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The purpose of this paper is to study the approximation of vector-valued mappings

defined on a subset of a normed space. We investigate Korovkin-type conditions

useful to recognize if a given sequence of linear operators is a so-called

approximation process. First, we give a sufficient condition for this sequence to

approximate the class of bounded, uniformly continuous functions. Then we present

some sufficient and necessary conditions guaranteeing the approximation within the

class of unbounded, * weak-to-norm continuous mappings. We also derive some

estimates of the rate of convergence. We apply concrete approximation processes to

derive representation formulae for semigroups of bounded linear operators. # 2002

Elsevier Science (USA)
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1. INTRODUCTION

Korovkin’s well-known result [2] states that if ðLnÞn51 is a sequence of
positive linear operators on Cð[a; b]Þ then jjLnðf Þ � f jj1 ! 0 for every f 2
Cð[a; b]Þ; provided the same is true for the following test functions: f ðuÞ ¼
1; u; u2: Shisha and Mond [8] present a quantitative version of Korovkin’s
theorem, containing some estimates of the rate of convergence of jjLnðf Þ �
f jj in terms of the corresponding rate of convergence computed for the test
functions. Many authors have contributed to understanding the possible
enlargement of the domain of approximation operators, in particular to
include classes of unbounded functions. Ditzian [1] deals with continuous
real-valued functions, defined on a closed and unbounded subset of the real
line, which satisfy the growth condition j f ðuÞj4Mf ð1 þ u2ÞmðuÞ with m51:
He estimates the rate of the approximation in terms of the rate of
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convergence for the test functions 1; u; u2 and ðu � tÞ2mðuÞ: Shaw and Yeh [7]
study the case of functions defined on an open interval ]a; b[ of R and
satisfying j f ðuÞj ¼ OðgaðuÞÞðu ! aþÞ and j f ðuÞj ¼ OðgbðuÞÞðu ! b�Þ (for
some suitable convex functions ga and gb). The test functions determining
the convergence rates are now the following: 1; u; u2; ga and gb: Shaw [6]
considers continuous functions on Rm with a prescribed growth at infinity.
More precisely, he treats operators Ln defined by means of measures:
Lnðf ÞðtÞ ¼

R
f ðuÞ dmn;tðuÞ; and the following classes of functions f : The first

class consists of those real-valued functions whose growth is controlled by a
convex function g: The second admissible class contains functions of the
form TðuÞx; where x belongs to a Banach space E; and TðuÞ is a linear
continuous operator from E into itself such that TðuÞ is bounded on
bounded subsets of Rm and jjTðuÞjj4MgðuÞ: Many authors have also
studied the case of vector-valued mappings defined on a compact Hausdorff
space X see, e.g. [3–5]. The former studies the convergence of a net of quasi-
positive linear operators to an operator T ; that can be the identity on
CðX ;EÞ: Actually, in [4] the value space E is a Dedekind complete normed
vector lattice with normal unit order and, in [3] E is a normed linear space.
Always in the setting of compactness of X ; Prolla studies the approximation
processes for the identity on CðX ;EÞ by monotonically regular operators
(that is the operators that are S-regular with S positive, see Section 2).
Moreover, he gives a rate of approximation when X is a compact subset of a
normed space and the process is made of dominated operators.

The purpose of this article is to give a generalization of the above results
for classes of mappings defined on a convex subset of a vector space taking
their values into a normed space. The paper is organized as follows.

In Section 2 we introduce the notation and definitions used in the sequel.
Replacing the previous assumption on the positivity of the operators Ln

by the concept of the so-called dominated operators we proceed to find
Korovkin-type conditions, as described in Section 3. We also derive there a
Korovkin-type theorem on the approximation process within the class of
bounded and uniformly continuous functions defined on a convex set, and
find an estimate of the rate of convergence. In the end of the section we
deduce a Korovkin-type theorem for * weak-to-norm continuous maps on
bounded sets.

Section 4 deals with the case of unbounded functions. With X being a
* weakly closed or open convex subset of a dual space Y ¼ Z0; we present a
Korovkin-type theorem for * weak-to-norm continuous maps on X ; whose
growth is controlled by a convex function. Under the additional assumption
of the dimension of Y to be finite, we establish some new estimates of the
rate of convergence. Theorems 4.1 and 4.2 generalize the corresponding
results in [6, 7]. The main result in [1] is an easy consequence of our Theorem
4.2 under the additional requirement that the control function ð1 þ t2ÞmðtÞ is
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strictly convex. Moreover, Theorem 4.2 extends the results of [6], providing
them with estimates of the corresponding rate of convergence.

In the last section we apply developed theorems to same approximation
process and improve a result of Shaw [6] on representation of semigroups.

2. NOTATION AND PRELIMINARY DEFINITIONS

In this work Y ;Z and E will denote real or complex normed spaces, with
their norms denoted by same symbol jj � jj: As usual, Z0 stands for the dual
space of Z and pðZÞ stands for the dual space of Z0 with * weak topology
sðZ0;ZÞ; so Z is reflexive if and only if pðZÞ ¼ Z00: If f 2 pðZÞ; and X is a
nonempty subset of Z0; then by fjX we mean the restriction of f to X :

We will often address to the following two functional spaces: FðX ;EÞ
and BðX ;EÞ that are, respectively, the vector space of all mappings F : X !
E and its subspace containing only the bounded mappings. The latter space
is normed by the uniform norm jj � jjX

jjF jjX :¼ sup
u2X

jjFðuÞjj:

For F belonging to the former space, jjF jj : X ! R denotes the real-valued
function jjF jjðuÞ :¼ jjFðuÞjj:

With the usual symbol CðX ;EÞ we denote the subspace of FðX ;EÞ
consisting of all continuous mappings.

Fix g : X ! R a strictly positive function. Then CðX ;E; gÞ denotes the
subspace of all mappings F 2 CðX ;EÞ such that jjFðuÞjj4MgðuÞ for every
u 2 X and some constant M > 0; depending only on F : Finally, UCBðX ;EÞ
is the subspace of all mappings of CðX ;EÞ which are uniformly continuous
and bounded.

In case E ¼ R we abbreviate the above notation, writing CðX ; gÞ instead
of CðX ;R; gÞ;FðXÞ instead of FðX ;RÞ and so on.

