

that allows us to conclude. 1

ExaMPLE 5.2. Our aim is to modify the operators of the previous
example to approximate functions defined on R = {r=(11,...,1,) €
R™|1#;=0}.
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For every n>1, let a, be a positive real number. We define

CXF)(t) = > F("”k‘,_,,ﬁ"_km)

J=0 Ty =0 n n

n t_] /(] 1 B t_] }’l*k[ n @ km 1 B @ }’l*km
kl day Ay o km day day

for every F € ¢(R7; E) and 7 € [0,a,]".
Let P be the subspace of % (R’}; E) of the functions that have a polynomial
growth at infinity, that is

P={Fec4R;E)IM >0, ¢>1:||F()|<MI+]| -9}

THEOREM 5.2.  Assume a, — +oo and a,/n — 0 as n — oo. For every
FeP

CHF) — F,

uniformly on compact subset of R'}. Moreover, if b<a, then there exist two
constants My, M, > 0 such that

[, a la a
CHF)—-F n<20( Fy\[b—m ) + My\|—+ M, —.
|G (F) H[[O,b] w( ) P ) "o, 2

Proof. Fix b>0,t€ [0,b]" and F € P and let n, M > 0, ¢ > 1 be such
that ||F(7)|]|<M(1+||#]|7) and b<a,. In order to apply Theorem 4.2, we
consider g(¢) = 1 +|¢||7, that satisfies conditions (g, ;) and, by equivalence
of the norm on R”, F € ¢(RT; E, 1+ || - [|7).

Noting that

Cr(pri)(t) = Cu(er) (1),
we obtain

ant; — 7

G =1 G0 =y Gt =4+——

Cr(@)(1) = g(t) = ) (Caleg)(t) — 1)
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From Theorem 5.1 we have

— 1
|C(eq)(t)—t|<2w<eq, t,””n ) M@

[ a, —ti a
< 2qbq71 tj - _J + Ml
n n

for any j =1...m and t; € [0,a,]. It follows that for ¢ € [0,5]"

— Ay ay
ICH(9)(1) — 9(1)| <2mgh 1\/,7;+ M

Finally, from

Clnl'— a
(|- - = LT <mb2,
URCAREUEDY mb®

we conclude the proof. 1

ExampLE 5.3. For every n>1, let a, be a positive real number. We
define

for every F € EXP and ¢ € [0,+o00]. Note that for a, =1, V, are the
Baskakov operators and ¥, are obtained formally from V,, replacing a,
with ta,. When a, = 1, from V, one gets the operators V.

Since now we assume a,>o > 0, for some o and a,/n — 0 as n — co.
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THEOREM 5.3. For every F € EXP

Va(F)(1) — F(1), (18)
Va(F)(1) — F(1), (19)
V.F(t) — F(1), (20)

uniformly on compact subset of R,.. Moreover, for every b > 0, there exists a
constant M > 0 such that

|Vn(F)(t)—F(t)||<2w<F, z““J’) +M%t, (21)
~ 1+a, ay

||V, (F)(£) —F(t)||<2co<F,t\/ p ) +M;t2, (22)
|1V .(F)(1) — F(1)|| <2 (Ft\/%> +M%12 (23)

hold for any t € [0,b].

Proof. Fix 0<t<b, n and F € EXP such that [|F(¢)||<Me"". We
proceed as in Theorem 5.1. It is easy to check

_anl+l2

i) =1, Vale)() =1, () = Vale2)(t) = 7 "

Using the mean value theorem, as in Theorem 5.1, we obtain

e 00y |
1+ t(1 — e%en)/ay

| Vn (ewel )(l) _ ewtl _ ewt

exp [wt

for 0< ¢, <a,/n. Using twice (17), one gets

(1+t/ay)
1+ ¢(1 —e%an)/ay
(e"or — 1)(1 + t/an)}

1+ (1 —e"n)/ay, |’

| v, (ewel )(Z) _ ewt| < ﬂ w2 [ewt+wg',,
n

exp {wt

which allows us to conclude the proofs of (18) and (21).
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In order to prove the remaining, we note that for ¢ = 0, the relations are
obvious. For ¢ > 0, we replace a, with g, in (21), and by means of Remark
4.4, we have (22) and (19). Setting a, = 1 in (22), we obtain the remaining
relations (23) and (20). 1

It is possible to extend these operators in the same direction of Example
5.2. We omit this generalization for sake of brevity.

An immediate application of an approximation process for vector-valued
mappings, is the representation of semigroups of operators.

THEOREM 5.4. Let T(:):Ry — L(E) be a € one-parameter semigroup
of bounded linear operators on E. Then the representation formulae

{1 - ai(T(%) - 1)] e T, (24)
Kl +;1>1—;1T(”’:’)]_nxe T()x, (25)
[or - T(é)] S Tl (26)

hold for every x € E and uniformly on compact set of R... Moreover, for every
bounded set J C R, there exists a constant M > 0, such that the estimates

—n

H{I—;(T(G)—I) x—T(t)x‘SZw(T(-)x, t”":t>+Mc;”z,

n

1 n 1" 1 n n
H[<1+—)1—T<a—l> X — T(0)x <2w<T(-)x,t +a>+M%t2,

a, n

H [21 - TG) Cx= (04| <20 <T(')X, t\/g> + M%

hold for every t € J.

Formulae (24) and (26) appear in [6]. There, Shaw proves (26) pointwise,
and, by Chernoff’s product formula, uniformly on compact sets only for
contractive semigroups. Here, we have also an estimate of the rate of
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convergence. Formula (25) seems to be new as well as the operators V,
and V.

ExaMPLE 5.4. Set G =], ¢(R"; E,exp(wey)). We define

W, (F) (1) = (;—n)m/z / B () d

for any F € G ant t € R".

THEOREM 5.5. For every F € G
Wu(F) — F,

uniformly on compact subset of R". If ||F(-)|| < M exp(wey) and if K C R" is
compact there exists a constant M > 0 such that

M
1#,() - Fllg<20( 7y 1) + 2

Proof. Fix K C R"™ compact, t € K, F € G and let n, w be such that
||F|| < M exp(wes), n=4w and set g = exp(wez). In order to apply Theorem
4.2 it is sufficient to evaluate only y, and W,(g)(¢) — g(¢), because the
relations

for n=4w.

Wa() =1, Walpr))(1) = 1;

allow us to use inequality (6).
From W, (pr7)(1) =t + 1/n we obtain

2 m

v2(1) = —.

V(1) P
Setting &, == 1 — 2%, we can rewrite W,(g) as

Wa(g)(1) =

::]s

27'C R J

(277;) 1/2/R exp (73 Cnluj — f.//fn)2> exp(wi; /&) duy

&P exp(w /&) = & exp(wllillF /).
1

1

~.
Il

I
E T\_::]s

~.
Il
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Then using (17) and the inequality
(I+s)'<l4as  for 0<a<l, -—I<s

with « =1 and 1 +s5 =1/, we obtain

@0 = 9] =& exp (wllP (5= 1) ) 1] 7 -1}

) 1 - 11— =&
< e L e mulP L= exp (w152 +
n n

n

For n>4w, there holds 1;£21<m2’”(1 — ¢&,). Hence, we have
w o (wle)?

m
_ <evlil 2,~GHH W it W
Wlg)(0) = gl <e 3wl Pe, = exp | 5 o ) 2,

which concludes the proof. 1
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