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Abstract

For a 3nite group G, and a commutative ring R, the automorphisms of G inducing an inner
automorphism of the group ring RG form a group AutR(G). Let Autint(G) = AutA(G), where
A is the ring of all algebraic integers in C. It is shown how Cli7ord theory can be used to
analyze Autint(G). It is proved that Autint(G)=Inn(G) is an abelian group, and can indeed be
any 3nite abelian group. It is an outstanding question whether AutZ(G) = Inn(G) if G has an
abelian Sylow 2-subgroup. This is shown to be true in some special cases, but also a group G
with abelian Sylow subgroups and Autint(G) �= Inn(G) is given. c© 2001 Elsevier Science B.V.
All rights reserved.

MSC: 20E36; 16S34; 16U70

1. Introduction

The normalizer of a 3nite group G in the units of its integral group ring ZG is
an interesting object. Its study includes the study of central units, which is already a
very di?cult and broad subject. Moreover, there is an apparently “small” quotient of
the normalizer, naturally isomorphic to a certain subgroup of Out(G), which measures
the extend to which there are “non-obvious” units normalizing G. It has been studied
already in [8,12,14,17,19,25].

The aim of this paper is to get a better understanding of when this quotient is
non-trivial, since a close investigation of certain examples led to the construction of
the 3rst counterexample to the so-called “isomorphism problem for integral group rings”
[8,9], and that is where our interest stems from. More generally group rings RG are
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considered, where R is a G-adapted ring, that is, an integral domain of characteristic
0 in which no prime divisor of |G| is invertible. Typical examples of G-adapted rings
are

• R=Z�, the semilocalization of Z at a 3nite set � of primes containing the set �(G)
of prime divisors of |G|, i.e. the intersection of the localizations Z(p) = {a=b: a; b ∈
Z; (p; b) = 1}, with p ∈ �;

• R = O, a ring of integers in an algebraic number 3eld.

One reason for this is that it has been conventional wisdom in the community of
researchers in this area that Z� is as good as Z (cf. [27, p. 267]), while at the same
time it is much easier to work with the semilocal ring Z�G.

To be more precise, the following notation is introduced. For a commutative ring R,
let AutR(G) be the group of automorphisms of G which induce an inner automorphism
of RG. The quotient OutR(G) = AutR(G)=Inn(G) – changing ‘A’ to ‘O’ will always
have this 3xed meaning – has two natural interpretations:

• OutR(G) is the kernel of the natural map Out(G) → Out(RG);
• OutR(G) ∼= NU (G)=G · CU (G), where U = U(RG) is the group of units in RG.

In particular, OutR(G)=1 means that the units in RG normalizing G are the ‘obvious’
ones. Note that AutR(G) is always contained in AutQ(G) = Autc(G), the group of
class-preserving automorphisms (cf. [12, Proposition 2.5]). Hence, from now on, it is
assumed that R is G-adapted, aiming for a nice blending of group theory and ring
theory. A group G is said to have the normalizer property (NP) if

OutZ(G) = 1; or; equivalently; NU(ZG)(G) = G · Z(U(ZG)): (NP)

This may as well be understood as the normalizer problem, i.e. the problem to ‘deter-
mine’ in some sense the groups G with (NP), a subject of research initiated by the
questions [12, Question 3.7; 28, Problem 43].

By the way, there is an analog of the normalizer problem for so called unitary sub-
groups of integral group rings, which is discussed in [16], but there, ‘counterexamples’
are easily found.

Finding groups which does not satisfy (NP) is a di?cult task. In positive direction,
it has been shown that (NP) holds for groups with a normal Sylow 2-subgroup [12,
Theorem 3.6], and for groups whose generalized Fitting subgroup is a p-group [8,
4.2.4]. In both cases, the proof relies on the following result, which is essentially due
to Coleman [3].

Lemma (Coleman [3]). Let P be a p-subgroup of G; and let S be a commutative
ring with pS 	= S. Then NU(SG)(P) = NG(P) · CU(SG)(P).

