

Journal of Algebra 254 (2002) 362-374

Algebra

JOURNAL OF

www.academicpress.com

Structure of some noetherian SI rings

Dinh Van Huynh

Department of Mathematics, Ohio University, Athens, OH 45701, USA Received 19 November 2001 Communicated by Kent R. Fuller

Abstract

We describe the structure of rings over which every cyclic (or finitely generated) right module is a direct sum of a projective module and an injective module. © 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

A ring R is called a right (left) SI ring if every singular right (left) R-module is injective. SI rings were initially introduced and investigated by Goodearl [9], and the structure of these rings was described as follows (cf. [9, Theorem 3.11]):

A ring R is right SI if and only if R is right nonsingular, and $R = K \oplus R_1 \oplus \cdots \oplus R_m$ (a ring-direct sum) where $K/\operatorname{Soc}(K)$ is semisimple and each R_i is Morita equivalent to a simple right noetherian domain D_i such that for every nonzero right ideal $C_i \subseteq D_i$, D_i/C_i is semisimple.

Concerning SI rings, Smith [19] introduced right (left) CDPI rings, i.e., rings each of whose cyclic right (left) modules is a direct sum of a projective module and an injective module. The question, if every right CDPI ring is right SI, remained open for several years (1979–1991). Finally in [17], as an application of their major theorem on finiteness of uniform dimension of certain cyclic extending

E-mail address: huynh@math.ohiou.edu.

modules, Osofsky and Smith have shown that a right CDPI ring is indeed right noetherian and right SI (cf. [17, Proposition 2]). On the other hand, Smith [19, Example 4.12] has proved that a right artinian right SI ring need not be right CDPI.

From these results it is natural to ask the question: When is a right SI ring right CDPI? In this note we will provide an answer to this question (Theorem 6).

Rings over which every finitely generated right module is a direct sum of a projective module and an injective module were initially investigated also by Smith in [18]. He called these rings right FGPI rings. In [12, Theorem 6] it was shown that if $Soc(R_R) = 0$, then *R* is right FGPI iff *R* is left FGPI iff *R* is right and left SI. In this note we will describe the structure of all right FGPI rings (Theorem 8).

Following Faith [7], a ring R is called a right PCI ring if every cyclic right R-module is either isomorphic to R_R or injective. A right PCI ring is either semisimple artinian or a simple right noetherian right hereditary domain such that every singular right module is semisimple and injective (see Faith [7] and Damiano [4]). Hence every right PCI domain is right SI. On the other hand, by a result of Osofsky–Smith [17], for a ring R, if all cyclic singular right modules are injective, then all singular right modules are injective. This implies that a right SI domain is right PCI. Thus for domains, the two concepts of SI and PCI are equivalent. A right PCI domain (= right SI domain), which is not a division ring, was constructed by Cozzens in [3].

2. The results

Throughout this note we consider associative rings with identity and unitary modules. For a ring R and an R-module M we write M_R to indicate that M is a right R-module. The socle and the Jacobson radical of M are denoted respectively by Soc(M) and J(M). The injective hull and the uniform dimension of M are denoted by E(M) and u-dim(M), respectively.

A submodule *C* of a module *M* is called a closed submodule of *M* if *C* is itself a maximal essential extension of *C* in *M*. The module *M* is called an extending module (or a CS module) if every closed submodule of *M* is a direct summand. A ring *R* is called a right extending ring if R_R is an extending module. Clearly, every (quasi-) injective module is extending. For basic properties of injective and extending modules we refer to [1,6,8,15].

If a module *M* has finite composition length, we will denote its length by l(M).

We first consider the artinian case. Namely, let *A* be a right artinian right CDPI ring. We write *A* in the form

 $A_A = A_1 \oplus \cdots \oplus A_n,$

where each A_i is an indecomposable right ideal of A. In particular each A_i is a local right A-module. We define the following direct summands of A_A as follows:

- $B = B_1 \oplus \cdots \oplus B_m$ such that $B_i \in \{A_1, \ldots, A_n\}$ and the following properties hold:
 - (B1) Each B_i is uniform with $l(B_i) \leq 2$.
 - (B2) If $l(E(B_i)) \leq 2$, then $E(B_i)$ is projective.
 - (B3) If $3 \leq l(E(B_i)) < \infty$ and $l(B_i) = 2$, then
 - (b₃) there is no $B_{i'} \in \{A_1, \ldots, A_n\}$ $(i' \neq i)$ with $l(B_{i'}) = 2$ and $Soc(B_{i'}) \cong Soc(B_i)$, and
 - (b'_3) a simple $A_h \in \{A_1, \dots, A_n\}$ with $3 \leq l(E(A_h)) < \infty$ belongs to $\{B_1, \dots, B_m\}$ iff A_h is isomorphic to the socle of such a B_i .
- $C = C_1 \oplus \cdots \oplus C_k$ such that $C_j \in \{A_1, \ldots, A_n\}$ and the following properties hold:
 - (C1) Each C_j is uniform with $l(C_j) \leq 2$.
 - (C2) For each C_j , $3 \leq l(E(C_j)) < \infty$.
 - (C3) If for a C_j , $l(C_j) = 2$, then
 - (c₃) there exists $C_{j'}$, $j' \neq j$, such that $l(C_{j'}) = 2$ and $Soc(C_j) \cong Soc(C_{j'})$, and
 - (c'_3) a uniform $A_h \in \{A_1, \dots, A_n\}$ belongs to $\{C_1, \dots, C_k\}$ iff Soc (A_h) is isomorphic to the socle of such a C_j .
- $D = D_1 \oplus \cdots \oplus D_t$ such that $D_l \in \{A_1, \ldots, A_n\}$ and the following properties hold:
 - (D1) Each D_l is either simple or u-dim $(D_l) \ge 2$.
 - (D2) If D_l is simple, then $l(E(D_l)) < \infty$ and D_l is not embedded in either *B* or *C*.

