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Abstract

We describe the structure of rings over which every cyclic (or finitely generated) right
module is a direct sum of a projective module and an injective module.
0 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Aring R is called a right (left) Sl ring if every singular right (lef§-module
is injective. Sl rings were initially introduced and investigated by Goodearl [9],
and the structure of these rings was described as follows (cf. [9, Theorem 3.11]):

Aring R is right Sl if and only ifR is right nonsingular, andR = K & R1 &
-+ ® Ry, (aring-direct sum) where& / SodK) is semisimple and eacR; is
Morita equivalent to a simple right noetherian domdin such that for every
nonzero right ideal’; C D;, D;/C; is semisimple.

Concerning Sl rings, Smith [19] introduced right (left) CDPI rings, i.e., rings
each of whose cyclic right (left) modules is a direct sum of a projective module
and an injective module. The question, if every right CDPI ring is right SI,
remained open for several years (1979-1991). Finally in [17], as an application of
their major theorem on finiteness of uniform dimension of certain cyclic extending
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modules, Osofsky and Smith have shown that a right CDPI ring is indeed right
noetherian and right Sl (cf. [17, Proposition 2]). On the other hand, Smith [19,
Example 4.12] has proved that a right artinian right Sl ring need not be right
CDPI.

From these results it is natural to ask the question: When is a right Sl ring right
CDPI? In this note we will provide an answer to this question (Theorem 6).

Rings over which every finitely generated right module is a direct sum of
a projective module and an injective module were initially investigated also by
Smith in [18]. He called these rings right FGPI rings. In [12, Theorem 6] it was
shown that if So€Rr) = 0, thenR is right FGPI iff R is left FGPI iff R is right
and left SI. In this note we will describe the structure of all right FGPI rings
(Theorem 8).

Following Faith [7], a ringR is called a right PCI ring if every cyclic right
R-module is either isomorphic t®g or injective. A right PCI ring is either
semisimple artinian or a simple right noetherian right hereditary domain such
that every singular right module is semisimple and injective (see Faith [7] and
Damiano [4]). Hence every right PCI domain is right SI. On the other hand, by
a result of Osofsky—Smith [17], for a ring, if all cyclic singular right modules
are injective, then all singular right modules are injective. This implies that a right
S| domain is right PCI. Thus for domains, the two concepts of Sl and PCI are
equivalent. A right PCI domain right SI domain), which is not a division ring,
was constructed by Cozzens in [3].

2. Theresults

Throughout this note we consider associative rings with identity and unitary
modules. For a rin®Rk and ankR-moduleM we write My to indicate thatV is a
right R-module. The socle and the Jacobson radica¥afre denoted respectively
by SogdM) and J(M). The injective hull and the uniform dimension &f are
denoted byE (M) and u-din{M), respectively.

A submoduleC of a moduleM is called a closed submodule &f if C is itself
a maximal essential extension 6fin M. The moduleM is called an extending
module (or a CS module) if every closed submodul@bfs a direct summand.
Aring R is called a right extending ring iRg is an extending module. Clearly,
every (quasi-) injective module is extending. For basic properties of injective and
extending modules we refer to [1,6,8,15].

If a moduleM has finite composition length, we will denote its length i)

We first consider the artinian case. Namely Adte a right artinian right CDPI
ring. We write A in the form

Ap=A10--- DA,
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where eachA; is an indecomposable right ideal &f. In particular eachA;
is a local rightA-module. We define the following direct summandsAf as
follows:

e B=B1®---® B, suchthatB; € {A1, ..., A,} and the following properties
hold:
(B1) Eachs; is uniform with/(B;) < 2.
(B2) If I(E(B))) < 2,thenE(B;) is projective.
(B3) If 3<I(E(B;)) < oo andl(B;) =2, then
(bg) there is noB;: € {A1,..., A} (i’ # i) with [(B;) =2 and
SoqB;’) = Sod B;), and
(b3) asimpleA, € {A1, ..., A} with 3 <I(E(Ap)) < oo belongs to
{B1,..., By} iff Ajisisomorphic to the socle of suchia.
e C=C1®---®CisuchthaiC; e {Ay, ..., Ay} and the following properties
hold:
(C1) EachC; is uniform with/(C;) < 2.
(C2) ForeaclC;, 3<I(E(C))) < oo.
(C3) IfforacCj,(Cj) =2, then
(c3) there existsCj, j # j, such that/(C;) = 2 and So(C;) =
SoqCj), and
(cy) auniformA, € {A1,..., A} belongstdCy, ..., Ci} iff Soc(Ay)
is isomorphic to the socle of such(g.
e D=D1®---® D, suchthatD; € {As, ..., A,} and the following properties
hold:
(D1) EachDj is either simple or u-dirtD;) > 2.
(D2) If Dy is simple, therl(E(D;)) < oo and D; is not embedded in either
BorcC.