(In this form, it appears 3rst in [26, Proposition 1.14]; see also [12, Proposition
2.3].) It means that a unit of the group ring SG normalizing P acts by conjugation on
P like a group element g ∈ G.
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The automorphisms of G whose restriction to any Sylow subgroup equals the re-
striction of some inner automorphism of G form a characteristic subgroup AutCol(G)
of G. Coleman’s result shows that AutR(G) ≤ AutCol(G) (recall that R is G-adapted),
which may justify the notation (occasionally, automorphisms of AutCol(G) are called
Coleman automorphisms, for short). This important fact is recorded explicitly:

AutR(G) ≤ Autc(G) ∩ AutCol(G): (∗)
Roggenkamp and Zimmermann [25] realized that the question whether OutR(G) is
trivial or not can be attacked by using some kind of a general theory (an improved
and simpli3ed version is given by Proposition 2.6). They furnished examples of 3nite,
three-step abelian groups G with OutZ�(G) (G) ∼= C2, and hence also with OutO(G) ∼=
C2 for some suitable chosen ring O of integers in an algebraic number 3eld
(cf. Theorem 2.1).

This result indicates that there ‘should be’ groups which do not satisfy (NP). Never-
theless, it took some more time until it was shown that OutZ(G) = 1 for their groups
G, and the following was proved [8, 4.5, Theorem A; 9]: there are 9nite groups G
with OutZ(G) 	= 1. One example is a metabelian group of order 225 ·972; with normal
Sylow 97-subgroup.

It should be remarked that if OutZ(G) 	= 1, then G is necessarily of even order. This
follows from the following result of J. Krempa (a proof is given in [12, 3.2 Theorem]),
since each prime divisor of the order of Autc(G) divides |G| [11, I 4 Aufgabe 12].

Lemma (Krempa). OutZ(G) is an elementary abelian 2-group.

Krempa’s result has recently been generalized by Mazur [19]. In particular, if O is
a ring of integers in a number 3eld K such that the complex conjugation is central
in the Galois group of the normal closure of K , then OutO(G) is again an elementary
abelian 2-group.

An old problem, posed 3rst by G. Higman in 1940, is the “isomorphism problem for
integral group rings”. Given 3nite groups X and Y , is it true that ZX ∼= ZY implies
X ∼= Y ? Though exciting results in positive direction have been achieved, it is now
known that in general the question has a negative answer: a counterexample has been
given in [8,9]. It is not intended to go into details, but a few words may be in order.
In this work, non-isomorphic groups X and Y of order 221 ·9728 are constructed which
have isomorphic group rings over Z. Though the main idea for the construction of X
is based on the pioneering feat of Roggenkamp and Scott (cf. [15,22,27]), a substantial
part of the construction involves a group G¡X with OutZ(G) 	= 1. It follows that
counterexamples which are constructed in that way must be necessarily of even order,
by Krempa’s result. Thus, the isomorphism problem for 3nite groups of odd order is
still open.

It should be remarked that to that time, it has been known that a group G with
OutR(G) 	= 1 gives rise to non-isomorphic (in9nite polycyclic) groups X =G×Z and
Y with RX ∼= RY . This observation of Mazur [18] has been re3ned in [8,9] insomuch
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that it is also applicable to 3nite groups (but then, one has to deal with NU(RG)(G) in
more detail).

The isomorphism problem may be formulated just as well for group rings OX , with
O being the ring of integers in an algebraic number 3eld, and then one may ask for
counterexamples. In this context, the subgroup Autint(G) ≤ Aut(G), consisting of those
� ∈ Aut(G) which induce an inner automorphism of some group ring OX , with O as
above, should play an important role.

In Section 2.2, it is proved that Outint(G) is contained in the center of Outc(G). In
particular, Outint(G) is an abelian group, and examples are given showing that Outint(G)
can be indeed any 3nite abelian group, in contrast to Krempa’s result. Hence, further
investigations may very well lead to counterexamples to the isomorphism problem for
OG, with G 3nite of odd order.

