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Abstract

This paper deals with the bias correction of the cross-validation (CV) criterion to estimate the predictive
Kullback–Leibler information.A bias-corrected CV criterion is proposed by replacing the ordinary maximum
likelihood estimator with the maximizer of the adjusted log-likelihood function. The adjustment is just slight
and simple, but the improvement of the bias is remarkable. The bias of the ordinary CV criterion is O(n−1),
but that of the bias-corrected CV criterion is O(n−2). We verify that our criterion has smaller bias than the
AIC, TIC, EIC and the ordinary CV criterion by numerical experiments.
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1. Introduction

Let �(y) be the probability density function and yi (i = 1, . . . , n) be a p×1 observation vector
drawn from �, where n is the sample size. The true model is expressed as

M∗ : yi ∼ i.i.d. �(yi ), (i = 1, . . . , n). (1)

We consider a family of parametric models F = {f (y|�); � ∈ � ⊂ Rq}, where � = (�1, . . . , �q)′
is the q-dimensional vector of unknown parameters. A candidate model is expressed as

M : yi ∼ i.i.d. f (yi |�), (i = 1, . . . , n). (2)

Akaike’s information criterion (AIC) proposed by Akaike [1,2] has been used universally for
choosing the best model from the candidate models. It is well known that the AIC is an estimator
of the risk based on the predictive Kullback–Leibler (K–L) information (see [8]), which measures
the discrepancy between the true model M∗ and the candidate model M. However, AIC has a
constant bias for the risk when the candidate model is misspecified (see e.g., [11,12]). Takeuchi
[12] revaluated the bias correction term of AIC under the situation that F does not contain �(y),
and proposed the Takeuchi’s information criterion (TIC) by replacing the AIC’s bias correction
term with the revaluated term. The TIC is an asymptotically unbiased estimator for the risk if yi’s
are i.i.d. However, Fujikoshi et al. [5] pointed out that TIC in normal regression models hardly
corrects the bias in actual use, because its bias correction term mainly consists of an estimator of
the fourth cumulant of the true distribution. Such an estimator tends to underestimate too much,
even if the sample size n is moderate (see [15]).

Like TIC, the cross-validation (CV) criterion proposed by Stone [10] is known as an asymptot-
ically unbiased estimator for the risk (see [11]), although there are no estimators of higher-order
cumulants in the CV criterion. Therefore, unlike TIC, the CV criterion can correct the bias effi-
ciently. Using the better property of the CV criterion, Yanagihara [14,15] proposed new criteria
which are partially constructed by the cross-validation method, and which are slightly influenced
by the difference between �(y) and f (y|�). However, a bias for the risk exists also in the CV cri-
terion. Fujikoshi et al. [4] corrected the biases of the CV criteria in normal multivariate regression
and GMANOVA models. The purpose of our paper is to reduce the bias in the CV criterion under
a general condition without adding any correction terms. We replaced the maximum likelihood
estimator (MLE) of � with the maximizer of the adjusted log-likelihood function, and thus propose
a bias-corrected CV (corrected CV, CCV) criterion. The adjustment is merely to change a weight
of the weighted log-likelihood function, but the improvement of the bias is remarkable. The bias
of the ordinary CV criterion is O(n−1), but that of the CCV criterion is O(n−2).

This paper is organized in the following way. In Section 2, we describe the risk based on the
K–L information and usual information criteria. In Section 3, we state the derivation of CCV
criterion and its asymptotic property. In Section 4, we verify that CCV criterion has smaller bias
than other criteria, namely, the AIC, TIC, (the extended information criterion (EIC) [6]) and CV
criterion by numerical experiments.

2. Risk and usual information criteria

Let L(�|Y, d) be a weighted log-likelihood function on f (yi |�) given by

L(�|Y, d) =
n∑

i=1

di log f (yi |�), (3)
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where Y = (y1, . . . , yn)
′ and d = (d1, . . . , dn)

′. Let 1n be the n × 1 vector, all of which elements
are 1. For simplicity, let us express L(�|Y) = L(�|Y, 1n). The MLE of � is obtained by maximizing
the ordinary log-likelihood function L(�|Y), i.e.,

�̂ = arg max
�

L(�|Y). (4)