We also adopt the following notation: if c 2 E; then, we shall denote
again by c the constant mapping FðuÞ ¼ c ðu 2 XÞ:

If f 2 FðX Þ and x 2 E; f � x denotes the mapping of FðX ;EÞ defined by
ðf � xÞðuÞ :¼ f ðuÞx ðu 2 XÞ:

For t 2 Y ; define ct : X ! R by the formula ctðuÞ :¼ jju � tjj: Observe
that if c2

t0
2 CðX ; gÞ; for some t0 2 Y ; then the same holds for every t 2 Y :

Definition 2.1. Let Z be normed space, Y its dual space and X 
Y ¼ Z0: We say that F : X ! E is * weak-to-norm continuous if it is
continuous from X equipped with the * weak topology sðY ;ZÞ in Y ; into
E with the norm topology. By KðX ;EÞ we denote the space of all
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* weak-to-norm continuous mappings from X into E: We set KðX ;E; gÞ :¼
KðX ;EÞ \ CðX ;E; gÞ:

We remark that every * weak-to-norm continuous mapping is in
particular continuous and maps * weakly closed and bounded subsets of
X in compact subsets of E: Moreover, if the dimension of Y is finite, then
obviously KðX ;EÞ ¼ CðX ;EÞ:

For F 2 UCBðX ;EÞ; as usual, we denote with oðF ; �Þ its modulus of
continuity,

oðF ; hÞ :¼ supfjjFðuÞ � FðtÞjj j t; u 2 X ; jjt � ujj4hg ðh > 0Þ:

The following definitions are based on the analogous ones in [5].

Definition 2.2. Let L : DðLÞ ! FðX ;EÞ and S : DðSÞ ! FðXÞ be
linear operators defined on some subspace DðLÞ and DðSÞ of CðX ;EÞ and
CðXÞ; respectively. We say that

(a) L is dominated by S if jjF jj 2 DðSÞ; and

jjLðFÞðtÞjj4SðjjF jjÞðtÞ

for all F 2 DðLÞ and t 2 X ;
(b) L is S-regular if f � x 2 DðLÞ and

Lðf � xÞ ¼ Sðf Þ � x

for all f 2 DðSÞ and x 2 E;
(c) L preserves the constants if c 2 DðLÞ and LðcÞðtÞ ¼ c; for all c 2 E and

t 2 X :

Below we present some examples of dominated and regular operators.

Example 2.1(Interpolation Operators). Let LðEÞ be the Banach
algebra of the continuous linear operators on E and I be an index set.
For every i 2 I fix a point ti 2 X and an application Fi 2 CðX ;LðEÞÞ; and
set fi :¼ jjFijjLðEÞ 2 CðX Þ: We consider the operators L : DðLÞ ! FðX ;EÞ
and S : DðSÞ ! FðX Þ; defined by

LðFÞðtÞ :¼
X
i2I

FiðtÞðFðtiÞÞ for any F 2 DðLÞ;

Sðf ÞðtÞ :¼
X
i2I

fiðtÞf ðtiÞ for any f 2 DðSÞ

for all t 2 X : The domain DðSÞ is the space of those functions f 2 CðX Þ for
which the family ðfiðtÞf ðtiÞÞi2I is summable for all t 2 X : The domain DðLÞ
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is the space of the maps F 2 CðX ;EÞ such that jjF jj 2 DðSÞ: The inequality

jjLðFÞðtÞjj4
X
i2I

jjFiðtÞjjLðEÞjjFðtiÞjj ¼ SðjjF jjÞðtÞ

implies that L is well defined on DðLÞ and that L is dominated by S:
If for every i 2 I ; there exists ci 2 CðXÞ such that FiðtÞðvÞ ¼ ciðtÞv

ðt 2 X ; v 2 EÞ; then setting fi :¼ ci; we have that L is S-regular. Moreover,
if ci50 then L is also dominated by S:

Example 2.2 (Integral Operators). Let ðE; jj � jjÞ be a Banach space and
assume that for any t 2 X ; a positive finite measure mt :BX ! Rþ on the s-
algebra of all Borel subset of X is given. Define DðLÞ :¼ CðX ;EÞ \T

t2X L1ðmt;EÞ; and DðSÞ :¼ CðX Þ \
T

t2X L1ðmtÞ: Consider the operators
L : DðLÞ ! FðX ;EÞ and S : DðSÞ ! FðX Þ given by

LðFÞðtÞ :¼
Z

X

FðuÞ dmtðuÞ for any F 2 DðLÞ;

SðgÞðtÞ :¼
Z

X

gðuÞ dmtðuÞ for any g 2 DðSÞ

for all t 2 X : Trivially, L and S are linear and S is positive.
L is dominated in natural way by S:

jjLðFÞðtÞjj ¼
Z

X

FðuÞ dmtðuÞ
����

����
����

����4
Z

X

jjFðuÞjj dmtðuÞ ¼ SðjjF jjÞðtÞ:

Using the above estimate, we note that for an arbitrary F 2 CðX ;EÞ;
SðjjF jjÞ is well defined provided LðFÞ is defined.

By properties of the Bochner integral it is easy to verify that L is S-
regular.

Moreover, we observe that L preserves the constants if and only if the
measures mt have unit masses or, equivalently, Sð1ÞðtÞ ¼ 1 for all t 2 X :

We will also make use of the following notation: if c2
t 2 DðSÞ then we

write g2ðtÞ :¼ Sðc2
t ÞðtÞ:

3. A KOROVKIN-TYPE THEOREM FOR BOUNDED UNIFORMLY
CONTINUOUS MAPPINGS BETWEEN NORMED SPACES

In this section we approximate vector valued, bounded and uniformly
continuous mappings defined on a convex subset of a normed space.
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Theorem 3.1. Let Y and E be normed spaces, X a convex subset of Y and

Ln : DðLnÞ ! FðX ;EÞ a sequence of linear operator dominated by some

positive linear operators Sn : DðSnÞ ! FðXÞ: We suppose that, for every

n51 UCBðX ;EÞ  DðLnÞ; UCBðXÞ  DðSnÞ and c2
t 2 DðSnÞ for some (and

hence for all) t 2 Y : Then for each F 2 UCBðX ;EÞ; t 2 X and d > 0 one has

jjLnðFÞðtÞ � FðtÞjj4 jjLnðFðtÞÞðtÞ � FðtÞ þ SnðjjF � FðtÞjjÞðtÞ

4 jjLnðFðtÞÞðtÞ � FðtÞjj þ oðF ; dÞ½Snð1ÞðtÞ þ d�2g2
nðtÞ�; ð1Þ

where g2
nðtÞ :¼ Snðc2

t ÞðtÞ:
Moreover, if Ln preserves the constants, then

jjLnðFÞðtÞ � FðtÞjj4oðF ; dÞ½Snð1ÞðtÞ þ d�2g2
nðtÞ�:

In particular, taking d ¼ gnðtÞ we obtain

jjLnðFÞðtÞ � FðtÞjj4oðF ; gnðtÞÞ½Snð1ÞðtÞ þ 1�;

and if gn and Snð1Þ are bounded on K  X ; then

jjLnðFÞ � F jjK4oðF ; jjgnjjKÞ½jjSnð1ÞjjK þ 1�:

Proof. Fix F 2 UCBðX ;EÞ: For every u 2 X and d > 0; by the
definition of oðF ; �Þ; we get the inequality

jjFðuÞ � FðtÞjj4oðF ; jjt � ujjÞ4ð1 þ d�2jju � tjj2ÞoðF ; dÞ:

Applying the positive operator Sn we have

SnðjjF � FðtÞjjÞðtÞ4oðF ; dÞðSnð1ÞðtÞ þ d�2g2
nðtÞÞ

and

jjLnðFÞðtÞ � FðtÞjj4 jjLnðF � FðtÞÞðtÞjj þ jjLnðFðtÞÞðtÞ � FðtÞjj

4SnðjjF � FðtÞjjÞðtÞ þ jjLnðFðtÞÞðtÞ � FðtÞjj;

as Ln is dominated by Sn: ]

Note that the Theorem 3.1 yields the uniform convergence of ðLnðFÞÞn51

to F on those subsets of Y where the sequence g2
nðtÞ ¼ Snðc2

t ÞðtÞ converges
to 0 uniformly.
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When X is * weakly closed, convex and bounded subset of the dual space
Y ¼ Z0; then by Theorem 3.1 and the inclusions

KðX ;EÞ  UCBðX ;EÞ;

c2
t 2 UCBðX Þ  DðSnÞ;

one obtains the following Korovkin-type theorem for * weak-to-norm
continuous maps.

Corollary 3.1. Let Z and E be normed spaces, Y the dual space of Z; X

a * weakly closed; convex and bounded subset of the dual space Y ¼ Z0; and

Ln : DðLnÞ ! FðX ;EÞ a sequence of linear operator dominated by some

positive linear operators Sn : DðSnÞ ! FðX Þ: We suppose that, for every n5
1 UCBðX ;EÞ  DðLnÞ;UCBðX Þ  DðSnÞ and set g2

nðtÞ :¼ Snðc2
t ÞðtÞ: If for

every c 2 E the following convergences hold:

LnðcÞ ! c ½resp: uniformly in c 2 E�;

gnðtÞ ! 0 ½resp: uniformly in t 2 X �;

then for each F 2 KðX ;EÞ

LnðFÞðtÞ ! FðtÞ ½resp: uniformly on X �

and moreover the inequalities of the Theorem 3.1 hold.

Remark 3.1. In the setting of Corollary 3.1, X results to be a compact
space with * weak topology and, in order to study the approximation
process of the identity on KðX ;EÞ; the above result is slightly different from
the analogue in [5, Theorem 1; 3, Corollary 5, Remark 4]. Prolla, dealing
with dominated operators, requires that ðX ; dÞ is a metric space and the test
functions depend on the metric d: In our case, of * weak-to-norm continuous
mappings, this means to require the separability of Z and to use the metric
d; given for every x; y 2 X by

dðx; yÞ :¼
X
n51

jhx � y; fnij
2n

;

where fn 2 Z; jj fnjj ¼ 1 and ðfnÞn51 is dense on the unitary sphere of Z: In
Corollary 3.1 one does not need the separability of Z; and the test functions
are based on the easier to use norm of the space. Nishishiraho tests the
sequences of quasi-positive operators on a greater test set that in our context is

fcfk
jX jf 2 pðZÞ; k ¼ 0; 1; 2 and c 2 Eg:
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The cases of X closed and unbounded, or open are treated in the next
section.

4. KOROVKIN-TYPE THEOREMS FOR UNBOUNDED MAPPINGS
BETWEEN NORMED SPACES

As in the scalar case, where it is necessary to control the growth of the
approximated functions (cf. [1]), for vector-valued mappings defined on
subsets of Banach spaces we will have to assume appropriate conditions
estimating the growth near the boundary of their domains of definition.

Since now we assume that ðZ; jj � jjÞ is a real normed space, Y its dual
space, ðE; jj � jjÞ a normed space, and X a convex subset of Y ¼ Z0; * weakly
closed and unbounded or open. Fix K  X * weakly closed and bounded
and g : X ! R a function satisfying the following conditions:

ðg0Þ g is strictly positive, strictly convex, * weak-to-norm continuous on X

and Fr!eechet differentiable on K such that g0 : K ! Y 0 is * weak-to-norm
continuous and g0ðKÞ  pðZÞ:

We make the following growth hypothesis on g:

ðg1Þ for every n51 there exists a * weakly closed, convex and bounded
subset Bn of X containing K such that for every t 2 X =Bn one has gðtÞ5n

(or equivalently, for every n51 setting Bn :¼ g�1ð½0; n�Þ and requiring that
K  Bn; Bn is bounded and X =Bna|). In case X is unbounded, we
additionally require

lim
jjtjj!1

t2X

gðtÞ
jjtjj ¼ þ1: ð2Þ

Define the function h : K � X ! R by setting

hðt; uÞ :¼ gðuÞ � ½gðtÞ þ hg0ðtÞ; u � ti�: ð3Þ

If hypothesis ðg0Þ holds, by the * weak-to-norm continuity of g0 and the
strict convexity of g; h is * weak-to-norm continuous and strictly positive for
uat:

In the remaining part of this section we state and prove two Korovkin-
type theorems for * weak-to-norm continuous mappings with growth
prescribed by g:

Theorem 4.1. Let Z; Y ; E; X ; K ; g and h be as above and there holds

conditions ðg0Þ and ðg1Þ: For each n51 let Ln : DðLnÞ ! FðK ;EÞ be a linear
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operator dominated by a linear positive operator Sn : DðSnÞ ! FðKÞ; with