Note that, by the definition of B, $\{B_1, \ldots, B_m\}$ also contains all uniform A_k from $\{A_1, \ldots, A_n\}$ with $l(E(A_k)) = \infty$. For the existence of such A_k 's see Example 3.6 in the next section.

We conclude that $A_A = B \oplus C \oplus D$. By [17, Proposition 2], *A* is right SI. Hence *A* is right hereditary (cf. [9, Proposition 3.3]). In particular, *A* is right nonsingular. From this and the properties of *B*, *C*, *D*, there is no nonzero *A*-homomorphism between them. Hence BC = CB = CD = DC = DB =BD = 0, i.e., the following lemma holds.

Lemma 1. $A = B \oplus C \oplus D$ is a ring-direct sum.

Lemma 2. B is a right extending ring.

Proof. We can write $B = Q_1 \oplus Q_2 \oplus Q_3$ where Q_1 is the direct sum of all B_i that satisfy $l(E(B_i)) \leq 2$; Q_2 is the direct sum of all B_j with $l(E(B_j)) = \infty$, and

 Q_3 is the direct sum of the remainder B_t , i.e., $3 \le l(E(B_t)) < \infty$. As *B* is right nonsingular, it is easy to check that Q_i , i = 1, 2, 3, are ideals of *B*. Each Q_i is a right CDPI ring. By [6, Lemma 8.14], Q_1 is a right extending ring.

For Q_2 , let U be a closed right ideal of Q_2 . Then Q_2/U is a cyclic nonsingular module. Hence every minimal submodule S of Q_2/U embeds in Q_2 . Whence $l(E(S)) = \infty$. Since E(S)/S is semisimple, it follows that E(S) can not be cyclic. Therefore, Q_2/U does not contain nonzero injective submodules. Thus Q_2/U must be projective. Whence U splits in Q_2 , proving that Q_2 is right extending.

For Q_3 , consider a $B_t \subseteq Q_3$, and let $[B_t]$ denote the direct sum of all B_k such that $E(B_k) \cong E(B_t)$. Clearly $[B_t]$ is a ring-direct summand of Q_3 . $[B_t]$ is not a semisimple ring, because otherwise, as a semisimple ring-direct summand of B, $[B_t]$ is injective, a contradiction to the definition of Q_3 . Hence there is a $B_k \subseteq [B_t]$ with $l(B_k) = 2$. By (B3), $[B_t] = B_k \oplus T$ where $T_{[B_t]}$ is a semisimple module. Now let V be a closed right ideal of $[B_t]$. If $B_k \cap V \neq 0$, then $B_k \subseteq V$. By modularity, and since $T_{[B_t]}$ is semisimple, we conclude that V is a direct summand of $[B_t]$. If $B_k \cap V = 0$, then by the same way we obtain that $B_k \oplus V$ is a direct summand of $[B_t]$ is a right extending ring. Since Q_3 is obviously a ring-direct sum of finitely many rings which are constructed in a similar way as $[B_t]$, it follows that Q_3 is a right extending ring. Thus B is right extending, as desired. \Box

Lemma 3. For each simple submodule $S \subseteq C$, l(E(S)) = 3.

Proof. We denote by $[C_1]$ the direct sum of all such C_i with $E(C_i) \cong E(C_1)$. Then $[C_1]$ is a ring-direct summand of C. $[C_1]$ is not a semisimple ring, because otherwise, every minimal right ideal of $[C_1]$ would be injective, a contradiction to the definition of C. Hence there is a uniform direct summand of $[C_1]$ that has length 2 (cf. (C1)). We may assume, without loss of generality, that $l(C_1) = 2$. By (C3) there exists a $C_{i_1} \in \{C_1, \ldots, C_k\}$ with $l(C_{i_1}) = 2$, and $Soc(C_{i_1}) \cong Soc(C_1)$, $i_1 \neq 1$. We write $[C_1] = C_1 \oplus C_{i_1} \oplus \cdots \oplus C_{i_p} \oplus V$ where V is semisimple, and $l(C_1) = l(C_{i_1}) = \cdots = l(C_{i_p}) = 2$, and all minimal submodules of $[C_1]$ are isomorphic to each other.