Let ui be a p×1 future observation vector and U = (u1, . . . , un)
′.We assume that U is independent

of Y and ui’s are independently and identically distributed according to�. Note that the distribution
of ui is the same as that of yi . Then, the risk based on the predictive K–L information, which
measures the discrepancy between the true model M∗ and the candidate model M is defined by

RKL = E∗
yE∗

u
[
−2L(�̂|U)

]
, (5)

where E∗ means an expectation under the true model M∗.
The AIC proposed by Akaike [1,2] is a simple estimator of the risk RKL, and is given by

AIC = −2L(�̂|Y) + 2q. (6)

However, if the candidate model is misspecified, AIC has a constant bias, i.e.,

BAIC = RKL − E∗
y[AIC] = O(1) (7)

(see e.g., [11,12]). This is mainly because Akaike [1,2] derived AIC under the condition that the
candidate model is correctly specified. Takeuchi [12] revaluated the AIC’s bias correction term,
2q, under the situation that F does not contain �(y), and proposed TIC as follows: Let

g(yi |�̂) = �
��

log f (yi |�)

∣∣∣
�=�̂

, H(yi |�̂) = �2

�� ��′ log f (yi |�)

∣∣∣
�=�̂

. (8)

Under the candidate model M, TIC is given by

TIC = −2L(�̂|Y) + 2 tr(Ĵ(�̂)−1Î(�̂)), (9)

where

Ĵ(�̂) = −1

n

n∑
i=1

H(yi |�̂), Î(�̂) = 1

n

n∑
i=1

g(yi |�̂)g(yi |�̂)′. (10)

Takeuchi [12] showed that TIC is an asymptotically unbiased estimator for the risk RKL if yi’s
are i.i.d., i.e.,

BTIC = RKL − E∗
y[TIC] = O(n−1). (11)

On the other hand, Stone [10] proposed the CV criterion in the following way. Let �̂[−i]
be the MLE of � evaluated from ith jackknife sample. Note that �̂[−i] is the maximizer of∑n

j �=i log f (yj |�), i.e.,

�̂[−i] = arg max
�

L(�|Y, 1n − ei ), (12)
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where ei is the n× 1 vector whose ith element is 1 and the other elements are 0. The CV criterion
is given by

CV = −2
n∑

i=1

log f (yi |�̂[−i]). (13)

Stone [11] pointed out that the CV criterion is an asymptotically unbiased estimator for the
risk. From the result in Stone [11], we can see that the TIC and CV criteria are asymptotically
equivalent, i.e., CV = TIC + Op(n−1). Therefore, from Eq. (11), the bias of the CV criterion is
given by

BCV = RKL − E∗
y[CV] = O(n−1). (14)

We can see that the order of bias of CV is the same as that of TIC. However,Yanagihara [15] showed
that the CV criterion in normal regression models has smaller bias than TIC by investigating the
asymptotic expansions of biases for the risk. In order to get TIC, we must estimate higher-order
cumulants. However, the ordinary estimators of higher-order cumulants tend to underestimate too
much, even if the sample size n is moderate. Consequently, TIC tends to have large bias. Needless
to say, we can obtain the CV criterion without estimating higher-order cumulants.

3. Bias correction of the CV criterion

3.1. Asymptotic expansion of the bias of the CV criterion

In this section, we propose the bias-corrected CV (CCV) criterion by replacing �̂[−i] in the
CV criterion with the maximizer of another weighted log-likelihood function. First, in order to
correct the bias of the CV criterion, we derive an asymptotic expansion of its bias up to the order
n−1. Let �0 be the q × 1 vector such that

E∗
y
[
g(y|�0)

] = 0q, (15)

where 0q is the q × 1 vector, all of which elements are 0. Note that �̂ converges to �0 almost
surely as n goes to infinity (see [13]). Then, we obtain an asymptotic expansion of the bias of the
CV criterion up to the order n−1 in the following theorem.

Theorem 1. Under the regularity conditions, the bias of the CV criterion is expanded as

BCV = RKL − E∗
y[CV] = −1

n
tr(J(�0)

−1I(�0)) + O(n−2), (16)

where

J(�0) = −E∗
y
[
H(y|�0)

]
, I(�0) = E∗

y
[
g(y|�0)g(y|�0)

′] .
Proof. Let

K̂(�̂) = −1

n

n∑
i=1

(
�

��′ ⊗ �2

�� ��′

)
log f (yi |�)

∣∣∣
�=�̂

.