KðX ;E; gÞ  DðLnÞ and KðX ; gÞ  DðSnÞ:
Then for every t 2 K the following statements are equivalent:
(a) For every c 2 E;

LnðcÞðtÞ ! c; Snð1ÞðtÞ ! 1 and Snðhðt; �ÞÞðtÞ ! 0:

(b) For every c 2 E; and every continuous linear functional f 2 pðZÞ;

LnðcÞðtÞ ! c; Snð1ÞðtÞ ! 1; SnðfjX ðtÞ ! fðtÞ and SnðgÞðtÞ ! gðtÞ:

(c) For every F 2 KðX ;E; gÞ and f 2 KðX ; gÞ;

LnðFÞðtÞ ! FðtÞ and Snðf ÞðtÞ ! f ðtÞ:

If the convergences in (a) are uniform with respect to t 2 K and with respect to

c 2 E then (c) holds uniformly for t 2 K :
Moreover, if the operators Ln are Sn-regular, then the above conditions are

equivalent to one of the further statements:
(d) For every F 2 KðX ;E; gÞ;

LnðFÞðtÞ ! FðtÞ:

(e) For every F 2 KðX ; gÞ;

Snðf ÞðtÞ ! f ðtÞ:

(f) For every continuous linear functional f 2 pðZÞ;

Snð1ÞðtÞ ! 1; SnðfjX ÞðtÞ ! fðtÞ and SnðgÞðtÞ ! gðtÞ:

Remark 4.1. We remark that, if Y has finite dimension m; then
denoting by ðpriÞ14i4m the coordinate projections on Y ; the above
condition (b) reduces to the following one:

ðb0Þ For every c 2 E; and every i : 1 . . .m;

LnðcÞðtÞ ! c; Snð1ÞðtÞ ! 1; SnðpriÞðtÞ ! priðtÞ and SnðgÞðtÞ ! gðtÞ;

and the convergences in (a) are uniform if and only if the same holds true for
ðb0Þ:

This follows from the fact that ðpriÞ14i4m forms a base of the space Y 0:

Remark 4.2. If the space Z is reflexive, it is possible to simplify the
hypotheses dropping the ‘‘* ’’, substituting pðZÞ with Y 0 and forgetting of Z:
So X will be a convex subset of the real reflexive Banach space Y ; that
is closed and unbounded or open; K  X weakly closed and bounded;
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g : X ! R strictly positive, strictly convex, weak-to-norm continuous on X

and Fr!eechet differentiable on K such that g0 : K ! Y 0 is weak-to-norm
continuous and satisfying the same growth hypotheses.

Remark 4.3. Actually, as it is easy to check from the proof of the
previous theorem, the hypothesis on g may be weakened. More precisely, if
we substitute hypothesis ðg0Þ with the following:

ðg2Þ g is strictly positive, strictly convex, Fr!eechet differentiable on K ;
g0ðKÞ  pðZÞ; g0ðKÞ is bounded in Y 0 and the function h; defined in (3), is
lower semicontinuous with respect to * weak topology;

and leave the growth hypothesis ðg1Þ; in the setting of Theorem 4.1, with
further hypothesis that g; h 2 DðSnÞ; we obtain the implications ðbÞ )
ðaÞ ) ðcÞ: Moreover if the operator Ln are Sn-regular, then we have the
further implications ðfÞ ) ðbÞ ) ðaÞ ) ðcÞ , ðdÞ:

Theorem 4.2. In the same setting of Theorem 4.1 assume in addition that

Y has finite dimension and that c2
t 2 CðX ; gÞ for some (and hence for all)

t 2 Y : If K is convex and K1  K̊ is a closed subset, then for any F 2
CðX ;E; gÞ there exists a constant M > 0 depending only on F ; K ; K1 and g

such that the estimate

jjLnðFÞðtÞ � FðtÞjj4jjLnðFðtÞÞðtÞ � FðtÞjj

þ oðF ; dÞðSnð1ÞðtÞ þ d�2Snðc2
t ÞðtÞÞ þ MSnðhðt; �ÞÞðtÞ

ð4Þ

holds for all d > 0 and t 2 K1 (here oðF ; �Þ stands for the modulus of

continuity of F on K). When Ln preserves the constants and Snð1ÞðtÞ ¼ 1; the

above estimate becomes

jjLnðFÞðtÞ � FðtÞjj42oðF ; gnðtÞÞ þ MSnðhðt; �ÞÞðtÞ: ð5Þ

Finally, if Sn preserves the linear functionals, then

jjLnðFÞðtÞ � FðtÞjj42oðF ; gnðtÞÞ þ MðSnðgÞðtÞ � gðtÞÞ: ð6Þ

In case dimðY Þ ¼ 1; X ¼ [a;þ1[ resp:X ¼ ]�1; b]
� �

and K ¼ [a; b];
the previous estimates hold with K1 ¼ [a; b1] for any b15b

resp: K1 ¼ [a1; b] with a5a1

� �
:

Before proving the theorems, we present two useful lemmas:
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Lemma 4.1. Let Z; Y ; E; X ; K ; g and h be as in the Theorem 4.1 and

consider F 2 KðX ;E; gÞ: Then there exist an integer n51 and a constant

M > 0 such that

jjFðtÞ � FðuÞjj4Mhðt; uÞ for any t 2 K and u 2 X =Bn: ð7Þ

Moreover, for any d > 0 and any finite set ‘  Z one gets

jjFðtÞ � FðuÞjj4oðF ;K ;X ; I‘;dÞ þ Mhðt; uÞ for any t 2 K and u 2 X ;

ð8Þ

where I‘;d is the following neighborhood of 0 in the * weak topology on Y :

I‘;d :¼ fy 2 Y j8x 2 ‘: jyðxÞj5dg

and

oðF ;K ;X ; I‘;dÞ :¼ supfjjFðtÞ � FðuÞjj jt 2 K; u 2 X ; u 2 t þ I‘;dg: ð9Þ

Proof (Estimate (7)). From the * weak-to-norm continuity of F ; g; g0 and
the boundedness of K ; it follows that there exists a positive constant M1 > 0
such that for all t 2 K one has jjFðtÞjj4M1; jgðtÞj4M1; jjg0ðtÞjjY 04M1 and
jjtjj4M1: Thus for t 2 K and u 2 X we get

hg0ðtÞ; u � ti
gðuÞ 4

M1jju � tjj
gðuÞ 4

M1

gðuÞðjjujj þ M1Þ

and then

hðt; uÞ
gðuÞ 51 � M1

1 þ jjujj þ M1

gðuÞ for all t 2 K and u 2 X :