Suppose that for each t $(1 \le t \le p)$, $C_1 \oplus C_{i_t}$ does not have closed minimal submodules. Let S be an arbitrary minimal submodule of $C_1 \oplus C_{i_t}$. Then the closure S' of S in $C_1 \oplus C_{i_t}$ has length at least 2. Therefore, either $C_1 \oplus C_{i_t} = S' \oplus C_{i_t}$ or $C_1 \oplus C_{i_t} = C_1 \oplus S'$, and so $C_1 \oplus C_{i_t}$ is an extending module. Then by [6, Lemma 7.3(ii)] C_1 is C_{i_t} -injective for each $1 \le t \le p$. By [1, Proposition 16.13(2)], and since each minimal submodule of V is isomorphic to $\operatorname{Soc}(C_{i_t})$, C_1 is $(C_{i_1} \oplus \cdots \oplus C_{i_p} \oplus V)$ -injective. Now, let f be an isomorphism $\operatorname{Soc}(C_1) \to \operatorname{Soc}(C_{i_t})$. Then $T = \{x + f(x) \mid x \in \operatorname{Soc}(C_1)\}$ is a minimal submodule of $C_1 \oplus C_{i_t}$. By assumption, the closure T' of T in $C_1 \oplus C_{i_t}$ has length at least 2. Because $T' \cap C_1 = T' \cap C_{i_t} = 0$, we have $C_1 \oplus C_{i_t} =$ $T' \oplus C_1 = T' \oplus C_{i_t}$. This implies that $C_1 \cong C_{i_t}$. Thus C_1 is C_1 -injective. This together with $(C_{i_1} \oplus \cdots \oplus C_{i_p} \oplus V)$ -injectivity of C_1 implies that C_1 is injective, a contradiction to (C2).

Therefore, there is $t \in (1, ..., p]$, say t = 1, such that $C_1 \oplus C_{i_1}$ contains a closed minimal submodule U. Notice that $C_1 \oplus C_{i_1}$ is cyclic. Hence the module $(C_1 \oplus C_{i_1})/U$ is cyclic, nonsingular, uniform (cf. for example, [6, 5.10(1)]), and of length 3. Moreover, by the Krull–Schmidt theorem (cf. [1, 12.9]), U can not be a direct summand of $C_1 \oplus C_{i_1}$. Whence $(C_1 \oplus C_{i_1})/U$ must be injective. As $C_1 \cap U = 0$, this implies that $E(C_1) \cong (C_1 \oplus C_{i_1})/U$, and so $l(E(C_1)) = 3$.

We can renumber the direct summands C_i so that $\{C_1, C_2, \ldots, C_q\}$ is a maximal set of $\{C_1, \ldots, C_k\}$ with $l(C_i) = 2$, $\operatorname{Soc}(C_i) \ncong \operatorname{Soc}(C_j)$ for $i \neq j$. Then $C = [C_1] \oplus [C_2] \oplus \cdots \oplus [C_q] \oplus G$ (a ring-direct sum), where each $[C_i]$ is constructed in a similar way as $[C_1]$, and *G* is semisimple. If $G \neq 0$, then each minimal submodule of *G* is injective, a contradiction to the definition of *C*. Hence G = 0, and so $C = [C_1] \oplus [C_2] \oplus \cdots \oplus [C_q]$. This shows that $l(E(C_j)) = 3$ for all $j = 1, \ldots, k$, proving Lemma 3. \Box

Lemma 4. For each D_l , $l(D_l) = 1$ or 3. If $S \subseteq D_D$ is a minimal submodule, then l(E(S)) = 2, and E(S) is not projective.

Proof. All D_j are local modules. Assume that $l(D_j) \neq 1$, i.e., D_j is not simple. By (D1), $l(D_j) \geq 3$. From the structure theorem of (artinian) right SI rings (cf. [9, Theorem 3.11]), and the fact that D_j is local, it follows that $D_j/Soc(D_j)$ is simple. Hence $l(D_j) = l(Soc(D_j)) + 1$. It is enough to show that $l(Soc(D_j)) = 2$. Now let *S* be a minimal submodule of $Soc(D_j)$. Then D_j/S is a cyclic local right *D*-module which can not be projective. Since *D* is right CDPI, D_j/S must be injective. As D_j/S is indecomposable, $Soc(D_j/S)$ is simple. This proves that $l(Soc(D_j)) = 2$, and so $l(D_j) = 3$.

Next, let $\text{Soc}(D_j) = S \oplus T$, where *S*, *T* are minimal submodules of D_j . As D_j is local, D_j/T must be injective and not projective. Whence $E(S) \cong D_j/T$, and $l(E(S)) = l(D_j/T) = 2$. We rewrite *D* in the form