In Section 2, it is 3rst recalled that Outint(G) is the intersection of all OutZ(p) (G),
with p ranging over the prime divisors of |G|. This enables one to use Cli7ord theory in
the study of Outint(G), and a version for automorphisms is established (extending [25,
Proposition 1]), which will be applied to produce various groups with Outint(G) 	= 1.

To the best of our knowledge, for any known class of groups with (NP) this property
can be veri3ed entirely group-theoretically, i.e. by showing that in (∗), the group on the
right-hand side is a 2′-group. An exception might be the class of groups with abelian
Sylow 2-subgroups (for which it is not known whether (NP) holds), which will be
examined in Section 4.

It seems that for groups G with OutZ(G) 	= 1, the structure of the Sylow 2-subgroups
is the most sensitive towards modi3cations. In [19, p. 176], Mazur conjectured, with
frankly very little supporting evidence, that

OutZ(G) = 1 if G has abelian Sylow 2-subgroups: (Ab)

One reason for that might be seen in Lemma 4.1, which tells us that for a counter-
example G of minimal order (if existing), O2(G) = 1, so a non-inner group automor-
phism � ∈ AutZ(G) cannot be a central group automorphism, i.e. cannot induce the
identity on G=Z(G). However, in all so far known examples, OutZ(G) were covered
by the group of central group automorphisms; a 3rst example in a completely di7er-
ent direction is Example 4.12, where a group G with abelian Sylow subgroups and
Outint(G) 	= 1, but OutZ(G)=1, is given. Nevertheless, (Ab) still remains a challenge.

Mazur proved (Ab) when Sylow 2-subgroups are of order 2. In Section 4, this result
is extended to groups G which have a normal 2-complement and which have a Sylow
2-subgroup which is either cyclic or abelian of exponent at most 4.

In this context, note that according to [19, p. 176], Roggenkamp and Marciniak
produced a preprint where it is proved that (Ab) holds if in addition G is metabelian.
However, this is a special case of what has been proved in [7,10]: If G is a metabelian
group with abelian Sylow p-subgroups, then Outc(G) is a p′-group.

The notation used is mostly standard. For group elements x; y we set xy = y−1xy
and [x; y] = x−1xy. By conj(y) we denote any homomorphism of the form x �→ xy.
Recall that the following characteristic subgroups of Aut(G) have been introduced:
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• Autc(G) is the group of class-preserving automorphisms;
• AutCol(G) consists of those � ∈ Aut(G) such that for any Sylow subgroup P of G,

there is � ∈ Inn(G) with �|P = �|P (‘Coleman automorphisms’ for short);
• AutR(G) consists of those � ∈ Aut(G) which induce an inner automorphism of the

group ring RG;
• Autint(G) consists of those � ∈ Aut(G) which induce an inner automorphism of OG,

for some ring O of algebraic integers in an algebraic number 3eld.

Also, the corresponding ‘outer’ automorphism groups have been introduced.

2. Some theoretical background

2.1. Local–global principle for class-preserving automorphisms

Let G be a 3nite group, � ∈ Aut(G), and R an integral domain of characteristic
0. Then RG becomes an R(G × G)-module, denoted by 1RG�, by letting m · (x; y) =
x−1m(y�) for all m ∈ RG and x; y ∈ G (and linear extension of this operation).
Note that 1RG�

∼= 1RG1 if and only if � induces an inner automorphism of RG.
This interpretation of an automorphism as an invertible bimodule allows us to prove a
local–global principle for class-preserving group automorphisms (see [25,6] for more
details).