Hence, by the hypotheses on the growth of g; it follows that

05M1
1 þ jjujj þ M1

gðuÞ 4
M1 þ M2

1

n
þ M1

jjujj
gðuÞ for any u 2 X =Bn: ð10Þ

Fix e 2 ]0; 1[: If X is bounded, that is jjujj4N for u 2 X and some constant
N; then taking n greater than an appropriate integer n we obtain

M1
1 þ jjujj þ M1

gðuÞ 4M1
1 þ N þ M1

gðuÞ 4M1
1 þ N þ M1

n
5e

for all n5n and u 2 X =Bn: If X is unbounded, then by (2), there exists a > 0

such that for any jjujj5a we have M1
jjujj
gðuÞ5e=2: Setting n :¼ 2M1 maxfa; 1 þ

M1g=e; we claim that M1
jjujj
gðuÞ5e=2 for any n5n and u 2 X =Bn: Then one also
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has M1
jjujj
gðuÞ5M1

a
n
4M1

a
n4e=2: Now, looking at (10) we obtain

M1
1 þ jjujj þ M1

gðuÞ 4
M1 þ M2

1

n
þ M1

jjujj
gðuÞ4

e
2
þ e

2
¼ e

for n5n and u 2 X =Bn: Hence for n5n; u 2 X =Bn and t 2 K we have

jjFðtÞ � FðuÞjj
hðt; uÞ ¼ jjFðtÞ � FðuÞjj

gðuÞ
gðuÞ

hðt; uÞ

4
jjFðuÞjj þ M1

gðuÞ 1 � M1
1 þ jjujj þ M1

gðuÞ

� 	�1

4
jjFðuÞjj þ M1

gðuÞ ð1 � eÞ�1:

The above inequality together with jjFðuÞjj4MgðuÞ and ðg1Þ accomplishes
the proof of (7).

Estimate (8): Set

A :¼ fðt; uÞjt 2 K ; u 2 Bn and u =2 t þ I‘;dg:

A is * weakly closed and bounded, because the same holds for K and Bn:
Since h is * weak-to-norm continuous, then by Weierstrass’ theorem, we
deduce that h has a minimum m on A; and m > 0 because hðt; uÞ ¼ 0 only
for u ¼ t: Moreover, since F is * weak-to-norm continuous, the same holds
true for the function jjF jj; and, consequently, jjF jj is bounded on the
bounded set Bn: Hence we obtain

jjFðtÞ � FðuÞjj42jjF jjBn

hðt; uÞ
m

¼ M2hðt; uÞ

for every t 2 K and u 2 Bn=ðt þ I‘;dÞ:
Recalling estimate (7) and definition (8), we conclude the proof of (8). ]

The next lemma explains an important property of oðF ;K; I‘;dÞ; that will
be used in the sequel.

Lemma 4.2. Let X be a convex subset of Y ¼ Z0; K a * weak closed and

bounded subset of X ; and let F be a * weak-to-norm continuous mapping from

X to E: Then for any e > 0 there exist a finite set ‘  Z and a constant d > 0
such that oðF ;K ;X ; I‘;dÞ4e:

Proof. By the * weak-to-norm continuity of F ; for a fixed t 2 K there
exist a finite set ‘t  Z and dt > 0 such that jjFðtÞ � FðuÞjj5e=2 for u 2
t þ I‘t;dt

: Trivially K 
S

t2K t þ I‘t;dt=2: Since K is compact in the * weak
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topology, there are t1; t2; . . . ; tn 2 K ; such that

K 
[n
i¼1

ti þ I‘i ;di=2:

where we set ‘i :¼ ‘ti
and di :¼ dti

: Let d :¼ 1
2
minfdi; i ¼ 1 . . . ng and ‘ :¼Sn

i¼1 ‘i: We Prove that I‘;d is the desired neighborhood of zero.
Fix t 2 K and u 2 ðt þ I‘;dÞ \ X : Let i be the index for which t 2

ti þ I‘i ;di=2: For any x 2 ‘i the inequality

jxðu � tiÞj4jxðu � tÞj þ jxðt � tiÞj5dþ di=24di

holds, and thus u 2 ti þ I‘i ;di
: Therefore

jjFðtÞ � FðuÞjj4jjFðtÞ � FðtiÞjj þ jjFðtiÞ � FðuÞjj5e=2 þ e=2;

which yields the desired estimate for oðF ;K ;X ; I‘;dÞ: ]

Now we prove our main results.

Proof of Theorem 4.1. First of all, observe that for given F 2 KðX ;E;
gÞ and t 2 K ; applying Sn to both sides of (8) of Lemma 4.1, we obtain

SnðjjF � FðtÞjjÞðtÞ4Snð1ÞðtÞoðF ;K ; I‘;dÞ þ MSnðhðt; �ÞÞðtÞ:

Consequently,

jjLnðFÞðtÞ � FðtÞjj4jjLnðFðtÞÞðtÞ � FðtÞjj þ SnðjjF � FðtÞjjÞðtÞ

4 jjLnðFðtÞÞðtÞ � FðtÞjj þ Snð1ÞðtÞoðF ;K ; I‘;dÞ

þ MSnðhðt; �ÞÞðtÞ: ð11Þ

We prove the implication (a) ) (c). Take e > 0 and consider the zero
neighborhood I‘;d for which oðF ;K ; I‘;dÞ4e=6: By Lemma 4.1, there
exists a constant M such that relation (8) holds for I‘;d: In view of (a),
for n sufficiently large we have Snðhðt; �ÞÞðtÞ5e=ð3MÞ; Snð1ÞðtÞ52 and
jjLnðFðtÞÞðtÞ � FðtÞjj5e=3; and thus, using (11) we deduce

jjLnðFÞðtÞ � FðtÞjj4e=3 þ 2e=6 þ Me=ð3MÞ ¼ e;

that proves the convergence of LnðFÞðtÞ to FðtÞ: It is clear that the
convergence is uniform if the same holds for (a).