 $D = S_1 \oplus \cdots \oplus S_k \oplus V_1 \oplus \cdots \oplus V_h,$

where $l(S_1) = \cdots = l(S_k) = 1$, $l(V_1) = \cdots = l(V_h) = 3$, and S_i , $V_j \in \{D_1, \dots, D_l\}$. Set $Soc(V_i) = W_1 \oplus W_2$ with simple W_1 and W_2 . As observed before, V_i/W_1 and V_i/W_2 are injective. It follows that the injective hull of each V_i $(i = 1, \dots, h)$ is a direct sum of two indecomposable submodules $V_{i_1}^*$ and $V_{i_2}^*$ with $l(V_{i_1}^*) = l(V_{i_2}^*) = 2$. Now we consider S_i . If S_i is not embedable in $V_1 \oplus \cdots \oplus V_h$, then $(V_1 \oplus \cdots \oplus V_h) S_i = 0$. We may assume that S_1, \dots, S_t are not embedable in $V_1 \oplus \cdots \oplus V_h$, but S_{t+1}, \dots, S_k are. Then $(S_{t+1} \oplus \cdots \oplus S_k \oplus V_1 \oplus \cdots \oplus V_h)(S_1 \oplus \cdots \oplus S_t) = 0$. From this it follows that $S_1 \oplus \cdots \oplus S_t$ is an ideal of D. Since D is right nonsingular, we can similarly show that $(S_1 \oplus \cdots \oplus S_t)(S_{t+1} \oplus \cdots \oplus S_k \oplus V_1 \oplus \cdots \oplus V_k$ is also an ideal, and hence a ring-direct summand of D. This shows that S_1, \dots, S_t are injective

right *D*-modules, which is a contradiction to the definition of *D*. Hence each S_i is embedable in some V_j , so the injective hull of each S_i has composition length 2, and is not projective. This completes the proof of Lemma 4. \Box

Lemma 5. Let T be a right artinian right SI ring with $T_T = T_1 \oplus \cdots \oplus T_m \oplus T'$ $(m \ge 2)$ where each T_i is uniform, $l(T_i) = 2$, and T'_T is semisimple. Assume further that for each minimal right ideal $S \subseteq T$, $l(E(S_T)) = 3$. If $V_1 \oplus \cdots \oplus V_q$ $(q \ge 2)$ is a direct summand of T_T such that each V_i is uniform of length 2, then for any closed minimal submodule U of $V_1 \oplus \cdots \oplus V_q$, the factor module $(V_1 \oplus \cdots \oplus V_q)/U$ contains a nonzero injective submodule.

Proof. We prove this statement by induction on q. For q = 2, $(V_1 \oplus V_2)/U$ is nonsingular uniform (see, for example, [6, 5.10(1)]) and of length 3. It follows that the minimal submodule of $(V_1 \oplus V_2)/U$ embeds in T_T . Hence $(V_1 \oplus V_2)/U$ is injective. From here we can follow the second step of the induction proof of [11, Claim 1, p. 146]. \Box

Now we can state the main theorem of this paper.

Theorem 6. For a ring R the following conditions are equivalent:

- (a) Every cyclic right *R*-module is a direct sum of a projective module and an injective module, i.e., *R* is a right CDPI ring.
- (b) R has a ring-direct decomposition

 $R=R_1\oplus R_2\oplus R_3\oplus R_4\oplus R_5,$

where each R_i is a right SI ring. Furthermore:

- (i) R_1 is right extending and right artinian.
- (ii) R_2 is right artinian with the following properties:
 - (ii) For each primitive idempotent $e \in R_2$, $l(eR_2) \leq 2$.
 - (ii2) For any minimal right ideal S of R_2 , l(E(S)) = 3.
 - (ii3) If $e \in R_2$ is a primitive idempotent with $l(eR_2) = 2$, then there exists at least one other primitive idempotent $f \in R_2$ such that $l(fR_2) = 2$, ef = fe = 0, and $Soc(eR_2) \cong Soc(fR_2)$.
- (iii) *R*₃ is right artinian with the following properties:
 - (iii₁) For each primitive idempotent $e \in R_3$, $l(eR_3) = 1$ or $l(eR_3) = 3$.
 - (iii₂) For any minimal right ideal S of R_3 , l(E(S)) = 2 and E(S) is not projective.
- (iv) R_4 is a ring-direct sum of finitely many simple right and left SI rings with zero right socle and each with right uniform dimension ≥ 2 .
- (v) R₅ is a ring-direct sum of finitely many right SI domains which are not division rings.

Proof. (a) \Rightarrow (b). By [17, Proposition 2], *R* is right noetherian right SI. Hence by [9, Theorem 3.11] (see the Goodearl's theorem mentioned in the introduction), *R* has the ring-direct decomposition

$$R = A \oplus T$$
,

where A is a right artinian right CDPI ring and T is a right CDPI ring with Soc(T) = 0. By Lemma 1, $A = B \oplus C \oplus D$ (a ring-direct sum), where B, C, and D are defined as before Lemma 1. Set $R_1 = B$, $R_2 = C$, and $R_3 = D$. By Lemmas 2–4 we have $R_1 \in (i)$, $R_2 \in (ii)$, $R_3 \in (iii)$ of Theorem 6.

We have $R = R_1 \oplus R_2 \oplus R_3 \oplus T$. Again by [9, Theorem 3.11], $T = T_1 \oplus \cdots \oplus T_k$ where each T_i is a simple right noetherian right SI ring which is Morita equivalent to a right SI domain (and for each T_i , Soc $(T_i) = 0$). Let U be a closed right ideal of T_i . Then T_i/U is a nonsingular right T_i -module. If T_i/U contains a nonzero injective submodule, then it is cyclic and isomorphic to the injective hull of some right ideal of T_i . As T_i is simple and right noetherian, we conclude that the injective hull of T_{iT_i} is finitely generated which implies that T_i is semisimple artinian (cf. [2, Corollary 1.29]), a contradiction. Hence T_i/U does not contain nonzero injective submodules. By (a) T_i/U is projective, so $T_i = U \oplus L$ for some right ideal $L \subseteq T_i$. This shows that each T_i is right extending.