Using the Taylor expansion, we obtain the perturbation expansion of �̂[−i] as

�̂[−i] = �̂ − 1

n
z1,i − 1

n2 z2,i + Op(n−3), (17)
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where

z1,i = Ĵ(�̂)−1g(yi |�̂), z2,i = Ĵ(�̂)−1
{

1
2 K̂(�̂)vec(z1,iz′

1,i ) − H(yi |�̂)z1,i

}
.

Here, g(yi |�̂) and H(yi |�̂) are given by (8), and Ĵ(�̂) is given by (10). Since the distributions of
yi and ui are the same, the commutative equation E∗

y[log f (yi |�̂[−i])] = E∗
yE∗

u[log f (ui |�̂[−i])]
holds. Therefore, using the Taylor expansion and Eq. (17), E∗

y[CV] is expanded as

E∗
y[CV] = RKL + R1 + 1

n
R2 + O(n−2), (18)

where

R1 = 2

n

n∑
i=1

E∗
yE∗

u
[
g(ui |�̂)′z1,i

]
,

R2 = 1

n

n∑
i=1

E∗
yE∗

u
[
2g(ui |�̂)′z2,i − z′

1,iH(ui |�̂)z1,i

]
.

Note that
∑n

i=1 z1,i = 0q because �̂ is the MLE, i.e.,
∑n

i=1 g(yi |�̂) = 0q . Therefore, taking a
conditional expectation of g(ui |�̂) for Y as � = E∗

u[g(ui |�̂)|Y], we obtain

R1 = 2

n

n∑
i=1

E∗
y
[
E∗

u
[
g(ui |�̂)′z1,i

∣∣∣Y]] = 2

n

n∑
i=1

E∗
y
[
�′z1,i

] = 0. (19)

On the other hand, by using the equation �̂
a.s.→ �0 (n → ∞), R2 is expanded as

R2 = 1

n

n∑
i=1

E∗
yE∗

u
[
2g(ui |�0)

′z2,i − z′
1,iH(ui |�0)z1,i

]+ O(n−1).

From Eq. (15), the first term on the right side of the above equation disappears. Moreover, using
equation Ĵ(�̂)

a.s.→ J(�0) and Î(�̂)
a.s.→ I(�0) (n → ∞), we derive the following equation:

1

n

n∑
i=1

E∗
yE∗

u
[
z′

1,iH(ui |�0)z1,i

] = −tr(J(�0)
−1I(�0)) + O(n−1).

Therefore, R2 is expanded as

R2 = tr(J(�0)
−1I(�0)) + O(n−1). (20)

Substituting Eqs. (19) and (20) into (18) yields

E∗
y[CV] = RKL + 1

n
tr(J(�0)

−1I(�0)) + O(n−2). (21)

Consequently, the result (16) in Theorem 1 is obtained. �

Because − log f (y|�) is strictly convex with respect to �, the matrix H(y|�) is positive definite
(see e.g., [9, p. 49]). It makes the inequality tr(J(�0)

−1I(�0)) > 0. Consequently, the CV criterion
tends to overestimate for the risk RKL.
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3.2. Corrected CV criterion

Next, we propose a new criterion, CCV criterion, which always corrects the bias for the risk
RKL to O(n−2). Theoretically, we can correct the bias in the CV criterion by subtracting the
term n−1 tr(Ĵ(�̂)−1Î(�̂)) from the CV criterion. However, we can easily forecast that the bias is
not fully corrected by such a plug-in estimator because tr(Ĵ(�̂)−1Î(�̂)) must have a large bias
for tr(J(�0)

−1I(�0)), even if the sample size n is moderate. The reason for this is the same as
the reason that TIC does not reduce the bias enough in actual use. Therefore, we need to pre-
pare other methods to correct the bias without estimating tr(J(�0)

−1I(�0)). From Eq. (12), we
notice that �̂[−i] removes the influence of yi perfectly. However, we consider that the effect
of yi should not be removed completely because RKL in (5) is not the predictive K–L infor-
mation measuring the discrepancy between �(u) and f (u|�̂[−i]), but, rather, �(u) and f (u|�̂).
Thus, we use the estimator obtained by maximizing another weighted log-likelihood function,
in which the influence of yi remains for a while. Consequently, we propose the following CCV
criterion.