Note that, by the definition oB, {Bi1,..., B;;} also contains all uniform
Ar from {Aq, ..., A} with [(E(A)) = oo. For the existence of suchy’s see
Example 3.6 in the next section.

We conclude thady = B & C & D. By [17, Proposition 2],A is right Sl.
HenceA is right hereditary (cf. [9, Proposition 3.3]). In particulat,is right
nonsingular. From this and the properties ®f C, D, there is no nonzero
A-homomorphism between them. Hend& = CB = CD = DC = DB =
BD =0, i.e., the following lemma holds.

Lemmal. A= B & C & D is aring-direct sum.
Lemma 2. B is a right extending ring.

Proof. We can writeB = Q1 ® Q> & Q3 where Q1 is the direct sum of alB;
that satisfyl (E(B;)) < 2; Q2 is the direct sum of alB; with [(E(B;)) = oo, and
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Q3 is the direct sum of the remaindsy, i.e., 3<I(E(B;)) < 0o. As B is right
nonsingular, it is easy to check tha@t, i = 1, 2, 3, are ideals oB. EachQ; is
a right CDPI ring. By [6, Lemma 8.14]91 is a right extending ring.

For Q2, letU be a closed rightideal a@,. ThenQ2/ U is a cyclic nonsingular
module. Hence every minimal submodufleof Q»>/U embeds inQ>. Whence
I(E(S)) = o0. SinceE(S)/S is semisimple, it follows thak (S) can not be cyclic.
Therefore,02/U does not contain nonzero injective submodules. TQggU
must be projective. Whendé splits in Q2, proving thatQ» is right extending.

For 03, consider aB; C Q3, and let[ B;] denote the direct sum of all; such
that E(By) = E(By). Clearly[B;] is a ring-direct summand afs. [B;] is not a
semisimple ring, because otherwise, as a semisimple ring-direct summand of
[B;]is injective, a contradiction to the definition ¢f;. Hence there is 8; C [B;]
with [(By) = 2. By (B3),[B;] = By @ T whereT;p,] is a semisimple module. Now
let V be a closed right ideal dfB;]. If By NV # 0, thenB; C V. By modularity,
and sincel|g,] is semisimple, we conclude th#tis a direct summand @B, ]. If
B, NV =0, then by the same way we obtain that® V is a direct summand
of [ B;] which implies thatV is a direct summand 4fB,]. This shows thatB, ] is
a right extending ring. Sinc@3 is obviously a ring-direct sum of finitely many
rings which are constructed in a similar way[#], it follows that Q3 is a right
extending ring. Thu® is right extending, as desired O

Lemma 3. For each simple submoduleC C, I[(E(S)) = 3.

Proof. We denote by{C1] the direct sum of all suclt; with E(C;) = E(Cy).
Then[C1] is a ring-direct summand @f. [C1] is not a semisimple ring, because
otherwise, every minimal right ideal ¢€1] would be injective, a contradiction
to the definition ofC. Hence there is a uniform direct summand 6f] that has
length 2 (cf. (C1)). We may assume, without loss of generality,/{taf) = 2. By
(C3) there exists &, € {Cq, ..., C¢} with [(C;;) = 2, and So¢C;,) = SodCy),
i1#1. We write[C1]=C1 ® C;, @ --- ® C;, ® V whereV is semisimple,
and/(C1) = I(C;y) = --- =1(C;,) = 2, and all minimal submodules ¢€1] are
isomorphic to each other.