If for some T_i , u-dim $(T_i) \ge 2$, then by [13], T_i is left Goldie and left extending. T_i is Morita equivalent to a right SI domain, say D_i . Hence D_i is left Goldie. In other words, D_i is a left Ore, right PCI domain. By [7, Theorem 22], D_i is left noetherian, and hence left PCI (see also [14, Corollary 4.3]). Equivalently, D_i is left SI. Thus T_i is left SI.

Now we renumber the direct summands T_i so that $T = T_1 \oplus \cdots \oplus T_m \oplus T_{m+1} \oplus \cdots \oplus T_k$ where all T_1, \ldots, T_m have uniform dimension ≥ 2 , and u-dim $(T_{m+1}) = \cdots =$ u-dim $(T_k) = 1$. Set $R_4 = T_1 \oplus \cdots \oplus T_m$, $R_5 = T_{m+1} \oplus \cdots \oplus T_k$. Then we have a ring-direct decomposition $R = R_1 \oplus R_2 \oplus R_3 \oplus R_4 \oplus R_5$ as desired.

(b) \Rightarrow (a). It is clear that R_1 and R_5 have property (a).

We now consider R_2 . By (ii), $R_2 = R_{21} \oplus \cdots \oplus R_{2k}$ where each R_{2i} is uniform, nonsingular, $l(R_{2i}) \leq 2$, and $l(E(R_{2i})) = 3$. Let X be a cyclic right R_2 -module. Then $X = Y \oplus I$ where I is a maximal injective submodule of X. Since R_2 is right SI, I contains the singular submodule of X. Therefore Y is nonsingular and Y does not contain nonzero injective submodules. Hence there is a closed submodule U of R_2 such that $Y \cong R_2/U$. Our aim is to prove that Y_{R_2} is projective, implying that R_2 satisfies (a). We can write R_2 in the form $R_2 = V_1 \oplus \cdots \oplus V_h \oplus W$ where each $V_i \in \{R_{21}, \ldots, R_{2k}\}$ with $l(V_i) = 2$ and W is semisimple. Then $R_2/U = [(V_1 \oplus \cdots \oplus V_h) + U]/U + (W + U)/U$. Since (W + U)/U is semisimple, $(W + U)/U = [((V_1 \oplus \cdots \oplus V_h) + U)/U \cap (W + U)/U] \oplus W'$ where W' is a submodule of (W + U)/U, that is projective and semisimple. Therefore $R_2/U = [(V_1 \oplus \cdots \oplus V_h) + U]/U \oplus W'$. Let $H = (V_1 \oplus \cdots \oplus V_h) \cap U$. Then $[(V_1 \oplus \cdots \oplus V_h) + U]/U \cong (V_1 \oplus \cdots \oplus V_h)/H$. Hence the projectivity of Y_{R_2} will follow from the following statement. **Claim.** Let $V_1 \oplus \cdots \oplus V_t$ $(t \ge 1)$ be a direct summand of $(R_2)_{R_2}$ such that every V_i is a uniform right ideal with $l(V_i) = 2$, and let H be a closed submodule of $V_1 \oplus \cdots \oplus V_t$. If $(V_1 \oplus \cdots \oplus V_t)/H$ contains no nonzero injective submodules, then $(V_1 \oplus \cdots \oplus V_t)/H$ is projective.

We prove this by induction on t. For t = 1 it is clear, because in this case either H = 0, or $H = V_1$.

Assume that the Claim is true for some $t \ge 1$. Let H be a closed submodule of $V_1 \oplus \cdots \oplus V_{t+1}$ such that $(V_1 \oplus \cdots \oplus V_{t+1})/H$ does not contain nonzero injective submodules. If H = 0 or $(V_1 \oplus \cdots \oplus V_{t+1})/H = 0$, we are done. Hence we consider only the case that $H \ne 0$, and $(V_1 \oplus \cdots \oplus V_{t+1})/H \ne 0$. Since $V_1 \oplus \cdots \oplus V_t \oplus V_{t+1}$ is nonsingular, either $H \supseteq V_{t+1}$ or $H \cap V_{t+1} = 0$.

If $H \supseteq V_{t+1}$, then $(V_1 \oplus \cdots \oplus V_h \oplus V_{t+1})/H \cong (V_1 \oplus \cdots \oplus V_t)/H'$ where $H' = (V_1 \oplus \cdots \oplus V_t) \cap H$ is a closed submodule of $V_1 \oplus \cdots \oplus V_t$. By the induction hypothesis, $(V_1 \oplus \cdots \oplus V_t)/H'$ is projective. We are done in this case.

For $H \cap V_{t+1} = 0$, we have two cases: Either $(V_1 \oplus \cdots \oplus V_t) \cap H = 0$ or $(V_1 \oplus \cdots \oplus V_t) \cap H \neq 0$.