Definition. Let �̃i be the estimator of � by maximizing the weighted log-likelihood function as

�̃i = arg max
�

L(�|Y, 1n − cnei ), (22)

where cn is any constant which can be expanded as cn = 1−1/(2n)+O(n−2). Then, we propose
the bias-corrected CV (CCV) criterion as

CCV = −2
n∑

i=1

log f (yi |�̃i ). (23)

We can see that any estimators of higher-order cumulants are not necessary for obtaining CCV
criterion. However, CCV criterion always corrects the bias to O(n−2), even though there is no
term based on tr(Ĵ(�̂)−1Î(�̂)) in the formula (23). The order of bias of the CCV criterion is obtained
in the following theorem.

Theorem 2. Under the regularity conditions, the order of the bias of the CCV criterion is
given by

BCCV = RKL − E∗
y[CCV] = O(n−2). (24)

Proof. From the definition of �̃i and the Taylor expansion, we can expand �̃i as

�̃i = �̂[−i] − 1

2n2

⎧⎨
⎩ 1

n − 1

n∑
j �=i

H( yj |�̂[−i])

⎫⎬
⎭

−1

g( yi |�̂[−i]) + Op(n−3).

Thus, the perturbation expansion of CCV is given by

CCV = CV + 1

n2

n∑
i=1

g( yi |�̂[−i])′
⎧⎨
⎩ 1

n − 1

n∑
j �=i

H( yj |�̂[−i])

⎫⎬
⎭

−1

g( yi |�̂[−i]) + Op(n−2).
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Therefore, we calculate E∗
y[CCV] as

E∗
y[CCV] = E∗

y[CV] − 1

n
tr(J(�0)

−1I(�0)) + O(n−2).

Substituting Eq. (21) into the above equation yields Eq. (24) in Theorem 2. �

4. Numerical examination

First, we prepare another bias-corrected criterion constructed by the bootstrap method, which
was named EIC by Ishiguro et al. [6]. Let Y�

b (b = 1, . . . , B) be the bth bootstrap sample by

resampling, and �̂
�

b be the MLE of � evaluated from Y�
b, i.e.,

�̂
�

b = arg max
�

L(�|Y�
b). (25)

Then, the EIC is given by

EIC = −2L(�̂|Y) − 2

B

B∑
b=1

{
L(�̂

�

b|Y) − L(�̂
�

b|Y�
b)
}

, (26)

(see e.g., [7]). Through the simulation, we compare the biases and frequencies of the selected
model in our proposed CCV criterion, and also the AIC, TIC, EIC and CV criterion. In this paper,
we deal with the selection of the best model from the candidate models having the elliptical
distribution, i.e.,

f (yi |�) = ap|�|−1/2g((yi − µ)′�−1(yi − µ)), (i = 1, . . . , 20), (27)

where g(r) is a known non-negative function and ap is a positive constant depending on the
dimension p (see e.g., [3]). We choose the best g(r) and ap from the candidate models by
minimizing the information criteria. The candidate models considered are as follows:

Model 1: Multivariate normal distribution,

ap = (2�)−p/2, g(r) = e−r/2.

Model 2: Multivariate logistic distribution,

ap = (2�)−p/2

⎧⎨
⎩

∞∑
j=1

(−1)j−1j1−p/2

⎫⎬
⎭

−1

, g(r) = e−r/2

{1 + e−r/2}2 .

Model 3: Multivariate Cauchy distribution,

ap = �((p + 1)/2)

�(p+1)/2
, g(r) = (1 + r)−(p+1)/2,

where �(x) is the gamma function.

Choosing the best model is equivalent to determining the best weight function in the M-estimation.
Therefore, we will judge whether or not the robust estimation should be performed through
minimizing the information criterion, since the normal distribution is included in the candidate
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Table 1
Biases and frequencies of the selected model according to the criteria

Distribution Criterion p = 2 p = 6

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Normal Risk 120.50a 123.45 132.31 399.91a 405.21 404.71
AIC Bias 2.30 5.54 1.77 37.43 43.81 15.90

Frequency (40.7) (58.5) (0.8) (14.4) (85.5) (0.1)
TIC Bias 3.07 5.34 −0.60 42.04 49.58 −11.84

