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Let U,, Uz, . . be a sequence of independent, uniform (0, 1) r.v.‘s and let RI, Rz, be the 

lengths of increasing runs of {Vi}, i.e., Xt = RI = inf{i: U;+t < U,), , X, = RI + Rz f. . +R, = 
inf{i: i >X,_,, Vi+, < CJi}. The first theorem states that the sequence (:n)“*(X, -2n) can be 

approximated by a Wiener process in strong sense. 

Let 7(n) be the largest integer for which Rl+Rz+. .+R,,,,s~, R: = 
n-(R1+R2+...+R,,,, ) and M,, = max{Rr, R2, , R,,,,, R,*}. Here M, is the length of the 

longest increasing block. A strong theorem is given to characterize the limit behaviour of M,. 

The limit distribution of the lengths of increasing runs is our third problem. 

AMS (1970) Subj. Class: Primary 60F17, Secondary 60F15,6OCO5 

Uniform distribution increasing runs 

Wiener process strong invariance principle 

law of iterated logarithm limit theorems 

1. Introduction 

Let U1, U2,. . . be a sequence of independent uniform (0,l) r.v.‘s, i.e., 

P(Ui<X)=X (O~XXl,i=1,2,..*) 

and let RI, RZ, . . . be the lengths of the increasing runs of {Ui}, i.e., 

X1 = RI = inf{i: Ui+l< Ui}, 

Xz=R1+R2=inf{i:i>R1, Ui+,<LJi}, 

X,, =R,+R,+- * * +R, = inf{i: i >X,-1, Ui+l< Ui}, 

Pittel (1980) proved that the finite-dimensional distributions of the sequence 

x; = (&$“2(X” - 2n) 
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to the corresponding finite-dimensional distributions of the Wiener pro- 

cess. One of the aims of the present paper is to prove an analogous strong version 

of this theorem. 

In fact we prove the following strong invariance principle. 

Theorem l.A. One can construct 
(i) a probability space (l2, d, P}, 

(ii) a sequence U1, U2,. . . of independent, uniform (0, 1) r.v.‘s and a Wiener 
process {W(t); t 2 0) (both defined on 0) such that 

n -“*+“1($“‘(X, -2n)- W(n)\+0 a.s. (n +00) (1.1) 

for suitable e > 0. 

Remark 1. It is not hard to get a better rate in (1.1) but here we do not intend to 

find the best possible rate. 

Eq. (1.1) implies that the limit properties of the process n “*Xz are the same 

as those of W(n). For example we have the following. 

Consequence 1.A.l 

lim sup 
45(X, - 2n) 

n+m 2(n log log n)1’2 = ” 

l im  inf 12 log log n ( “’ 
2 SUP IXj_2il= 1, 

n+m r n ) lsjrn 

P ($,“’ 
i 

SUP (Xj - 2j) > n 1’2u +$(1-@(u)) as n +oO 
IsjGn I 

where 

The above definition of the lengths of increasing runs is taken from Pittel(1980); 

however, it does not seem to be a very natural one. In order to present a more 

natural definition introduce the following notations. 

Let T,, = 7(n) be the largest integer for which 
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further let 

R; =n -(R1+R2+. . *+R,,,,), 

S,=R,-1, Y, =Sr+&+* . .+S, =X,-n, 

I 

Rc--1 ifRz>O, 
s:= o 

ifR*=O ” , 

pl~p(l)=min{i:Si>O}, 

171 

(1.2) 

Pn+r =p(n + 1) =min{i: i >pm Si >O}, 

Tn = Sp(n), Z,,=TI+T2+...+T,. 

The r.v. 2,/n seems to be closer to the natural concept of the average of the 

lengths of the increasing runs than the r.v. X,/n. Let us give a concrete example. 

Suppose 

u,<u,<u,, u3>u4>u5, US < u6, u6 > u7, 

~7<~8<~9<~10, u~o>u~l>u*2>u~3>u14,.*. . 