Fix f 2 KðX ; gÞ: In order to prove the convergence of Snðf ÞðtÞ to f ðtÞ we
proceed in the manner we made before substituting the norm jj � jj in E with
the absolute value.
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In order to prove the implication (c) ) (b), it is sufficient to observe that
the constant functions are * weak-to-norm continuous, and the function g

and all continuous functionals in pðZÞ belongs to KðX ; gÞ (by (2)).
The implication (b) ) (a) follows directly from the identity

Snðhðt; �ÞÞðtÞ ¼ SnðgÞðtÞ � gðtÞSnð1ÞðtÞ � Snðhg0ðtÞ; �iÞðtÞ þ hg0ðtÞ; tiSnð1ÞðtÞ:
ð12Þ

Now we assume that Ln is Sn-regular. The implication (d) ) (c). Fix
f 2 KðX ; gÞ: Taking x 2 E; by definition of S-regularity, we have

Snðf ÞðtÞ � x ¼ Lnðf � xÞðtÞ;

that converges to f ðtÞx: Since x is arbitrary we have the convergence of
Snðf ÞðtÞ to f ðtÞ: The implication (f) ) (b) follows from identity

LnðcÞðtÞ ¼ Lnð1� cÞðtÞ ¼ Snð1Þ � c

and the missing implication (e) ) (f) is immediate. The proof is
complete. ]

Proof of Theorem 4.2. Fix F 2 KðX ;E; gÞ and d > 0: By (7) for every
t 2 K1 and u 2 X =Bn we get

jjFðtÞ � FðuÞjj4M1hðt; uÞ: ð13Þ

On the other hand, the inequality

jjFðtÞ � FðuÞjj4oðF ; jjt � ujjÞ4ð1 þ d�2jjt � ujj2ÞoðF ; dÞ ð14Þ

holds for every t 2 K1 and u 2 K (oðF ; dÞ stands here for the modulus of
continuity of F on K).

Now we discuss the case t 2 K1 and u 2 Bn=K : Since Y is of finite
dimension, K convex and K1  K̊; there exists a closed and convex set KZ 
K̊ such that K1  KZ: From the convexity of Bn; K and KZ; it follows that

½a0; a00� ¼ ½u; t� \ K =KZ

for some a0 2 %KK =K̊ ¼ @K and a00 2 dKZ: Let P : [0; 1] ! ½u; t� be the
parametric representation of the segment, PðsÞ :¼ ð1 � sÞu þ st ð04s41Þ;
and 04s05s0041 such that Pðs0Þ ¼ a0 and Pðs00Þ ¼ a00: We set #gg :¼ g8P :
[0; 1] ! ½0;þ1½ and #hhðr; sÞ :¼ #ggðsÞ � ½ #ggðrÞ þ #gg0ðrÞðs � rÞ�: Note that #gg is
strictly convex by the strict convexity of g: This yields #hhðs00; s0Þ4 #hhð1; 0Þ:
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Observing that

#gg0ðrÞ ¼ hg0ðPðrÞÞ;P0ðrÞi ¼ hg0ðPðrÞÞ; t � ui;

and PðsÞ � PðrÞ ¼ ðs � rÞðt � uÞ; we get

#hhðr; sÞ ¼ gðPðsÞÞ � ½gðPðrÞÞ þ hg0ðPðrÞÞ;PðsÞ � PðrÞi� ¼ hðPðrÞ;PðsÞÞ:

Hence

05hða00; a0Þ ¼ #hhðs00; s0Þ4 #hhð1; 0Þ ¼ hðt; uÞ;

and consequently

jjFðtÞ � FðuÞjj4jjFðtÞjj þ jjFðuÞjj42jjF jjBn
hðt; uÞ=hða00; a0Þ: ð15Þ

Since @K \ @KZ ¼ | and both @K and @KZ are compact, surely
inffhða00; a0Þja0 2 @K ; a00 2 @KZg > 0 and therefore

jjFðtÞ � FðuÞjj4M2hðt; uÞ for any t 2 K1; u 2 Bn=K : ð16Þ

In case dimðYÞ ¼ 1; X ¼ [a;þ1]; K ¼ [a; b] and K1 ¼ [a; b1] (with
b15b) relation (16) is established in the similar manner. One considers KZ :
¼ [a; b2] with b15b25b and finds a0 ¼ b and a00 ¼ b2; which yield (16) in
view of (15) and the inequality 05hðb2; bÞ4hðt; uÞ:

Combining inequalities (13), (14) and (16) we obtain

jjFðtÞ � FðuÞjj4ð1 þ d�2jjt � ujj2ÞoðF ; dÞ þ Mhðt; uÞ

for all t 2 K1 and u 2 X : Now applying Sn and using the first inequality in
(11) we obtain estimate (4). The last inequality (6) easily follows from
relation (12). ]

Remark 4.4. We stress the fact that the constant M in (4), (5) and (6)
depends only on F ; K ; K1 and g; in particular, it does not depend on the
operators Ln or Sn:

Remark 4.5. From the previous theorems we deduce that an approx-
imation process for real-valued functions Sn; defined by means of positive
measures, yields another process Ln; for vector-valued functions. Note that
the process Ln ‘‘inherits’’ the estimates valid for Sn:
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5. EXAMPLES

The following examples deal with operators Ln that are Sn-regular. We
shall use the same symbol to denote either of them.