Frequency (55.8) (43.2) (1.0) (13.3) (86.7) (0.0)
EIC Bias −0.06 0.43 −0.74 1.92 2.43 −0.24

Frequency (65.7) (28.7) (5.6) (55.0) (21.0) (24.0)
CV Bias −0.73 −0.93 −0.40 −4.35 −4.71 −2.37

Frequency (71.4) (21.6) (7.1) (57.4) (4.0) (38.6)
CCV Bias −0.27 −0.30 −0.11 0.49 0.66 −0.79

Frequency (71.0) (22.5) (6.5) (62.8) (5.5) (31.7)

Laplace Risk 125.27 135.24 121.32a 422.27 434.96 387.84a

AIC Bias 9.93 17.42 1.47 67.59 79.65 17.69
Frequency (62.8) (14.0) (23.3) (57.2) (36.4) (6.4)

TIC Bias 8.52 13.66 −0.59 68.07 79.79 −10.49
Frequency (65.4) (9.0) (25.6) (60.7) (38.9) (0.4)

EIC Bias 2.49 4.35 −0.80 11.68 14.22 0.21
Frequency (48.1) (7.0) (44.9) (14.1) (3.6) (82.3)

CV Bias −0.31 −0.57 −0.39 −6.27 −7.12 −1.01
Frequency (46.9) (2.9) (50.2) (17.0) (0.2) (82.8)

CCV Bias 0.71 0.92 −0.11 2.74 3.09 0.58
Frequency (47.9) (3.1) (49.0) (19.9) (0.3) (79.8)

Chi-square Risk 126.92 135.41 122.52a 426.64 437.16 387.63a

AIC Bias 12.06 18.76 2.82 71.44 82.00 17.15
Frequency (39.3) (36.5) (24.2) (35.2) (56.5) (8.3)

TIC Bias 10.61 15.74 -0.31 71.96 82.90 −13.39
Frequency (47.7) (27.8) (24.5) (38.7) (61.1) (0.2)

EIC Bias 2.94 4.76 −0.51 9.74 12.46 −2.21
Frequency (39.5) (18.0) (42.5) (12.7) (6.3) (81.0)

CV Bias −0.76 −1.36 −0.11 −11.56 −13.06 −3.72
Frequency (38.2) (13.8) (48.0) (16.3) (0.8) (82.9)

CCV Bias 0.65 0.67 0.20 −0.21 −0.34 −2.09
Frequency (38.8) (14.4) (46.8) (20.1) (0.9) (79.0)

Log-normal Risk 128.07 137.34 121.90a 427.94 439.32 384.36a

AIC Bias 13.85 21.38 2.71 75.71 87.04 17.12
Frequency (42.9) (33.3) (23.8) (39.4) (52.5) (8.1)

TIC Bias 12.31 18.17 −0.03 76.01 87.57 −12.89
Frequency (49.7) (24.9) (25.4) (43.7) (55.4) (0.9)

EIC Bias 4.68 7.00 −0.19 14.07 16.86 −1.42
Frequency (41.5) (16.2) (42.3) (13.5) (4.6) (81.9)

CV Bias −0.24 −0.83 0.17 −12.92 −14.57 −3.28
Frequency (41.1) (11.3) (47.6) (15.7) (0.7) (83.6)

CCV Bias 1.51 1.70 0.47 −0.31 −0.41 −1.65
Frequency (41.6) (11.9) (46.5) (19.9) (1.2) (78.9)

a Denotes the smallest risk in all the candidate models, and the smallest bias in all the criteria is in bold.
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Table 2
Biases of CV, CCV, CCV′ and CCV′′ criteria

Distribution Criterion p = 2 p = 6 Average

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Normal CV −0.54 −0.73 −0.48 −6.39 −7.01 −2.71 −2.98
CCV −0.08 −0.09 −0.19 −1.49 −1.57 −1.14 −0.76
CCV′ −0.31 −0.47 −0.17 −5.16 −5.81 −0.67 −2.10
CCV′′ −0.21 −0.31 −0.18 −3.99 −4.43 −0.90 −1.67

Laplace CV −1.20 −1.79 −0.31 −8.61 −9.62 −2.75 −4.04
CCV −0.17 −0.29 −0.02 0.16 0.31 −1.16 −0.20
CCV′ −0.91 −1.45 −0.01 −7.27 −8.27 −0.69 −3.10
CCV′′ −0.68 −1.09 −0.01 −5.43 −6.13 −0.93 −2.38