In this case 

X1=3, X2=4, X,=6, x4=10, x5=11, x6=12, x7=13 ,..., 

R1=3, R1=1, R3=2, R4=4, R5=l, R6=l ,..., 

T1=2, Tz=l, T,=3 ,... . 

That is to say, in the above sequence the blocks 

(U1, u21, (U5), (U7, us, Us) 

are considered as increasing runs and the blocks 

(U3, U4L (u6), (UlO, Ull, u12, Ul3) 

are the decreasing runs. 

Investigating the sequence (2,) instead of {X,} the following analogue result will 

be proved. 

Theorem l.B. One can construct 

(i) a probability space {n, .&, P}, 

(ii) a sequence U1, U2, . . . of independent, uniform (0, 1) r.v.‘s and a Wiener 
process {W(t); t 2 0) (both defined on a) such that 

n -1’2+Ej2(&)1’2(2n -$n) - W(n)1 + 0 a.s. (n + 00) (1.3) 

for a suitable E > 0. 

As an analogue of Consequence 1.A.l we have the following. 
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Consequence 1.B.l 

lim sup 
1o”*(z, -In) 

n+m (lln log log n)l’* = 1, 

lim inf 4 10 log log n I’* 
(2,~$)=l, 

n-D2 n ( lln > 

P 2(:$‘* 
i 

SUP (Zj-:i)>n”*U +2(1-@(U)). 
l=isn I 

Our second problem is to investigate the length of the longest increasing block 

in the sequence Ui, U2, . . . , U,. In order to formulate our result introduce the 

following notation, 

M, = max{Ri, R2,. . . , I?,(,,, Ri}. 

Clearly M, is the length of the longest increasing block. 

Then we have the following. 

Theorem 2.A. For any E > 0 we have 

(1.4) 

with probability 1 if n is big enough where 

U”(E) = 1 [f(n)1+2 

[f(n)]+3 

if a(n)ae, 

if a(n)>&, 

if a(n)Cl-e, 

if a(n)>l-e, 

f(n)=(logn)/b,-$3 a(n) =fb)-[f(n)1 

and 6, is the solution of the equation 

6, ebn = e-l log n. (1.3 

More formally speaking: For any E > 0 and for almost all w E 0 there exists a random 

integer no = nO(e, w) such that (1.4) holds if n 2 no. 

Remark 2. From definition (1.5) it is easy to see that 

b, =loglogn -1ogloglogn -1+0(l). 

Remark 3. Since the difference of the upper and lower estimators of (1.4) is 

4 s U, - 1, s 5 and M, is integer-valued, the r.v. M,, has three or four possible values 

only with probability 1 if n is big enough. 
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Remark 4. Theorem 2.A clearly implies 

*imloglognM ~1 as 
n+oo logn VI .. 

This result was proved recently by Pittel (198 1). 

Our following result shows that (1.4) nearly gives the best possible estimators. 

Theorem 2.B. For any e > 0 there exist sequences rzl = nl(o, e) < n2 = n&, F) <. . * 

andmI=m~(w,e)<m~=m~(w,e)<**~suchthat 

M,,, 2 V(ni) and M,,,, sJ(mi) 

where 

1 
[f (n )I if a(n)S&, 

V(n)= [f(n)]+1 if a(n)>&, 

[f(n)]-1 if a(n)Gl-e, 

J(n)=([f(n)] if cu(n)>l-s, 

with f(n) and a(n) as defined in Theorem 2.A. 

