Available online at www.sciencedirect.com

Fournal pf”
7 SclENCE@DlRECT' MATHEMAT[CAL
& N ANALYSIS AND
ELSEVIER J. Math. Anal. Appl. 309 (2005) 661673 APPLICATIONS

www.elsevier.com/locate/jmaa

The multi-resolution method applied to the sideways
heat equation

Jinru Wang
Department of Applied Mathematics, Beijing University of Technology, Pingle Yuan 100,
Beijing 100022, PR China
Received 13 May 2004
Available online 20 April 2005
Submitted by U. Stadtmueller

Abstract

We consider the sideways heat equatiQp(x, t) = us(x,1),0< x < 1,¢ > 0. The solution(x, t)
on the boundary = 1 is a known functiorg (¢). This is an ill-posed problem, since the solution—if
it exists—does not depend continuously on the boundary, i.e., small changes on the boundary may
result in big changes in the solution. In this paper, we shall use the multi-resolution method based
on the Shannon MRA to obtain a well-posed approximating problem and obtain an estimate for the
difference between the exact solution and the solution of the approximating problem defined in
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

When an aircraft or a ballistic rocket goes back into the atmosphere from the outer
space, a lot of heat is generated due to the friction between the aircraft and the atmosphere.
As a result, the temperature of the surface of the aircraft can be raised to as high as a few
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thousands degrees. The sideways heat equation may be utilized to estimate how the heat
flow rate (HFR) varies as a function of time.

In fact, it is very difficult to measure the HFR at the surface of the aircraft. However,
it is relatively easy to install some sensors somewhere inside the aircraft to measure the
temperature at that position. To estimate the HFR from the data of the temperature, the
sideways heat equation is established as follows:

uxx(x»t):l"t(xyt), O<x<1, t>oy (1)
u(l,1) =g(), 120,

whereu(x, t) denotes the temperature and Eq. (1) corresponds to a situation in which the
pointx = 0 is inaccessible, but for which one can make a measurement 4t

Let the functiong(¢) andu(x, t) be extended to the whole reabxis by definingg (r)
andu(x,t) to be zero for < 0.

For a functioni(r) € LY(R) N L(R), its Fourier transform is given by

h(E) = h(t)e € dt.

1
21 /
R
Throughout the whole discussion, we will suppose the fungi@n € C2(R) and it has
compact support. Then it is easy to see

Theorem 1.1.

ulx, 1) = §(E)e IVt g

1
N 21 /
R
is the solution of Eq(l), where

Vig = (1+i -signs) ViE1/2

Sincen(x, &) = g(g)eﬂ—x)ﬁ, where+/i€ has non-negative real part and tends to in-
finity as|€| — oo, so the existence of a solutionirf(R) depends on a rapid decay ()
at the high frequencies. However, in practiég (&) is the measured datg,, (£) need not
decay rapidly at the high frequencies, therefore the solution may not exigti). Fur-
thermore, if it exists, it does not depend continuously on the initial condition, i.e., Eq. (1)
is ill-posed. For example (this example is very similaf2$), considering the following
problem:

uxx(x,t):ut(xvt), O<x<1, t>oy (2)
u(l, 1) = gn (1), t >0,
where
cos 2%t
gn(t) = { =7 0< <1,
0, t > to.

The solution of Eqg. (2) is

+o0 €082n%1+j %) [/2n(1—x)]%
un(x,t)z{ZjZO n2 . @ , 01 <o,
0, t > 1p.
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Note that the functiory, (z) converges uniformly to zero astends to infinity, but the
solutionu,, (x, t) does not tend to zero.

However, if we impose an a priori bound on the solutiowith ||« (0, -)||;2 < M and
allow some imprecision in the matching of the data, i.e., we consider the following prob-
lem:

Uy (x, 1) =u;(x,t), 0<x<1 >0,

u(x,0) =0, 0<x <1, (3)
lul,-) —gmll <&,

u(O, )2 <M,

then we have the stability in the following sense: any two solutions of Eq. (3) satisfy [6,7]
|urCe, 1) —ua(x, )| <2M* ¥, 0<x < 1. 4)

Furthermore, Levine [6] had proved that the inequality (4) is sharp (it is also implicit in
the earlier paper by Carasso [7]). Therefore, we cannot expect to find a numerical method
for the approximating solution that satisfies a better error estimate.