(1) If $(V_1 \oplus \cdots \oplus V_t) \cap H = 0$, then *H* is uniform of length 1 or 2. If l(H) = 1, i.e., *H* is simple, then by Lemma 5, $(V_1 \oplus \cdots \oplus V_t \oplus V_{t+1})/H$ contains a nonzero injective submodule, a contradiction. Hence l(H) = 2. Then $(V_1 \oplus \cdots \oplus V_t) \oplus$ $H = V_1 \oplus \cdots \oplus V_t \oplus V_{t+1}$. This shows that $(V_1 \oplus \cdots \oplus V_t \oplus V_{t+1})/H$ is projective.

(2) For $(V_1 \oplus \cdots \oplus V_t) \cap H \neq 0$, set $K = (V_1 \oplus \cdots \oplus V_t) \cap H$. Hence K is closed in $V_1 \oplus \cdots \oplus V_t$. Since $(V_1 \oplus \cdots \oplus V_t)/K$ embeds in $(V_1 \oplus \cdots \oplus V_{t+1})/H$, $(V_1 \oplus \cdots \oplus V_t)/K$ does not contain nonzero injective submodules. Hence by the induction hypothesis, $(V_1 \oplus \cdots \oplus V_t)/K$ is projective. Therefore, K splits in $V_1 \oplus \cdots \oplus V_t$. By Krull–Schmidt Theorem, or by applying [1, 28.15], we have (after renumbering the summands if necessary) $V_1 \oplus \cdots \oplus V_t = V_1 \oplus \cdots \oplus V_l \oplus K$. It is clear that $l \leq t - 1$, and $V_1 \oplus \cdots \oplus V_t \oplus V_{t+1} = (K \oplus V_1 \oplus \cdots \oplus V_l) \oplus V_{t+1}$. Hence $(V_1 \oplus \cdots \oplus V_t \oplus V_{t+1}/H \cong (V_1 \oplus \cdots \oplus V_l \oplus V_{t+1})/H'$ where $H' = (V_1 \oplus \cdots \oplus V_l \oplus V_{t+1}) \cap H$. Since $l \leq t - 1$, we can use the induction hypothesis to get that $(V_1 \oplus \cdots \oplus V_l \oplus V_{t+1})/H'$ is projective. This completes the proof of the claim, and therefore R_2 satisfies (a).

For R_3 we see that R_3 has all properties of *C* in [11, Theorem 7]. Moreover, R_3 is right nonsingular, hence by [11, Corollary 14], even every right R_3 -module is a direct sum of a projective module and an injective module.

Considering R_4 we may assume that $V = R_4$ is a simple left and right SI ring (with zero socle). Then the classical right quotient ring Q of V is also the classical left quotient ring of V. Let X_V be any cyclic right V-module. Then $X = Y \oplus W$ where W is the maximal injective submodule of X. Since every singular right Vmodule is injective, Y is a nonsingular cyclic module. Hence Y is embedable in Q_V , i.e., $Y \cong yV$ for some $y \in Q$. Since Q is also the classical left quotient ring of V, $y = a^{-1}b$ ($a, b \in V$, with a regular). Hence $Y \cong bV \subseteq V$. This together with the fact that V is right (and left) hereditary (cf. [9, Proposition 3.3]) shows that Y is projective. Hence R_4 satisfies (a). \Box

Notice that by the above proof we can state (ii) of Theorem 6 as follows:

- (ii') R_2 is a finite ring-direct sum of indecomposable right artinian rings each of which is not right extending and has the following properties:
 - (ii₁) For each primitive idempotent $e \in R_2$, $l(eR_2) \leq 2$.
 - (ii₂) For any minimal right ideal *S* of R_2 , l(E(S)) = 3.

The following is an immediate consequence of [9, Theorem 3.11] and Theorem 6.

Corollary 7. Every right and left SI ring R with $Soc(R_R) = 0$ is right and left CDPI, right and left extending.

We remark that in [12, pp. 45–46] we also mentioned the question of describing the structure of a right CDPI ring R and expected to show that the (maximal) artinian direct summand A of R is right extending. This expectation was wrong, and it took us a long time to establish that in fact A contains a right extending direct summand B (cf. Lemma 2). The other summand is, in general, nonzero and not right extending (see the existence of such a ring in Section 3.2).

Theorem 8. For a ring R the following conditions are equivalent:

- (a) Every finitely generated right *R*-module is a direct sum of a projective module and an injective module, i.e., *R* is a right FGPI ring.
- (b) *R* has a ring-direct decomposition *R* = A₁ ⊕ A₂ ⊕ A₃ ⊕ *T*, where each A_i is a right SI ring. Moreover:
 - (i) A_1 is a right and left serial, right and left artinian ring with $J(A_1)^2 = 0$.
 - (ii) A_2 is a right artinian ring such that for each primitive idempotent $e \in A_2$, eA_2 is uniform, $l(eA_2) \leq 2$, and $l(E(eA_2)) = 3$.
 - (iii) A_3 is right artinian. For each primitive idempotent $e \in A_3$, either eA_3 is simple or $l(eA_3) = 3$. Moreover, if S is minimal right ideal of A_3 , then l(E(S)) = 2 and E(S) is not projective.
 - (iv) *T* is a right and left SI ring with $Soc(T_T) = 0$.