In order to formulate our third result introduce the following notations, 

1 ifj=k, 

‘(” k, = 10 otherwise, 

p,, = W(n) is the largest integer for which p(P(n)) CT,, 

~~~IiS(Ti, k)=h(k,n). 
L 

Then we have the following. 

Theorem 3 

lim sup A(k, n)- 
/ 

k2+3k+l 

(k + 3)! I 
= 0 a.s. 

n+m k 

The proof of this theorem does not require any new idea and it will be omitted. 

2. Proofs of Theorems l.A and 1.B 

Let 

QI(x,y)= 
1 

1 if x -=Cy, 

0 if xzy. 
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Then we clearly have the following. 

Lemma 1 

St+&+* ..+STm=R1+R2+. ..+R,n-~n-rn=n-R~-~,, 

n-1 
izI (Y(Uiy Ui+I)=SI+SZ+’ “+STn+SE, 

I(&+&+* * .+sr,+s~-~n)-(~n-T,)l~l, 

Ecx(U~, U~+I)=ECX*(UI, Ui+l)=k, 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

E(yg: (a(ui, Ui+1)-$)*=hCn +l) (2.6) 

and 

n-l 
E 

( 
izI (a(Ui, 0;+l)-$)4=O(n2)* (2.7) 

Especially the last formula follows from the fact that 

E(a(Ui, Ui+r)-$)(a(Uj, uj+r)-f)(a(Uk, U~+I)-$)(Q(~I, ul+r)-t)=o 

if i<jcksl andmax(j-i,I-k)s2. 

Eqs. (2.2), (2.3), (2.7), the Markov inequality and the Borel-Cantelli lemma 

imply the following lemma. 

Lemma 2. For any E > 0 we have 

n -3’4-E(~, -$n)+O a.s. (n +co). (2.8) 

Our next lemma is a trivial consequence of Theorem 4 of Kuelbs and Philipp [2]. 

Lemma 3. One can construct 
(i) a probability space {a, &, P}, 

(ii) a sequence U1, U2, . . . of independent, uniform (0, 1) r.v.‘s and a Wiener 
process {W(t); t 3 0) (both defined on 0) such that 

n-1 

n ~1’2+F(121’2 2 (Cr(Ui, Ui+r)-$)- W(n))+0 a.s. (n +a) 
i=l 

(2.9) 

for a suitable E > 0. 

Eqs. (2.2), (2.3) and (2.9) imply the following lemma. 
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Lemma 4. We have 

n -1’2+F(121’2(~n -7(n))- W(n))+0 as. (n +oO). (2.10) 

Let u(n) be the smallest integer for which T(v(~)) = n. Then (2.8) implies the 

following lemma. 

Lemma 5 

n p3’4--F(v(n)-2n)+0 a.s. (n+CO). (2.11) 

Since (2.11) and the continuity properties of the Wiener process imply 

lim n P3’8-F( W(v(n)) - W(2n)) = 0 a.s., 
“-CC 

replacing n by v(n) in (2.10) we get the following lemma. 

Lemma 6 

v(n) -1’2+E(121’2($~(n)-n)- W(v(n))+O a.s. (n +a), 

n -1’2+‘(31’2(v(n)-2n)- W(2n))+O a.s. (n +m) 

and 

n -1’2+“(($)“2(v(n) - 2n) - W,(n))+ 0 a.s. (n + a) 

where the Wiener process WI(n) is defined by 2l’* Wl(n )= W(2n 1. 

(2.12) 

(2.13) 

(2.14) 

By (1.2) we have 

R,+R,+. **+RTn-rn=n--r,-R~ 

and replacing n by v(n) we get 

R1+R2+a . *+R, -n = v(n)-n. 

Having (2.14) we get (1.1). 

In order to prove (1.3) we introduce some further notations, 

B(n,YA={ 1 if ye-=Cmin{x, z}, 

0 otherwise, 

Yi =a(Ui, Ui+l)-%P(ui, UiSl, ui+2). 

Then we clearly have the following lemma. 

Lemma 7 

n-1 

2,” =s1+s*+* ’ ‘+S*n = C cU(Uiy Ui+l)-Sz, 
i=l 

(2.15) 
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CL” = 

n-2 

,F; Pt”i9 &+l, ui+Z) ifs: = 0, 

n-2 
(2.16) 