Multi-resolution techniques to solving Eq. (1) have been used by L. Elden and T. Regin-
ska [1,3-5], etc. They described a multi-resolution Galerkin method which is based on the
Meyer MRA. It was demonstrated that using the multi-resolution Galerkin method Eg. (1)
can be solved efficiently; they also give a rule for choosing an appropriate multi-resolution
spaceV;. However, up to now, the theoretical results concerning the error estimates were
unsatisfactory. In papers [1] and [3], the results about multi-resolution method were not
better than about the Fourier method; in paper [1], although the authors imposed an addi-
tional assumption on the Meyer wavelet function, the error estimate was not optimal.

In this paper, we will get the optimal error bound and will not impose any additional
assumption on the Meyer wavelet function. In this sense, we think we have less restrictive
assumptions than in earlier papers and get better result.

The outline of this paper is as follows: in Section 2, we introduce the Shannon MRA
and give some useful properties; in Section 3, we shall define a Shannon multi-resolution
solution; in Section 4, we give some useful lemmas; finally, in Section 5, we obtain our
main result.

2. The Shannon multi-resolution analysis

Definition 2.1 [8]. A multi-resolution analysis (MRA) ofL2(R) is a set of increasing,
closed linear subspacé&s C V; 1 for all j € Z, called scaling spaces, satisfying

() N> V= {0y andU>, V; = L2(R);

(b) f(-) e Vpifandonlyif f(2/-) e V; forall j € Z;

(c) f(-)e Wpifandonlyif f(- —k) € Vo for all k € Z;

(d) there exists a functiop (-) € Vo such that{¢o x(¢): k € Z} is an orthonormal basis
in Vo, whereg; (1) = 2//2¢(2/t — k) for all j, k € Z. The functiong(-) is called the
scaling function of the multi-resolution analysis.
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From Definition 2.1, we can see that
Vi=spar{¢jx(kez.  ¢jut) =21%¢(2/t —k), j kel

Moreover, there exists a wavelet functigr(-) € L?(R) determined byp(-) such that the
set of functionsy; x (1) = 2//?y:(2/t — k) (k € Z) satisfy: for fixed;, (¥« (t)}kez is an

orthonormal basis o; which is the orthogonal complement of the spagein V; 1

(Viga=V; @ W)). (¥ x(D)} ] kez is called an wavelet basis af(R).

Let the orthogonal projection df2(R) onto V; and f/j = spar{é)j,k(-)}kez be denoted
by P; and P;, respectively, i.eYf(-) € LA(R),
Pif(t)=> (fr¢i)biu(®).  Pif()=> (f.¢j)dx().

keZ keZ

ltis easy to se@; f () = P, f(£).
~ Inthis paper the Shannon MRA will be applied. The Shannon scaling functipm)s=
S0XL and its Fourier transform is

s | L lElI<T,
=15 g

The corresponding wavelet functign(¢) is given by

&(g):{e_i%, w <& < 2,

0, 0.W.
Then we have the following properties:

(1) Foranyk € Z,

suppp; «(§) = {&: €] <m2/}, suppy; (€)= {&: 72/ < |&| <2/t

i.e., P; can be considereal low pass filter
(2) V() e LAR),

FO=Y (00860 + YD (f v v ).

keZ 1>] kel

(3) Foranyj € Z,
PifE) =f®), €l <2

3. A multi-resolution solution

In this section, we shall define a multi-resolution solution based on the Shannon MRA.
Let the infinite-dimensional matri®; is given by

{(Dj)[’k(x)}leZ,keZ ={{¢}., . d)j’k(t))}leZ,keZ’

where¢ (-) is the Shannon scaling functiop; (1) = 2/12¢(2/t — k). Then we have
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Theorem 3.1.

@) D)) ==D)ri(x), (D)) (x)=(Dj)—r0x), 1, k eZ,

(b) IDjIl <7227+,

(c) let f1(-) and f»(-) are the real continuous functions ¢a22/+1, 722/ (E; )} cr
denotes the eigenprojection family of the Hermitian operatoD ;. Define

r@ia) =: f1d) +if2(d),

n22_j+l n22j+l
r(D;) =: f r(iV)dE), = / [f2() +if2(M)]dE;.
—22j+1 —22j+1
Then we have
r(D)| < max r@iA)|.
lropl<_, max - lr)