In the sequel let eqðsÞ :¼ sq: For t 2 Rm and q51; jjtjjq will denote the

norm ð
Pm

i¼1 jtijqÞ1=q: In Rm all the norms are equivalent, but we note that for

m > 1 jj � jjq1 is not strictly convex, thus both 1 þ jj � jjq1 and expðjj � jj1Þ do

not satisfy condition ðg0Þ:

Example 5.1 (Bernstein–Chlodovsky). For every n51; let an be a
positive real number. We define

CnðFÞðtÞ :¼
Xn

k¼0

n

k

 !
F

ank

n

� 	
t

an

� 	k

1 � t

an

� 	n�k

;

for every F 2 CðRþ;EÞ and t 2 [0; an]; and set

EXP :¼
[

w51

CðRþ;E; expðwe1ÞÞ:

Theorem 5.1. Assume an ! þ1 and an=n ! 0 as n ! 1: Then for

every F 2 EXP

CnðFÞ ! F

uniformly on compact subset of Rþ: Moreover, if b4an; there exists a constant

M > 0 such that the estimate

jjCnðFÞðtÞ � FðtÞjj42o F ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t

an � t

n

r !
þ M

an

n
t;

holds for any t 2 [0; b]:

Proof. Fix 04t4b; n and F 2 EXP such that jjFðtÞjj4M expðwtÞ and
b4an: In order to apply Theorem 4.2 with gðtÞ ¼ expðwtÞ; we note that Cn

preserves the constant and the linear functional, that is

Cnð1Þ ¼ 1; Cnðe1ÞðtÞ ¼ t:

Hence we will estimate gn and SnðgÞðtÞ � gðtÞ of (6).
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An easy computation shows that

g2
nðtÞ ¼ Cnðe2ÞðtÞ � t2 ¼ ant � t2

n
;

Cnðewe1ÞðtÞ ¼
Xn

k¼0

n

k

 !
ewkan=n t

an

� 	k

1 � t

an

� 	n�k

¼ t

an

ewan=n þ 1 � t

an

� �n

¼ exp n ln
t

an

ewan=n � t

an

þ 1

� 	� �
¼ exp

n

an

fn
an

n

� �� �
;

where fnðsÞ :¼ an ln½1 þ t=anðews � 1Þ�: The application of mean value
theorem to fnðsÞ in the interval [0; an=n] yields

Cnðewe1ÞðtÞ ¼ exp wt
ewxn

1 þ tðewxn � 1Þ=an

� �

for some 04xn4an=n; hence

jCnðewe1ÞðtÞ � ewtj ¼ ewt exp wt
ewxn � 1 � tðewxn � 1Þ=an

1 þ tðewxn � 1Þ=an

� �
� 1

� �
4 ewtfexp½wtðewxn � 1Þ� � 1g:

From the last inequality and from

es � 14ses for any s 2 R; ð17Þ

we obtain

jCnðewe1ÞðtÞ � ewtj4an

n
w2t exp½ðan=n þ wtewan=nÞ�;

that allows us to conclude. ]

Example 5.2. Our aim is to modify the operators of the previous
example to approximate functions defined on Rm

þ :¼ ft ¼ ðt1; . . . ; tmÞ 2
Rm j ti50g:
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For every n51; let an be a positive real number. We define

Cn

n ðFÞðtÞ :¼
X

k1¼0...km¼0

F
ank1

n
; . . . ;

ankm

n

� 	

n

k1

 !
t1

an

� 	k1

1 � t1

an

� 	n�k1

. . .
n

km

 !
tm

an

� 	km

1 � tm

an

� 	n�km

for every F 2 CðRm
þ;EÞ and t 2 [0; an]

m
:

Let P be the subspace of CðRm
þ;EÞ of the functions that have a polynomial

growth at infinity, that is

P :¼ fF 2 CðRm
þ;EÞj9M > 0; q > 1 : jjFð�Þjj4Mð1 þ jj � jjq2Þg:

Theorem 5.2. Assume an ! þ1 and an=n ! 0 as n ! 1: For every

F 2 P

Cn

n ðFÞ ! F ;

uniformly on compact subset of Rm
þ: Moreover, if b4an then there exist two

constants M1;M2 > 0 such that

jjCn

n ðFÞ � F jj[0;b]m42o F ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b

an

n
m

r� 	
þ M1

ffiffiffiffiffi
an

n

r
þ M2

an

n
:

Proof. Fix b50; t 2 [0; b]m
and F 2 P and let n; M > 0; q > 1 be such

that jjFðtÞjj4Mð1 þ jjtjjq2Þ and b4an: In order to apply Theorem 4.2, we

consider gðtÞ ¼ 1 þ jjtjjqq; that satisfies conditions ðg0;1Þ and, by equivalence

of the norm on Rm; F 2 CðRm
þ;E; 1 þ jj � jjqqÞ:

Noting that

Cn

n ðprr
j ÞðtÞ ¼ CnðerÞðtjÞ;

we obtain

Cn

n ð1Þ ¼ 1; Cn

n ðprjÞðtÞ ¼ tj; Cn

n ðpr2
j ÞðtÞ ¼ t2j þ

antj � t2j

n
;

Cn

n ðgÞðtÞ � gðtÞ ¼
Xm

j¼1

ðCnðeqÞðtjÞ � t
q
j Þ:



LORENZO D’AMBROSIO36
From Theorem 5.1 we have

jCnðeqÞðtjÞ � t
q
j j4 2o eq;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tj

an � tj

n

r !
þ M

an

n

4 2qbq�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tj

an � tj

n

r
þ M

an

n

for any j ¼ 1 . . .m and tj 2 [0; an]: It follows that for t 2 [0; b]m

jCn

n ðgÞðtÞ � gðtÞj42mqbq�1

ffiffiffiffiffiffiffiffi
b

an

n

r
þ M

an

n
m:

Finally, from

g2
nðtÞ ¼ Cn

n ðjj � �tjj22ÞðtÞ ¼
Xm

j¼1

antj � t2j

n
4mb

an

n
;

we conclude the proof. ]

Example 5.3. For every n51; let an be a positive real number. We
define

VnðFÞðtÞ :¼
X1
k¼0

�n

k

 !
F

ank

n

� 	
� t

an

� 	k

1 þ t

an

� 	�n�k

;

*VV nðFÞðtÞ :¼ 1 þ 1

an

� 	�nX1
k¼0

�n

k

 !
F

ankt

n

� 	
� 1

1 þ an

� 	k

;

#VV nðFÞðtÞ :¼ 2�n
X1
k¼0

�n

k

 !
F

kt

n

� 	
ð�2Þ�k

for every F 2 EXP and t 2 [0;þ1[: Note that for an ¼ 1; Vn are the
Baskakov operators and *VVn are obtained formally from Vn; replacing an

with tan: When an ¼ 1; from *VVn one gets the operators #VV n:
Since now we assume an5a > 0; for some a and an=n ! 0 as n ! 1:
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Theorem 5.3. For every F 2 EXP