Suppose that for each (1 <t < p), C1 & C;, does not have closed
minimal submodules. Le§ be an arbitrary minimal submodule @f; & C;,.
Then the closures” of S in C1 & C;, has length at least 2. Therefore, either
C1®C,=5®C;,orC1dC;, =C1 8 5, and soC1 @ C;, is an extending
module. Then by [6, Lemma 7.3(ii){1 is Cj,-injective for each 1< 1 < p.
By [1, Proposition 16.13(2)], and since each minimal submoduleVofs
isomorphic to SoC;,), C1 is (Ci; @ --- @ C;, @ V)-injective. Now, let f be
an isomorphism Sa€1) — SodC;,). ThenT = {x + f(x) | x € SodC1)} is a
minimal submodule o€1 & C;,. By assumption, the closui® of T in C1 & C;,
has length at least 2. Becau¥¢N C1 =T’ N C;, =0, we haveC1 & C;, =
T'"® C1=T' & C;,. This implies thatC1 = C;,. ThusCy is Ci-injective. This
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together with(C;, @ --- @ C;, @ V)-injectivity of C1 implies thatC is injective,
a contradiction to (C2).

Therefore, there is € (1,..., p}, sayt = 1, such thatC; @ C;, contains
a closed minimal submodulé. Notice thatC, @ C;, is cyclic. Hence the module
(C1 @ Ciy)/ U is cyclic, nonsingular, uniform (cf. for example, [6, 5.10(1)]), and
of length 3. Moreover, by the Krull-Schmidt theorem (cf. [1, 12.9])can not
be a direct summand afy @ C;;. Whence(C1 @ C;,)/U must be injective. As
C1NU =0, this implies that& (C1) = (C1 @ C;,)/ U, and sd (E(Cy)) = 3.

We can renumber the direct summargsso that{C1, C2, ..., C,} is a max-
imal set of {Cy, ..., C¢} with I(C;) = 2, So€C;) 2 SodC;) for i # j. Then
C=[C1]1®[C2] @ - ®[Cy] ® G (a ring-direct sum), where eadit;] is
constructed in a similar way d€°1], andG is semisimple. IfG # 0, then each
minimal submodule of; is injective, a contradiction to the definition 6f Hence
G =0,and soC =[C1]® [C2] @ --- ® [C,]. This shows that(E(C;)) = 3 for
all j=1,...,k, provingLemma 3. O

Lemmad4. For eachD;, I(D;) =1or 3. If S € Dp is a minimal submodule, then
[(E(S)) =2, and E(S) is not projective.

Proof. All D; are local modules. Assume thaD;) # 1, i.e.,D; is not simple.
By (D1), I(D;) = 3. From the structure theorem of (artinian) right Sl rings (cf.
[9, Theorem 3.11]), and the fact thaY; is local, it follows thatD;/ Sod D;) is
simple. Hencé(D;) =[(Soa D;)) + 1. Itis enough to show th&{Soa D)) = 2.
Now let S be a minimal submodule of SGB;). ThenD; /S is a cyclic local right
D-module which can not be projective. Singeis right CDPI, D;/S must be
injective. As D;/S is indecomposable, S@D;/S) is simple. This proves that
1(SodD;)) =2,and sd(D;) = 3.

Next, let So¢D;) =S ® T, whereS, T are minimal submodules db;. As
D; is local, D;/T must be injective and not projective. WhengeS) = D; /T,
andi(E(S)) =1(D;/T) = 2. We rewriteD in the form

D=51®--- &S5 @dV1id---®Vp,

wherei(S1) = ---=1(S) =1, (V1) =--- =1(V,) =3, and §;, V; € {D1,
..., Dy}, Set So¢V;) = W1 @ Wo with simple W1 and W». As observed before,
Vi/ W1 and V; /W2 are injective. It follows that the injective hull of eadh
(i=1,...,h)isadirect sum of two indecomposable submodﬁﬂ?andviz with
l(V;:) = l(V;;) = 2. Now we consides;. If S; is notembedable i1 & --- @ Vy,
then(V1&®--- & Vp)S; = 0. We may assume théi, .. ., S; are not embedable in
Vi @ Vp, butS;y1,..., Sy are. ThenS; 1@ - S ®V1®--- @ Vp)(S1®D
.- @ S;) = 0. From this it follows thatS1 @ --- @ S; is an ideal ofD. SinceD is
right nonsingular, we can similarly show th@ & --- ® S;)(S; 41D --- D Sk
Vid---@Vy)=0,andsoS11@--- @S, @ V1@ --- @V, is also an ideal,
and hence a ring-direct summandDf This shows thasi, ..., S; are injective
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right D-modules, which is a contradiction to the definitionfofHence eacls; is
embedable in somg¥;, so the injective hull of eacl; has composition length 2,
and is not projective. This completes the proof of Lemmad.