ig, @(vi, ui+l, Ui+Z)+ l if sZ >OY I 
EB(Ui, ui+l, UL+2) = E p2(Ut, Ui+i+l, ui+2) = iv 

I 

0 ifj=i+l, 

E @(Vi, ui+l, Ui+2)P(Ui, cI;.+l, Uj+2)= & ifj=i+2, 

8 if j>i+2, 

I 

0 if i = j, 
1 
J if i=j+l, 

E a(Ui, Ui+l)P(uj, uj+tl, Ui+2)= 1 
8 if i=j+2, 
r 
24 if i=j-1, 
1 
6 otherwise, 

E yi = 0, 

[i ifj=i, 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

otherwise, 

E(Y~+Y~+* * *+y”)2=&+g, 

n -3’4-EI&-$zI+0 as. (E >O). 

Lemma 8. For a suitable E > 0 we have 

n-2 

n -1’2+E 12(g)“2 iz, yi - W(n)1 + 0 a.s. 

and 

n m1’2+f /2(+y2(2,,,, -s+(n)) - W(n)1 + 0 a.s. 

in the same sense as it was stated in Lemma 3. 

(2.22) 

(2.23) 

Proof. Since {n} is an m-dependent sequence (with m = 3), our statement is a 

simple consequence of Theorem 4 of Kuelbs and Philipp [2] which states the validity 

of the strong invariance principle in case of mixing random variables. 

Now, (1.3) can be obtained in the same way as we got (1.1). 

3. Proofs of Theorems 2.A and 2.B 

Proof of Theorem 2.A. Set 

Aik={~: U,+1<U~+2<.~.<LJl+k}* 
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Then clearly we have 

Further 

P(M,<k)=P(&k+Alk+*. .+A”-/+) 
- - 

= P(&kAlk * . . ~"-k,k) 

-- 

~P(&kAkk ‘. ’ Ajk,k) = (p(&,))j+’ = 

jtl 

where j is the largest integer for which (j + 1)k d n. 

Let k = I,, + 1 and observe that 

1 +&EL-~ 
” 

bn 
2-c, 

and (by definition of 6,) 

logr- “. loga l=b 

n 

Then 

1 i+lJi+l)k_/-k 

k! k *k! 
- _+&k)-1’2(;)k 

k k! 

n -k 

=7Ek 

-3/2 
exp{-k (log k - 1)) 

n-k _-3/2 

=7zk 
exp{-(L + fhJ 

n-k -3/2 

“7zk 

exp 

z= O((log ny2). 

Hence 

P, = P(A4, < 1, + 1) S exp{-O((log nY2)I. 
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Since for any 19 > 1 

z PWl<~, 
PI=1 

by the Borel-Cantelli lemma we get 

McOnl > ILVI a.s. 

(except finitely many n). Let [e”] GN < [19”~‘]. Since MN ~M[vI and 

IN(&)< I[e”+‘](E)d[e”](~F) 

we have the lower estimation in (1.4). 

In order to get the upper estimator of (1.4) observe that 

P{M,~~}=P(A,,+AI,+. . .+A+,& 

s (n -k)P(Aok) 

n ne 0 
k <-<-_ - 

k! dkk 
= s exp{-k(log(k - 1)) 

and 

log n 1 
U” ’ 

=-b,+F+E* 

Hence we have 

pIM,su..]snQ&exp/ -fy+t+.s) log%] 

s O((log nyF’*). 

Choosing II = [o”] we get the proof in the same way as above. 

Proof of Theorem 2.B. At first we give two lemmas. 

Lemma 9. We have 

Proof. The proof is trivial. 

Lemma 10 

P~M,~k)~l(l_k2tl)r”‘i2k-1” 
(k+l)! ’ 
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Proof. The proof follows quite elementary by Lemma 9. It is essentially the same 

as the proof of Theorem 5 of Erdos-Rev&z [l]. The details will be omitted 

Proof of Theorem 2.B (continued). The proof of Theorem 2.B can be easily 

obtained by applying Lemma 10 and the Borel-Cantelli lemma. It is again essentially 

the same as the proof of Lemma 4 of Erdbs-Rev&z [l] and the details will be 

omitted. 
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