Proof. (a) and (b) follow closely the proof in [3].
(c) Define the matrixA =: —i D;, itis easy to sed is a Hermitian matrix, i.e.,
AT =(=iDj)T =iD] =—iD; = A.
By the spectral theorem [9], we have
].[22j+l
A= / LdE;,
—22j+1

whereE) is a spectral family about.
It follows that

7.[22_/'+:|.
D= / irdEj.
—22j+1

722i+1

If () is a continuous function and D;) =: ™ 5,117 (i) dE;, then

2 " ,
= <Zr(i?»j)AE,\jx, Zr(i)»,-)AE,\jx>

j=1 j=1

n

> A AE;,x

j=1

n
. 2 . .
=Z’r(lkj)’ (AE;;x, AE);x) (AEyAE,; =0, i# j)
j=1

n
. 2
< omax |r(ir)|"Y (AE;x, AE, x)
_n22/+1<A<n22_/+1 : a

n n
. 2
= max @A) D AExx. Y AE;x
,n22_j+1<)\<n22j+1 o o
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(AE;, AE;; =0, i # j)

n
2

- —n221+1r2?én221+1 ’r(l)”j)’ Zl AEy;x
j:

= _omax e,

- 2}+1<)\<n22/+1
Therefore
lr(Dp| < max r@n)). o

,n22_j+l<)\<n22j+l

Now we defined:;(x, ) € V; to be the Shannon multi-resolution solution of Eq. (1)
for g(v), i.e.,

i, ) =: Y cx(x)pji(t),
keZ
where the infinite-dimensional vector
720i+1
c(x) = {0} =¥ A=Wk g,
_g22j+1

y ={r®}op={e®). 0k D)},

then we get

Theorem 3.2. The infinite-dimensional vecterx) is the solution of the following system

{cxxszc, 0<x <1,
c)=y.

Proof. (i) Firstly, we prove

220041
=y / (—im)eT Wit g,
—r22j+1
In fact,
29j+1 29j+1
me2* X = ANWVIE _ A=)k m“2* .
v [ " :|dE,\ —y f (—ir)e=Vir g g,
X
—22j+1 —22j+1
n,22j+1
A—x—Ax)Vir _ ,(A—x)Vik
e e -
=y / [ ~ —(—\/i,\)e“‘”m} dE;,
X

—r22j+1
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722J

+1
e(l—x—Ax)m _ e(l—x)m
Ax

<7l

_ (_m)e(l—x)«/ﬁ} dE,

—r22j+1
e(l—x—Ax)ﬂ _ e(l—x)ﬂ

<yl max — (=~ /i)»)e(l_x)m =0
[A|<22/+1 Ax
(Ax — 0).
So
72241
=Yy / (—~/i)»)e(1_x)dek,
—22j+1
Similarly
w2211
Cxx =Y / (i)»)e(l_x)de;\.
_x20j+1

On the other hand, by using the spectral theorem [9], it is easy to see

722i+1 722j+1

ch=< / ixdEA)(y / e(l_x)de;)
_p20j+1 _p20j+1
n22j+1
—y / (V)= Vitgp,
_p20j+1
Therefore
cxx = Djc.

(ii) By the definition of the spectral family, we have

7.[22j+1 n22j+l
c)=y / e(lfl)‘/adE;tzy / dE, =y. O
—r22j+1 —22j+1

4. Auxiliary lemmas
In order to obtain our main result, in this section, we shall give some useful lemmas.

Lemma 4.1 [10]. Let f(r) € L2(R) have a Fourier transformf (&) € LY(R), then
> wez{fs bmn)bmn () — f(t) uniformly onR.

Lemma4.2. Letu(x, r) be the exact solution of E¢L), then we have

@ @ = () xx;
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(b) (Pju)xx = Pj(“xx)?
(c) Pju satisfies the following equation

(Pju)xy = Pj(Pju);, 0<x<1, t2>0,
Pju(l,t)=Pjg(t), t>0.

Proof. (a) can be proved easily.
(b) can be obtained immediately by Lemma 4.1 if wef€t) = u,,(x, t).
(c) By (b) andu(x, t) satisfies the following equation:

urxx(x,t) =u;(x,t), 0<x<1, >0,
u(l, 1) =g(@), t>0.

We know P;u(x, t) satisfies:
(Pju)xx = Pj(Pju); + P;[(I — Pj)ul;, O0<x <1, t2>0,
ijt(l,l‘):Pjg(t), t>0.
Using Pju(x, &) = i(x, £), |&| <72/ and supgh; (&) = {&: |£] < 72/}, we have
| ;[ = Ppul, |72 = [ Prigta — Prue |7
— o =12 — o =2
= |[Pjig@ — Py <2 T | Pji i — P./”>||\§\>n2/
=0.
So Pju(x,t) satisfies:

(Pju)xx =Pj(Pj”)ta 0<x<1, 120,
Piu(l,t)=P;g(t), t>0.