Lemmab. Let T be aright artinian right Sl ringwithty =Th & --- & T, & T’
(m > 2) where eachT; is uniform,/(T;) = 2, and T is semisimple. Assume
further that for each minimal right idea§ € 7', I(E(S7)) =3. 1f V1@ --- @V,

(g = 2) is a direct summand ofr such that eachV; is uniform of length2,
then for any closed minimal submoduleof V1 @ --- @ V,, the factor module
(Vi@ ---®V,)/U contains a nonzero injective submodule.

Proof. We prove this statement by induction gnForg = 2, (V1 @ V2)/U is
nonsingular uniform (see, for example, [6, 5.10(1)]) and of length 3. It follows
that the minimal submodule @¥1 & V2)/U embeds irTr. Hence(V1 & V2)/ U

is injective. From here we can follow the second step of the induction proof of
[11, Claim 1, p. 146]. O

Now we can state the main theorem of this paper.
Theorem 6. For aring R the following conditions are equivalent

(a) Every cyclic rightR-module is a direct sum of a projective module and an
injective module, i.e.R is a right CDPI ring.
(b) R has a ring-direct decompaosition

R=R1® R2® R3® R4 P Rs,

where eachr; is a right Sl ring. Furthermore
(i) Rj is right extending and right artinian.
(i) Rz is right artinian with the following properties

(ii1) For each primitive idempotefte Ry, [(eR2) < 2.

(iiz) For any minimal right idealS of Rz, [(E(S)) = 3.

(iiz) If e € Ry is a primitive idempotent witli(eR2) = 2, then there
exists at least one other primitive idempotght R, such that
I(fR2)=2,¢ef = fe=0,andSodeR2) = Sod f R2).

(iii) Rsis right artinian with the following properties

(iii1) For each primitive idempotemte R3, [(eR3) =1 o0rl(eR3) = 3.

(iii2) For any minimal right idealS of R3, [(E(S)) =2 and E(S) is not
projective.

(iv) R4 is a ring-direct sum of finitely many simple right and left Sl rings
with zero right socle and each with right uniform dimensip22.

(V) Rs is aring-direct sum of finitely many right SI domains which are not
division rings.
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Proof. (a) = (b). By [17, Proposition 2]R is right noetherian right SI. Hence
by [9, Theorem 3.11] (see the Goodearl's theorem mentioned in the introduction),
R has the ring-direct decomposition

R=AQT,

where A is a right artinian right CDPI ring and is a right CDPI ring with
SoqT) =0. By Lemma 1,A = B & C & D (a ring-direct sum), where&, C,
and D are defined as before Lemma 1. $at= B, R, = C, andR3 = D. By
Lemmas 2—4 we havk1 € (i), Rz € (ii), R3 € (iii) of Theorem 6.

We haveR = R1 @ R2 @ R3 @ T. Again by [9, Theorem 3.11[ = T1 &
--- @ Ty where eaclf; is a simple right noetherian right Sl ring which is Morita
equivalent to a right S| domain (and for eaEh Soq7;) = 0). LetU be a closed
rightideal of7;. ThenT; /U is a nonsingular righT;-module. IfT; /U contains a
nonzero injective submodule, then it is cyclic and isomorphic to the injective hull
of some right ideal off;. As 7; is simple and right noetherian, we conclude that
the injective hull of7;,. is finitely generated which implies th&t is semisimple
artinian (cf. [2, Coroliary 1.29]), a contradiction. Hen€g/ U does not contain
nonzero injective submodules. By (B)/ U is projective, sd; = U & L for some
rightideal L € T;. This shows that each is right extending.

If for someT;, u-dim(T;) > 2, then by [13]T; is left Goldie and left extending.
T; is Morita equivalent to a right SI domain, s@. HenceD; is left Goldie. In
other words,D; is a left Ore, right PCI domain. By [7, Theorem 22); is left
noetherian, and hence left PCI (see also [14, Corollary 4.3]). Equivaldntlig
left SI. ThusT; is left SI.