Proof. (a) \Rightarrow (b). Let *R* be a ring such that every finitely generated right *R*-module is a direct sum of a projective module and an injective module. By Theorem 6, $R = A \oplus T$ (a ring-direct sum) where *A* is right artinian right SI, *T* is right SI with Soc(T_T) = 0. Hence by [12, Theorem 6], *T* is left SI. By [11, Corollary 14], $A = A_1 \oplus A_2 \oplus A_3$ (a ring-direct sum), where the A_1 , A_2 , and A_3 satisfy (i), (ii), and (iii) in Theorem 6, respectively.

(b) \Rightarrow (a) follows from [12, Theorem 6] and [11, Corollary 14]. \Box

Notice that by [11, Corollary 14], every right A_i -module (i = 1, 2, 3) is a direct sum of a projective module and an injective module. But not all infinitely generated right (or left) modules over T have this decomposition property (cf. [11, Theorem 5]). On the other hand, by a result of [5] (see also [6, 13.5]), every right (or left) A_1 -module is extending.

3. Examples

3.1. Let

$$T = \begin{bmatrix} \mathbb{R} & \mathbb{C} \\ 0 & \mathbb{C} \end{bmatrix},$$

where \mathbb{R} and \mathbb{C} are the fields of real and complex numbers, respectively. Then *T* is right and left artinian, right and left hereditary, right and left SI. Moreover, we can easily check that *T* is right extending. Hence this ring *T* is an example for the ring R_1 in Theorem 6. Another example for the ring R_1 of Theorem 6, that has an infinitely generated right injective hull, is given in Section 3.6 below.

3.2. Let U be the ring

${\sf L}{\Bbb C}$	0	C٦	
0	\mathbb{C}	\mathbb{C}	
Lo	0	\mathbb{C}	

Then U is a right (and left) SI ring. Write U in the form $U = e_{11}U \oplus e_{22}U \oplus e_{33}U$, where

$$e_{11} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad e_{22} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \text{ and } e_{33} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

It is clear that $e_{33}U \cong \text{Soc}(e_{11}U) \cong \text{Soc}(e_{22}U)$, and $l(e_{11}U) = l(e_{22}U) = 2$. Moreover,

$$E(e_{11}U) = \begin{bmatrix} \mathbb{C} & \mathbb{C} & \mathbb{C} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

and hence $l(E(e_{11}U)) = 3$. This shows that U is an example of the ring R_2 of Theorem 6. We can further show that U is not right extending. Namely, suppose on the contrary that U is right extending, then $e_{11}U \oplus e_{22}U$ is an extending right U-module. Hence by [6, 7.3(ii)], $e_{11}U$ is $e_{22}U$ -injective. Let

$$L = \left\{ \begin{bmatrix} 0 & 0 & r \\ 0 & 0 & r \\ 0 & 0 & 0 \end{bmatrix} \middle| r \in \mathbb{C} \right\}.$$

Then *L* is a minimal submodule of $e_{11}U \oplus e_{22}U$. There are two possibilities:

3.2.1. *L* is closed in $e_{11}U \oplus e_{22}U$. Hence *L* is a direct summand of $e_{11}U \oplus E_{22}U$. This is impossible by Krull–Schmidt Theorem (cf. [1, 12.9]).

3.2.2. *L* is not closed in $e_{11}U \oplus e_{22}U$. Then the closure *L'* of *L* in $e_{11}U \oplus e_{22}U$ has length at least 2. Therefore $e_{11}U \oplus e_{22}U = L' \oplus e_{22}U = e_{11}U \oplus L'$. This implies that $e_{11}U \cong e_{22}U$. Thus by [1, 16.13(2)], $e_{11}U$ is $(e_{11}U \oplus e_{22}U \oplus e_{33}U = U)$ -injective, a contradiction.

3.3. If we take V to be the ring

$$\begin{bmatrix} \mathbb{C} & \mathbb{C} \\ 0 & \mathbb{R} \end{bmatrix},$$

then V is left and right artinian, and nonsingular. However, V is not right extending. Write $V = e_{11}V \oplus e_{22}V$ where $e_{11}V$ is a local right V-module with u-dim $(e_{11}V) = 2$, $l(e_{11}V) = 3$ and $e_{22}V$ is simple. Since V/J(V) is commutative, and V is left serial, every uniform right V-module is uniserial (cf. [10, Theorem 3.2]). Let S be a nonsingular simple right V-module. As V is a (right and left) SI-ring, E(S)/S is semisimple (clearly, $l(E(S)) \ge 2$). Since E(S)is uniserial, E(S)/S is simple. Hence l(E(S)) = 2. Thus, V is an example for the ring R_3 of Theorem 6. Note that V is a left CDPI ring.

The above argument for V can be applied to show that the ring T in Section 3.1 is left CDPI.

3.4. Let *C* be any PCI domain (= SI domain) constructed in [3], and let $M_n(C)$ be the full $(n \times n)$ -matrix ring over *C*. Then $M_n(C)$ is right and left hereditary, right and left noetherian. Hence by [6, 12.18], $M_n(C)$ is right and left extending. Thus, for n > 1, $M_n(C)$ is an example of the ring R_4 in Theorem 5.