Since we supposg(é) has compact support, ¥ € N such that supfp € [-727,
727]. Then we have the following results:

Lemmad4.3. Letg (&)e=9ViE e C2(R), suppi € [-72’, 72’1, J € N. Thenifj > J, we
have) ", ., bk (x)d)}’k(t) uniformly convergent one R, whereby (x) = (u(x, 1), ¢; x(1)).

Proof. (i) Firstly we proved", . bk (x)| < +oc.
Since(&)eVif ¢ C2(R) and sup@ C [-72/,72’], J €N, then if j > J, we
have

be(x) = (u(x, 1), ¢j (1) = (i(x, £). ;1 (&)

w2/ 0 w2/
= f ii(x, £)e /% dE =0+ — / fig (x, £)e /7 ag
-2/ -2/
~ _ w2/ R . i
= ﬁ[”%‘ (x,8)e lké/zj]inzj T2 uge (x,8)e ikg/2 d&
—2J
= 221'@

k2 -
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Hence) ;. bk (x)| < +o0.

(i) Since
, 31 7 (2/t + k) cosm(2/t + k) — sinmw (27t + k)
b ) =22=Y"bp :
kg k() 4 (1) ”k% k() I
Py 7 (27t +k)cosw (27t + k) — sinm (2t + k)
- ( Zb() @1+

1 7 (27t —k)cosn (27t — k) — sinm (2t — k)
+—Zbk(X) 21— k)2 )

3y
=22 (I1+I2),

then if j > J, we getl; uniformly convergent om € R.
Now we considet,. For anyeg, Vk € Z: if |2/t — k| < &g, then we have

lfb ( )71'(2jt —k)cosm (2t —k) — sinm (2t — k)
K @2t — k)2

1% 2it —k)[1—
=;Zbk<x>{”( )l
k=0

_ [t (21 —k) — w]
(27t —k)?

209j 112 PR Y.
b4 (212t! k) + (cosf;‘)n4§21t k) ]

(27t —k)?

== Zbk(x) c1(27t — k) + ca(2t — k)],
T =0
therefore we obtair[j,‘f:"?J by (x)(b}‘k(t) uniformly convergent on2/t — k| < go. On the
other hand, if2/t — k| > ¢g, we have

< B )n(zft—k) cost (2/t — k) — sin(2/t — k)

— | 2/t —k)?

=2 cosw(zft k) sinT(2/t — k)
Z}bk(x” ’+Z|b ( )| (2” k)2
=0

1
2/t —k

+o00
=2 |bi(x)|
k=0

therefore we obtanZ 0 bk (x)¢0 () uniformly convergent om/t —k| >egp. O
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Lemma4.4. Let Pju(x,t) =Y yoyz bi(x)$; k1), suppi € [—w2/, 72’], J € N. Then if
j = J, we have the infinite vecténx) satisfies

{bxxszb, 0<x <1,
b=y,

where the infinity vectob(x) = {by(x)}kez =: {{u(x,1), ¢k (O)}kez, ¥ = {y (O)}rez =:
{(g(@®), @k () }kez-

Proof. Note thatP;u(1, ) = P;g(t), we have
D b t) = (8(). ¢k ())b)x (1)

keZ keZ
= bk(1)=<g(t),¢j,k(t)> = b =yvy.
By Theorem 4.1 (leff (1) = uyx (x, ¢)) and Lemma 4.3, we obtain

(Pju)ey = (Zbk(xw,-,k(r)) =Y b)),

keZ XX kel
Pi(Pju)i =Y ((Pju), ¢ k(D) x(0)
keZ

> b (X)jm (r)) , ¢j,k(t)>¢j,k(f)
t

2z

= Z< Z bin (X)) (1), ¢,~,k(t)>¢j,k(t)

keZ *meZ
= Z( > (D )mikbm <x>)¢,-,k<t>.
keZ “meZ
Thereforeb) (x) =3, c7(D))mkbm (x), i.€.,byx = Djb. O