Now we renumber the direct summarfiso thatl =71 ®---® T, ® T, 11D
-+ @® Ty where allTy, ..., T,, have uniform dimensio: 2, and u-dint7;,+1) =
co=u-dim(Ty) =1.SetRy =T1 @ -+ D Ty, Rs=T11 D -+ - D Ty. Then we
have a ring-direct decompositidh= R1 ® R> ® R3 ® R4 @ Rs as desired.

(b) = (8. Itis clear thatR1 and Rs have property (a).

We now considerRy. By (i), R = Ro1 & --- & Ry, where eachRy; is
uniform, nonsingular/(R2;) < 2, andl(E(R2;)) = 3. Let X be a cyclic right
R>-module. ThenX =Y @ I wherel is a maximal injective submodule &f.
Since R; is right SI, I contains the singular submodule &f ThereforeY is
nonsingular and” does not contain nonzero injective submodules. Hence there
is a closed submodulg of R, such thaty = Ro/U. Our aim is to prove that
Yr, is projective, implying thatR, satisfies (a). We can writ&; in the form
Ro=Vi®---®V, ®W where eachV; € {R21, ..., Ry} with [(V;) =2 and
W is semisimple. ThemRy/U =[(V1® --- ® Vi) + U]JU + (W + U)/U.
Since(W + U)/U is semisimple(W + U)/U = [(V1®---® Vi) +U)/U N
(W+U)/Ul® W whereW’ is a submodule ofW + U)/U, that is projective
and semisimple. ThereforRy/U =[(V1® --- ® Vi) +Ul/U @ W'. Let H =
(V1®---®Vy)NU.Then[(V1i®---®Vy)+ U/ U= (Vi®--- & Vj,)/H. Hence
the projectivity ofYg, will follow from the following statement.
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Claim. LetVi @ --- @ V; (t > 1) be a direct summand @k>) z, such that every
V; is a uniform right ideal with/(V;) = 2, and letH be a closed submodule of
Vid---d V.. If (Vi ---® V;)/H contains ho nonzero injective submodules,
then(V1® --- @ V;)/H is projective.

We prove this by induction on Forz = 1 it is clear, because in this case either
H=0,0rH =V;.

Assume that the Claim is true for some: 1. Let H be a closed submodule
of Vi@ --- @ V;41 such that(V1 & --- & V,1+1)/H does not contain nonzero
injective submodules. If =0or (V1@ ---® V;+1)/H =0, we are done. Hence
we consider only the case that # 0, and(V1 & --- & Vi41)/H # 0. Since
Vi@ --®V, ® V11 is nonsingular, eithel O V,.1 or HN V41 =0.

If HD Viyr,then(Vi® - ® V4 @ Vig1)/H=Z (V1@ --- & V;)/H' where
H = (V1®---®V;)NH is aclosed submodule &% & - - - ® V;. By the induction
hypothesis(V1 @ --- @ V;)/H' is projective. We are done in this case.

For H N V41 = 0, we have two cases: Eithévi1 & ---® V,) N H =0 or
MN&---®V)NH#OQ.

QWi ---®V,)NH =0, thenH is uniformof length L or 2. f(H) =1,
i.e., H is simple, thenby Lemma%V1@---®V, @ V,+1)/H contains a nonzero
injective submodule, a contradiction. Hen§él) = 2. Then(V1 ® --- ® V;) &
H=V1®---®V,®V,y1. Thisshows thatV1®---dV; ® V,+1)/H is projective.

@) For(Vi@---®dV,)NH#0,setk =(V1&---® V;) N H. HenceK is
closedinvV1@---®V;. Since(V1®---dV;)/K embedsinV1®---®V,+1)/H,
(Vi® --- & V,)/K does not contain nonzero injective submodules. Hence by
the induction hypothesigVi @ --- @ V;)/K is projective. ThereforeK splits
in Vi ®--- @ V;. By Krull-Schmidt Theorem, or by applying [1, 28.15], we have
(after renumbering the summands if necessti-- - dV, =V1@---dV,®K.
ltisclearthat <r—1,andV1®--- @V, ® V1= (KD V1D - D V) ® Viy1.
Hence(Vi®--- @V, @ Vii/H= (V1@ --- @V, ® Viy1)/H' where H' =
V1®---d Vi V1) NH. Sincel <t — 1, we can use the induction hypothesis
to getthat(Vi @ --- @ V; ® V,41)/H' is projective. This completes the proof of
the claim, and thereforg, satisfies (a).