3.5. The right (and left) SI domain constructed in [3] is an example for the ring R_5 of Theorem 6. However, it is unknown if there is a right SI domain which is not left SI.

3.6. Let
$$W = \begin{bmatrix} \mathbb{Q} & \mathbb{R} \\ 0 & \mathbb{R} \end{bmatrix},$$

where \mathbb{Q} is the field of rational numbers. Then *W* is a right extending, right CDPI ring, in particular it is also an example of the ring R_1 in Theorem 6. Furthermore, by [9, Proposition 3.1], *W* is left SI. However, *W* (with an essential left socle) is not left artinian. Hence by Theorem 6, *W* is not a left CDPI ring.

Unlike the rings T in Section 3.1, U in Section 3.2 and V in Section 3.3, the right injective hull of the ring W in Section 3.6 is an infinitely generated right W-module. In particular, the ring W provides an example of a right artinian ring which has a uniform infinitely generated right module.

Moreover, though W is a right extending ring, $W \oplus W$ is not an extending right W-module, because, otherwise W would be a right co-H ring. By [16], W must be left artinian, but this is impossible.

3.7. Let \mathbb{H} be the algebra of quaternions over \mathbb{R} . Then the ring

$$Y = \begin{bmatrix} \mathbb{R} & \mathbb{H} \\ 0 & \mathbb{R} \end{bmatrix}$$

_

is right and left artinian, right and left SI. However, since the indecomposable direct summand $e_{11}Y$ of Y_Y and the indecomposable direct summand Ye_{22} of $_YY$ both have composition length 5, Y is neither right nor left CDPI (cf. Theorem 6).

Another example for a right and left artinian right and left SI ring, that is neither right nor left CDPI, is the ring

$$\begin{bmatrix} \mathbb{R} & 0 & \mathbb{C} \\ 0 & \mathbb{R} & \mathbb{C} \\ 0 & 0 & \mathbb{C} \end{bmatrix}.$$

This ring is a subring of the right CDPI ring U in Section 3.2.

Examples in Sections 3.6 and 3.7 suggest the following question.

Question. Let R be a right and left artinian, right and left SI ring. Is R necessarily left CDPI if *R* is right CDPI?

Acknowledgment

The author wishes to thank the referee for valuable comments.

References

- [1] F.W. Anderson, K.R. Fuller, Rings and Categories of Modules, 2nd edition, in: Grad. Texts in Math., Vol. 13, Springer-Verlag, 1992.
- [2] A.W. Chatters, C.R. Hajarnavis, Rings with Chain Conditions, Pitman, London, 1980.
- [3] J.H. Cozzens, Homological properties of the ring of differential polynomials, Bull. Amer. Math. Soc. 76 (1970) 75-79.
- [4] R.F. Damiano, A right PCI-ring is right noetherian, Proc. Amer. Math. Soc. 77 (1979) 11-15.
- [5] N.V. Dung, P.F. Smith, Rings for which certain modules are CS, J. Pure Appl. Algebra 102 (1995) 257-265.
- [6] N.V. Dung, D.V. Huynh, P.F. Smith, R. Wisbauer, Extending Modules, Pitman, London, 1994.
- [7] C. Faith, When are proper cyclics injective?, Pacific J. Math. 45 (1973) 97-112.
- [8] C. Faith, Algebra II: Ring Theory, Springer-Verlag, 1976.
- [9] K.R. Goodearl, The Singular Torsion and Splitting Properties, in: Mem. Amer. Math. Soc., Vol. 124, 1972.
- [10] D.A. Hill, Rings whose indecomposable injective modules are uniserial, Canad. J. Math. 34 (1982) 797-805.

- [11] D.V. Huynh, S.T. Rizvi, On some classes of artinian rings, J. Algebra 223 (2000) 133–153.
- [12] D.V. Huynh, H.K. Kim, J.K. Park, Some results on Si-rings, J. Algebra 174 (1995) 39-52.
- [13] D.V. Huynh, S.K. Jain, S.R. López-Permouth, On the symmetry of the Goldie and CS conditions for prime rings, Proc. Amer. Math. Soc. 128 (2000) 3153–3157.
- [14] K. Kosler, On hereditary rings and noetherian V-rings, Pacific J. Math. 103 (1982) 467–473.
- [15] T.Y. Lam, Lectures on Modules and Rings, in: Grad. Texts in Math., Vol. 189, Springer-Verlag, 1998.
- [16] K. Oshiro, Theories of Harada in artinian rings and applications to classical artinian rings, in: G.F. Birkenmeier, J.K. Park, Y.S. Park (Eds.), International Symposium on Ring Theory, Birkhäuser, 2001, pp. 279–301.
- [17] B.L. Osofsky, P.F. Smith, Cyclic modules whose quotients have all complement submodules direct summands, J. Algebra 139 (1991) 342–354.
- [18] P.F. Smith, Decomposing modules into projectives and injectives, Pacific J. Math. 76 (1978) 247–266.
- [19] P.F. Smith, Rings characterized by their cyclic modules, Canad. J. Math. 24 (1979) 93–111.