Theorem 2.1. For any 9nite group G; there is a ring of integers O in an algebraic
number 9eld such that

Outint(G) =
⋂
p||G|

OutZ(p) (G) = OutZ�(G) (G) = OutO(G):

Proof. Let � ∈ Aut(G). Then the bimodules 1ZG� and 1ZG1 are in the same genus
if and only if � belongs to

⋂
p AutZ(p) (G), or, equivalently, to AutZ�(G) (G) (cf. also

Remark 2.2). By a theorem of Jacobinski [13, Satz 7] (see also [4, 51.33]) there is
some ring O of algebraic integers such that 1ZG� and 1ZG1 are in the same genus if and
only if 1OG� and 1OG1 are isomorphic. It remains to show that Autint(G) is contained
in AutZ(p) (G) for all p, which follows from a generalization of the Noether–Deuring
theorem [21].

Remark 2.2. Let � ∈ Aut(G) such that there are units up in Z(p)G with �=conj(up),
for all p ∈ � = �(G). Without lost of generality, each up is contained in ZG. Let
m =

∏
p∈� p. Then u =

∑
p∈�(m=p)up is a unit in Z�G with � = conj(u). Indeed,

rad(Z�)G⊆ rad(Z�G) and Z�G=rad(Z�)G ∼= ⊕
p∈� FpG, so u is a unit modulo the

radical and hence a unit in Z�G (see [4, 5.10]).

Remark 2.3. Roggenkamp pointed out where the obstruction for getting globally cen-
tral automorphisms from local data lies [23, p. 82; 24]. Let R be a Dedekind ring of
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characteristic 0, and let ClRG(Z(RG)) be the subgroup of the locally free class group
Cl(Z(RG)) consisting of those isomorphism classes of invertible ideals a in Z(RG)
so that aRG is a principal ideal in RG. Then FrTohlich’s localization sequence (cf. [4,
55.25, 55.26]) can be extended to the following diagram with exact rows:

1 −−→ Cl(Z(RG)) −−→ Picent(RG) −−→
∏

P∈max(R)

Picent(RPG) −−→ 1

� � � ∼=

1 −−→ ClRG(Z(RG)) −−→ Outcent(RG)
�−−→

∏
P∈max(R)

Outcent(RPG)

:

In particular, the image of the natural map Outint(G) → Outcent(RG) is a subgroup of
ClRG(Z(RG)).

It is an open problem (see [23, IX 1.13; 24]) whether � is surjective, i.e. whether for
any M in Picent(RG) there is an invertible bimodule in the same genus as M which
is RG-free from the left (say). If R is a semilocal ring, then � is an isomorphism (see
[4, 55.26, 55.16]).

2.2. Cli�ord theory for automorphisms

Let N be a normal subgroup of a 3nite group G, and R a commutative ring. A
classical result of Cli7ord describes the blocks of RG which do not have N in their
kernels in terms of blocks of inertia groups of central idempotents of RN (see [2;
20, 6, Section 1 Lemma 1.7; 23, Part 1, XIII; 24], for a more thorough treatment of
integral Cli7ord theory). This will yield criteria for when certain automorphisms of G
induce inner automorphisms of these blocks.

Notation 2.4. For a 3nite group K , the following notation for idempotents is used:

�K =
1
|K |

∑
k∈K

k and  K = 1− �K :

Moreover, the following notation is 3xed:

• G a 3nite group;
• N a normal subgroup of G;
• R a commutative ring;
•  an idempotent of RN , central in RG, with central primitive decomposition  =

e1 + · · ·+ es in RN ;
• E a set of representatives of the orbits on {e1; : : : ; es} under the operation of G;
• T(e) inertia group {g ∈ G: eg = e}, for all e ∈ E.