For R3 we see thaRz has all properties o in [11, Theorem 7]. Moreover,
Rs3 is right nonsingular, hence by [11, Corollary 14], even every riggdmodule
is a direct sum of a projective module and an injective module.

ConsideringR4 we may assume that = R4 is a simple left and right Sl ring
(with zero socle). Then the classical right quotient rxof V is also the classical
left quotient ring ofV. Let Xy be any cyclic rightV-module. ThenX =Y & W
whereW is the maximal injective submodule &f. Since every singular right -
module is injectiveY is a nonsingular cyclic module. Hendeis embedable in
Qvy,li.e.,Y =ZyV for somey € Q. SinceQ is also the classical left quotient ring
of V, y=ab (a,b € V, with a regular). Henc& = bV C V. This together
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with the fact thatV is right (and left) hereditary (cf. [9, Proposition 3.3]) shows
thatY is projective. Hence, satisfies (a). O

Notice that by the above proof we can state (ii) of Theorem 6 as follows:

(i”) Rz is a finite ring-direct sum of indecomposable right artinian rings each of
which is not right extending and has the following properties:
(ii1) For each primitive idempoteiate Ro, [(eR2) < 2.
(i) For any minimal rightideab of Ro, [(E(S)) = 3.

The following is an immediate consequence of [9, Theorem 3.11] and
Theorem 6.

Corollary 7. Every right and left Sl ringR with SoqRg) = 0 is right and left
CDPI, right and left extending.

We remarkthatin[12, pp. 45—-46] we also mentioned the question of describing
the structure of a right CDPI rin@ and expected to show that the (maximal)
artinian direct summand of R is right extending. This expectation was wrong,
and it took us a long time to establish that in factcontains a right extending
direct summanda (cf. Lemma 2). The other summand is, in general, nonzero and
not right extending (see the existence of such a ring in Section 3.2).

Theorem 8. For a ring R the following conditions are equivalent

(a) Every finitely generated righR-module is a direct sum of a projective module
and an injective module, i.eR is a right FGPI ring.
(b) R has aring-direct decompositioR= A1 ® A2 D A3 T, where eachy; is
a right Sl ring. Moreover
(i) A1isarightand left serial, right and left artinian ring witti (A1)% = 0.
(i) A2 is a right artinian ring such that for each primitive idempotent
e € Az, eAzis uniform,l(eAs) < 2, andl(E(eA2)) = 3.
(iii) Aszisrightartinian. For each primitive idempotente A3, eithere Az is
simple ori(eA3) = 3. Moreover, ifS is minimal right ideal ofAs, then
[(E(S)) =2andE(S) is not projective.
(iv) T isaright and left Sl ring wittSoq 77) = 0.

Proof. (a) = (b). Let R be a ring such that every finitely generated right
module is a direct sum of a projective module and an injective module. By
Theorem 6,R = A & T (a ring-direct sum) wheré is right artinian right Sl,

T is right Sl with So¢Tr) = 0. Hence by [12, Theorem 6]; is left SI. By [11,
Corollary 14],A = A1 & A2 & A3 (aring-direct sum), where thé;, A2, andA3
satisfy (i), (ii), and (iii) in Theorem 6, respectively.
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(b) = (@) follows from [12, Theorem 6] and [11, Corollary 14]0

Notice that by [11, Corollary 14], every righi;-module (i = 1,2,3) is
a direct sum of a projective module and an injective module. But not all infinitely
generated right (or left) modules ov&r have this decomposition property (cf.
[11, Theorem 5]). On the other hand, by a result of [5] (see also [6, 13.5]), every
right (or left) A;-module is extending.

3. Examples

3.1. Let
R C
=[5 ¢)
whereR andC are the fields of real and complex numbers, respectively. Then
is right and left artinian, right and left hereditary, right and left SI. Moreover, we
can easily check thdt is right extending. Hence this rirify is an example for the

ring R1 in Theorem 6. Another example for the rilRg of Theorem 6, that has an
infinitely generated right injective hull, is given in Section 3.6 below.