VnðFÞðtÞ ! FðtÞ; ð18Þ

*VVnðFÞðtÞ ! FðtÞ; ð19Þ

#VVnFðtÞ ! FðtÞ; ð20Þ

uniformly on compact subset of Rþ: Moreover, for every b > 0; there exists a

constant M > 0 such that

jjVnðFÞðtÞ � FðtÞjj42o F ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t

an þ t

n

r !
þ M

an

n
t; ð21Þ

jj *VVnðFÞðtÞ � FðtÞjj42o F ; t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ an

n

r !
þ M

an

n
t2; ð22Þ

jj #VVnðFÞðtÞ � FðtÞjj42o F ; t

ffiffiffi
2

n

r !
þ M

1

n
t2 ð23Þ

hold for any t 2 [0; b]:

Proof. Fix 04t4b; n and F 2 EXP such that jjFðtÞjj4Mewt: We
proceed as in Theorem 5.1. It is easy to check

Vnð1Þ ¼ 1; Vnðe1ÞðtÞ ¼ t; g2
nðtÞ ¼ Vnðe2ÞðtÞ � t2 ¼ ant þ t2

n
:

Using the mean value theorem, as in Theorem 5.1, we obtain

jVnðewe1ÞðtÞ � ewtj ¼ ewt exp wt
ðewxn � 1Þð1 þ t=anÞ
1 þ tð1� ewxnÞ=an

� �
� 1

����
����

for 04xn4an=n: Using twice (17), one gets

jVnðewe1ÞðtÞ � ewtj4 an

n
w2tewtþwxn

ð1 þ t=anÞ
1 þ tð1 � ewxnÞ=an

exp wt
ðewxn � 1Þð1 þ t=anÞ
1 þ tð1 � ewxnÞ=an

� �
;

which allows us to conclude the proofs of (18) and (21).
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In order to prove the remaining, we note that for t ¼ 0; the relations are
obvious. For t > 0; we replace an with ant in (21), and by means of Remark
4.4, we have (22) and (19). Setting an ¼ 1 in (22), we obtain the remaining
relations (23) and (20). ]

It is possible to extend these operators in the same direction of Example
5.2. We omit this generalization for sake of brevity.

An immediate application of an approximation process for vector-valued
mappings, is the representation of semigroups of operators.

Theorem 5.4. Let Tð�Þ :Rþ ! LðEÞ be a C0 one-parameter semigroup

of bounded linear operators on E: Then the representation formulae

I � t

an

T
an

n

� �
� I

� �� ��n

x ! TðtÞx; ð24Þ

1 þ 1

an

� 	
I � 1

an

T
ant

n

� �� ��n

x ! TðtÞx; ð25Þ

2I � T
t

n

� �h i�n

x ! TðtÞx ð26Þ

hold for every x 2 E and uniformly on compact set of Rþ: Moreover, for every

bounded set J  Rþ; there exists a constant M > 0; such that the estimates

I � t

an

T
an

n

� �
� I

� �� ��n

x � TðtÞx
����

����
����

����42o Tð�Þx;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t

an þ t

n

r !
þ M

an

n
t;

1 þ 1

an

� 	
I � T

ant

n

� �� ��n

x � TðtÞx
����

����
����

����42o Tð�Þx; t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ an

n

r !
þ M

an

n
t2;

2I � T
t

n

� �h i�n

x � TðtÞx
����

����
����

����42o Tð�Þx; t

ffiffiffi
2

n

r !
þ M

t2

n

hold for every t 2 J:

Formulae (24) and (26) appear in [6]. There, Shaw proves (26) pointwise,
and, by Chernoff’s product formula, uniformly on compact sets only for
contractive semigroups. Here, we have also an estimate of the rate of
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convergence. Formula (25) seems to be new as well as the operators *VVn

and #VV n:

Example 5.4. Set G :¼
S

w51 CðRm;E; expðwe2ÞÞ: We define

WnðFÞðtÞ :¼ n

2p

� �m=2
Z
Rm

e�
n
2
jju�tjj2FðuÞ du

for any F 2 G ant t 2 Rm:

Theorem 5.5. For every F 2 G

WnðFÞ ! F ;

uniformly on compact subset of Rm: If jjFð�Þjj4M expðwe2Þ and if K  Rm is

compact there exists a constant M > 0 such that

jjWnðFÞ � F jjK42o F ;

ffiffiffiffi
m

n

r� 	
þ M

n

for n54w:

Proof. Fix K  Rm compact, t 2 K ; F 2 G and let n; w be such that
jjF jj4M expðwe2Þ; n54w and set g ¼ expðwe2Þ: In order to apply Theorem
4.2 it is sufficient to evaluate only gn and WnðgÞðtÞ � gðtÞ; because the
relations

Wnð1Þ ¼ 1; WnðprjÞðtÞ ¼ tj

allow us to use inequality (6).
From Wnðpr2

j ÞðtÞ ¼ t2j þ 1=n we obtain

g2
nðtÞ ¼

m

n
:

Setting xn :¼ 1 � 2w
n
; we can rewrite WnðgÞ as

WnðgÞðtÞ ¼
Ym
j¼1

n

2p

� �1=2
Z
R

e�
n
2
ðuj�tjÞ2ewu2

j duj

¼
Ym
j¼1

n

2p

� �1=2
Z
R

exp �n

2
xnðuj � tj=xnÞ2

� �
expðwt2j =xnÞ duj

¼
Ym
j¼1

x�1=2
n expðwt2j =xnÞ ¼ x�m=2

n expðwjjtjj2=xnÞ:
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Then using (17) and the inequality

ð1 þ sÞa41 þ as for 05a51; �15s

with a ¼ 1
2

and 1 þ s ¼ 1=xm
n ; we obtain

jWnðgÞðtÞ � gðtÞj ¼ ewjjtjj2 x�m=2
n exp wjjtjj2 1

xn

� 1

� 	� 	
� 1

� �
þ x�m=2

n � 1

� �

4 ewjjtjj2 x�m=2
n wjjtjj2 1 � xn

xn

exp wjjtjj2 1 � xn

xn

� 	
þ 1 � xm

n

2xm
n

� �
:

For n54w; there holds
1�xm

n

xm
n
4m2mð1 � xnÞ: Hence, we have

jWnðgÞðtÞ � gðtÞj4ewjjtjj2 wjjtjj2x�ðm
2
þ1Þ

n
w

n
exp

w2jjtjj2

nxn

 !
þ 2m�1m

w

n

( )
;

which concludes the proof. ]
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