Note that it is not required that the inertia groups T(e) are normal subgroups of G.
It will be necessary to know how the isomorphism in the next (well-known) theorem
takes place, so a proof is included for the convenience of the reader.
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Theorem 2.5. With notation as above;

 · RG =
∏
e∈E


⊕
T(e)g

⊕
T(e)h

g−1 · e RT(e) e · h

 ∼=

∏
e∈E

Mat|G:T(e)|(e RT(e) e):

Proof. Clearly,  · RG is the sum of its R-submodules

Ae;g;k;h = g−1eg · RT(e) · k · h−1eh;

where e ranges over E and the g; h; k are taken from a set of right coset representatives
X of T(e) in G. Assume that s = g−1eg · t · k · h−1eh 	= 0 for some t ∈ T(e). Then
t′=gtkh−1 ∈ T(e), and s=g−1et′eh. Conversely, given t′ ∈ T(e), then T(e)g−1t′h=T(e)k
for some k ∈ X , and it follows that t=g−1t′hk−1 ∈ T(e), so g−1et′eh ∈ Ae;g;k;h. Hence∑

k∈X Ae;g;k;h = g−1 · e RT(e) e · h, and it follows that

 · RG =
∏
e∈E


⊕
T(e)g

⊕
T(e)h

g−1 · e RT(e) e · h

 :

Fix some e ∈ E, and let {g1; : : : ; gn} be a set of right coset representatives of T(e) in
G. Then the direct factor of  · RG belonging to e can be written conveniently as

Me =



g−1
1 · e RT(e) e · g1 · · · g−1

1 · e RT(e) e · gn
...

...
g−1
n · e RT(e) e · g1 · · · g−1

n · e RT(e) e · gn


 ;

whence is isomorphic to the matrix ring Mat|G:T(e)|(e RT(e) e).

The theorem allows a proof of the following proposition, which provides a useful
criteria of when certain automorphisms of G lie in AutR(G).

Proposition 2.6. Assume that there is � ∈ Aut(G) such that for all e ∈ E; the
automorphism � stabilizes e and leaves every right coset of T(e) in G invariant.
Then the following are equivalent:

(i) � induces an inner automorphism of eRT(e)e;
say conjugation with ue; for all e ∈ E;

(ii) � induces an inner automorphism of  · RG.

In either case, � induces an inner automorphism of  · RG, given by conjugation
with

∑
e∈E

∑
T(e)g

eg · g−1ue(g�) ∈  · RG:
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Proof. Let e ∈ E, and Me the matrix ring de3ned above. If (i) holds, then the diagonal
matrix

D =



g−1
1 · ue · g1�

g−1
2 · ue · g2� 0

0
. . .

g−1
n · ue · gn�




lies in Me, and � is given on Me by conjugation with D, so (ii) holds.
Note that � 3xes g−1

i ·e RT(e) e ·gj, for all i; j. Hence if (ii) holds, then � is given on
Me by conjugation with a diagonal matrix, whose (1; 1)-entry is of the form g−1

1 ·ue ·g1�,
where ue is a unit in eRT(e)e such that � is given on eRT(e)e by conjugation with ue,
so (i) holds. The additional remark is just a reinterpretation of the matrix D.

Remark 2.7. In particular, the proposition provides a simple method for constructing
class-preserving automorphisms of groups. Namely, if � ∈ Aut(G) stabilizes N , induces
an inner automorphism of G=N and satis3es condition (i) with  =  N (for example,
if � induces inner automorphisms of all inertia groups), then � ∈ AutR(G).

A precursor of the proposition is [25, Proposition 1], which has been used by
Roggenkamp and Zimmermann to produce for the 3rst time groups G with Outint(G) 	=1.

The following proposition is essentially a special case of Proposition 2.6 and will
be applied in Example 4.12.

Proposition 2.8. Assume that the 9nite group G is a semi-direct product VoH with
V an elementary abelian p-group; for some prime p. Let � ∈ Aut(G) be de9ned by
h� = h for all h ∈ H; and v� = vm for all v ∈ V and some 9xed m ∈ N. If U is a
subgroup of index p in V; let NU =NG(U )=U; and denote by �U the automorphism of
NU induced by �. Let R= Z[p−1]. Then � ∈ AutR(G) if and only if �U ∈ AutR(NU )
for all U .