3.2. Let U be the ring
C 0 C
[O C (C] .
0 0 C

ThenU is aright (and left) Sl ring. Writé/ in the formU = e11U ® e2oU ®e33U,
where

1 00 0 0 O 0 0O
611:|:0 0 0:|, 622:|:0 1 0:|, and 633:|:0 0 0:|.
0 0O 0 0 O 0 01
It is clear thate33U = Sode11U) = SodexU), andli(e11U) = l(ex2U) = 2.
Moreover,
C C C
E(ellU)=|:0 0 0:|,
0O 0 O
and hencé(E(e11U)) = 3. This shows that/ is an example of the ring, of
Theorem 6. We can further show thatis not right extending. Namely, suppose

on the contrary thal/ is right extending, thea;1U @ e22U is an extending right
U-module. Hence by [6, 7.3(ii)k11U is ex2U-injective. Let

0 0 r
L:{|:O 0 r:|’re(C}.
0 0O

ThenL is a minimal submodule af11U @ e22U . There are two possibilities:
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3.2.1. L is closed ine11U @ e2oU. HencelL is a direct summand of11U @
E2oU. This is impossible by Krull-Schmidt Theorem (cf. [1, 12.9]).

3.2.2. Lisnotclosed ire11U @ e22U. Thenthe closuré’ of L in e11U @ expU
has length at least 2. TherefareiU @ exoU = L’ @ e22U = e11U & L'. This
implies thate11U = e2oU. Thus by [1, 16.13(2)k11U is (e11U ® e22U ®e33U =
U)-injective, a contradiction.

3.3. If we take V to be the ring
C C
o &)

then V is left and right artinian, and nonsingular. Howevét,is not right
extending. WriteV = e11V @ e22V wheree11V is a local right V-module
with u-dim(e11V) = 2, l(e11V) = 3 and e22V is simple. SinceV/J(V) is
commutative, and’ is left serial, every uniform right-module is uniserial (cf.
[10, Theorem 3.2]). LefS be a nonsingular simple right-module. AsV is a
(right and left) SI-ring,E(S)/S is semisimple (clearly(E(S)) > 2). SinceE(S)
is uniserial,E(S)/S is simple. Hencé(E(S)) = 2. Thus,V is an example for the
ring R3 of Theorem 6. Note that is a left CDPI ring.

The above argument faf can be applied to show that the rilign Section 3.1
is left CDPI.

3.4. Let C be any PCl domairn SI domain) constructed in [3], and 1&£, (C)
be the full(n x n)-matrix ring overC. ThenM, (C) is right and left hereditary,
right and left noetherian. Hence by [6, 12.18], (C) is right and left extending.
Thus, forn > 1, M,,(C) is an example of the ring4 in Theorem 5.

3.5. Theright (and left) SI domain constructed in [3] is an example for the ring
Rs of Theorem 6. However, it is unknown if there is a right SI domain which is
not left SI.

3.6. Let
_|Q R
W= [ 0 RJ

whereQ is the field of rational numbers. Thé#i is a right extending, right CDPI
ring, in particular it is also an example of the riRg in Theorem 6. Furthermore,
by [9, Proposition 3.1]W is left SI. HoweverW (with an essential left socle) is
not left artinian. Hence by Theorem @, is not a left CDPI ring.

Unlike the ringsT in Section 3.1 in Section 3.2 and/ in Section 3.3, the
right injective hull of the ringW in Section 3.6 is an infinitely generated right

W-module. In particular, the riny/ provides an example of a right artinian ring
which has a uniform infinitely generated right module.
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Moreover, thougtW is a right extending ringl¥ @ W is not an extending right
W-module, because, otherwi®é would be a right coH ring. By [16], W must
be left artinian, but this is impossible.

3.7. Let H be the algebra of quaternions orThen the ring

R H
y = [0 R}
is right and left artinian, right and left SI. However, since the indecomposable
direct summandi1Y of Yy and the indecomposable direct summafed, of y Y
both have composition length B,is neither right nor left CDPI (cf. Theorem 6).

Another example for a right and left artinian right and left Sl ring, that is neither
right nor left CDPI, is the ring

R 0 C
[o R C]
0 0 C

This ring is a subring of the right CDPI ringg in Section 3.2.
Examples in Sections 3.6 and 3.7 suggest the following question.

Question. Let R be aright and left artinian, right and left Sl ring.Rsnecessarily
left CDPI if R is right CDPI?
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