Chi-square CV −0.57 −1.13 −0.03 −10.78 −12.07 −2.86 −4.57
CCV 0.79 0.81 0.28 0.36 0.41 −1.23 0.24
CCV′ −0.29 −0.80 0.30 −9.44 −10.74 −0.74 −3.62
CCV′′ −0.07 −0.38 0.30 −7.35 −8.34 −0.99 −2.80

Log-normal CV −1.14 −2.01 −0.35 −12.91 −14.78 −2.95 −5.69
CCV 0.65 0.58 −0.05 −0.35 −0.67 −1.33 −0.20
CCV′ −0.85 −1.68 −0.03 −11.57 −13.45 −0.86 −4.74
CCV′′ −0.53 −1.20 −0.04 −9.36 −10.90 −1.10 −3.85

The smallest bias in all the criteria is in bold.

models. Let m and S be the p × 1 vector and p × p matrix obtained by maximizing the weighted
log-likelihood function L(�|Y, d) in (3), i.e.,

m = 1

tr(WD)
Y′DW1n, S = − 2

tr(D)
(Y − 1nm′)′DW(Y − 1nm′), (28)

where D = diag(d1, . . . , dn) and W = diag(w(r1), . . . , w(rn)). Here, w(r) = {dg(r)/dr}/g(r)

and ri = (yi − m)′S−1(yi − m). We can obtain �̂, �̂[−i], �̃i and �̂
�

b from formula (28). On the other
hand, we prepare the following four distributions for the true model.

• Normal distribution: Each of the p variables is generated independently from N(0, 1) (�(1)
3,3 =

�(2)
3,3 = 0 and �(1)

4 = 0),
• Laplace distribution: Each of the p variables is generated independently from the Laplace

distribution L(0, 1) divided by the standard deviation
√

2 (�(1)
3,3 = �(2)

3,3 = 0 and �(1)
4 = 2p),

• Chi-square distribution: Each of the p variables is generated independently from the �2 dis-
tribution with 3 degrees of freedom standardized by the mean 3 and standard deviation

√
6

(�(1)
3,3 = �(2)

3,3 ≈ 1.63 × p and �(1)
4 = 4p),

• Log-normal distribution: Each of the p variables is generated independently from a log-normal
distribution LN(0, 1/4) standardized by the mean e1/8 and standard deviation e1/8

√
e1/4 − 1

(�(1)
3,3 = �(2)

3,3 ≈ 1.71 × p and �(1)
4 ≈ 8.90 × p).

Table 1 lists the average risk, the biases of the CCV criterion along with the AIC, TIC, EIC
and CV criterion, and the frequencies of the model selected by the criteria in the cases of p = 2
and 6. These average values were obtained after 10,000 iterations, and the EIC was obtained by
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resampling 100 times. Moreover, we use cn = √
n/(n + 1) as the constant for adjusting �̃i . From

the table, we can see that the biases of AIC were large in all the cases. TIC hardly corrected the
bias in Models 1 and 2. On the other hand, the biases of the CV criterion were smaller than the
biases of AIC and TIC. Especially, the biases of the CV criterion were smaller than the biases of
EIC in most cases. Moreover, when we use the CV criterion for model selection, the frequencies
of the model with the smallest risk selected was the highest in all the criteria. However, the bias of
the CV criterion became large when the dimension p increased. We can see that CCV corrected
the bias efficiently.

Next, we compared several methods for correcting the bias in the CV criterion. We prepared the
following two different bias-corrected CV criteria from the CCV criterion, which were obtained
by adding some bias correction terms

CCV′ = CV − 1

n
tr(Ĵ(�̂)−1Î(�̂)), CCV′′ =

(
1 − 1

2n

)
CV − 1

n
L(�̂|Y).

Note that the CCV′ and CCV′′ criteria correct the biases to O(n−2) as well as the CCV criterion.
Table 2 shows the biases of the CV, CCV, CCV′ and CCV′′ criteria. From the table, we can see
that CCV′ and CCV′′ did not reduce the bias fully when the bias is large. Therefore, the methods
for reducing the bias by adding correction terms should not be used for bias correction. We have
studied several other models and have obtained similar results.
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