5. Main result

In this section, the main result will be given.
Letu;(x, ) be the Shannon multi-resolution solution ), v; (x, t) be the Shannon
multi-resolution solution for the measured data(1), i.e.,

v, 1) =) () a(D),
keZ
where the infinite-dimensional vector
7T22_f+1

em (@) = {cf, (O}, ey = Vm =ik g,

—22j+1
Y = Ym0} =2 {{&m (), ¢4} r-

The following theorem indicates that the Shannon multi-resolution solution which we have
defined is stability.
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Theorem 5.1 If ||g(t) — gm ()| .2 < & and j = j(e) is such that

2
2/ = 12 (Iog M)
T

then we have

”uj(x,t) vj(x, t)”Lz <MY

Proof. Sinceu;(x,t) andv;(x, t) are given by

e, )=y cx@Pii(), v =y " (x)pj (1),

keZ keZ
then we have
n22j+1
ujx,t) =vj(x, 0| 2=|emx) —cX) |2 =|(Vm — ¥ e . A
Juj .00 = 020l 12 = fen) = el = | =) [ e¥Pag
—q22j+1 2
720+l
< cAVEAE |y =y
12

22j+1

< max eV | Pign(n) — Pig)]

| Lm22/+L
< max |€(1_x)ﬂ|8= max MV T
A <m22/+L |A|<w22/+1

< e(l )C)JTZ%

Using
2
Zj=i2<log%> ,
T &
we get
”uj(x 1) —vj(x, t)”Lz < MYer, g

Note. If fluj, (x, 1) —vj (x, )l 2 < < Mgy andjz > j1, then|luj,(x, 1) — v, (x, )l 2 <
Ml—xgx

Theorem 5.2. If j = j(¢) is such that

C2(  M\?
21=—<Iog—>,
T &

then we have

||u(x 1) — Pju(x, t)HLz < MYEr,



672 J. Wang / J. Math. Anal. Appl. 309 (2005) 661-673

Proof. SinceP; is an orthogonal projection anﬁj\u(x, £) =h(x, &) for |E| < w2/, then
we have

i, §) — Piu.6)|7. = | - Bpxf ©acx. )7
N 2
<xf ©ace, e,
whereX;’(S) denotes the characteristic function of the intefwe?/, +00).

Note that the Fourier transform of the exact solutidmas the fornﬁ(s)e(lf’f)ﬁ, then
the above inequality reduces to

||u(x, 1) — Pju(x, t)||i2 =

Jutx,0) = Putx, 0|2,

< [ @t Pae= [ o goed Pa

&1 =72 &1 >m2]
< [ e s < VT
£eR
the last inequality is becauge€s) has compact support.
Using
o2 M2
2 =— (Iog —) ,
T &
we get
JuGx.t) = Pjux, 0] . <M e*. O

In this paper, we are interested in the norm estimation of the distance between the
Shannon multi-resolution solutiar (x, ¢) for the measured datg, (r) and the unknown
solutionu(x, t) of Eq. (1) for the exact data(z). Letu ;(x, t) denote the Shannon multi-
resolution solution for the exact dag#), we have

”u(xv ) - Uj(-xv ')”LZ < ||M(x, ) - Pju(xs ')HLZ + ”Pju(-x’ ) - uj(-xv ')||L2
+ Huj(-xv ) - Uj(-x’ ')”LZ’
therefore it remains to estimate the second one, i.e., the norm of the function
wx,t)=: Pju(x,t) —u;(x,1).
Theorem 5.3. Let suppi € [-72/,72/], J e N. Then if j > J, we havePju(x,t) =
uj(x,r).
Proof. Definew(x, ) =: Pju(x,t) —u;(x,t), then

wx, 1) =Y br()pjk(t) = Y cx(@)pj(t) =Y _[br(x) — cx(x)] ;4 (1)
keZ keZ keZ
=Y wk(X)gjx(0),
keZ
wherewy (x) = bi(x) — cx(x), k € Z.
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By Theorem 3.2 and Lemma 4.4, we obtain the infinite-dimensional vectoy =
{wg (x) }rez Satisfies:

wyy =Djw, 0<x <1,
w(l) =0.
29j n
As in the proof of Theorem 3.2, we have(x) = y fiﬁ,?’zﬁl =V g, andy =0.
Hencew =0, i.e.,Pju=u;. O

Theorem 5.4. Let(£)eVi& ¢ C2(R), suppi € [-72/, 7271, J €N, ||g—gmll 2 <e&.
Thenifj = j(e) > J is such that

.2 M\?
21=—<Iog—),
T &

we have

||u(x, 1) —vj(x,1) HL2 <2MYF e,

Proof. By Theorems 5.1-5.3, the result is immediately obtained.
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