Proof. Let U1; : : : ; Us be the subgroups of index p in V , and let ei =  V �Ui . Then
{e1; : : : ; es} is a complete set of orthogonal primitive central idempotents in  VRV ,
with T(ei) = NG(Ui). Let � ∈ Aut(G). By Proposition 2.6, � ∈ AutR(G) if and only
if � induces an inner automorphism of ei RT(ei) ei, for all i. Fix some e = ei, and let
U = Ui. Since � induces the identity on �VRG = RG=V , and e ⊕ �V = �U , it follows
that � induces an inner automorphism of �U RT(e) = RNU if and only if � induces an
inner automorphism of e RT(e) e. This proves the proposition.

With this knowledge at hand, it is not di?cult to 3nd groups G with Outint(G) 	= 1.
To the end of this section, a relatively small example is given, which may be compared
with the group of order 27 · p2

1 · p2
2 of derived length 3 given by Roggenkamp and

Zimmermann [25].
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Example 2.9. A supersolvable metabelian group G of order 27 ·52=3200 is constructed
with Outint(G) 	= 1. Let P = 〈w : w8〉o (〈b : b2〉 × 〈c : c4〉)o 〈s : s2〉 with relations
wb=w−1, wc=w5, [w; s]=[b; s]=1 and cs=w4c. The group G has normal subgroups M
and N of order 5 and is a semi-direct product G=(M ×N )oP with CP(M)= 〈w; b; s〉
and CP(N ) = 〈w; b; c2s〉. An automorphism . ∈ Aut(G) is de3ned by .|MN = id|MN

and x. = xs for all x ∈ P, so that . restricted to MP, NP is given by conjugation
with s, c2s respectively. Assume that there is g ∈ G with .=conj(g). Then it follows
that g ∈ P, and g ∈ Z(P)s ∩ CP(MN ) = 〈w4; c2〉s ∩ 〈w; b〉 = ∅, a contradiction. Hence
. =∈ Inn(G).

Next, it is shown that . ∈ Autint(G). Let R = Z(2)[/5], where /5 = exp(2�i=5).
Then Proposition 2.6 may be applied with the normal subgroup N and  =  N to get
. ∈ AutR(G) (since each inertia group equals MNCP(N )). Interpreting . as invertible
bimodule, it follows from the Noether–Deuring theorem [21] that . ∈ AutZ(2) (G). Since
. is given by conjugation with the unit u=�〈w4〉+ 〈w4〉(w+w−1) in Z

[
1
2

]
G, it follows

by Theorem 2.1 that . ∈ Autint(G).

It should be pointed out that the automorphism . is a central group automorphism,
that is, . induces the identity on G=Z(G). In Example 4.12, an automorphism � ∈
Autint(G) is presented which is not the product of an inner group automorphism and
a central group automorphism.

3. Structure of Outint(G )

A surprisingly simple proof for the following result is given.

Proposition 3.1. The group Outint(G) is contained in the center of Outc(G). In parti-
cular; Outint(G) is an abelian group.

Proof. For any commutative ring R, let ∗ be the usual anti-involution of RG associated
with the group basis G. Then for any u ∈ NU(RG)(G) and g ∈ G,

guu∗ = u(u−1gu)u∗ = u(u−1g−1u)∗u∗ = uu∗gu−∗u∗ = uu∗g;

showing that uu∗ ∈ Z(RG). Therefore, for any u; v ∈ NU(RG)(G),

[u; v][u; v]∗ = u−1v−1(u(vv∗))u∗v−∗u−∗

= u−1(v∗(uu∗))v−∗u−∗ (vv∗ commutes with u)

= u∗v∗v−∗u−∗ (uu∗ commutes with v∗)

= 1:

Let . ∈ Autc(G) and � ∈ Autint(G); it has to shown that [.; �] ∈ Inn(G). There is
u ∈ U(QG) with . = conj(u) and v ∈ U(OG) with � = conj(v) (for some ring O of
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algebraic integers). It follows that

[u; v] = u−1 (v−1uv)︸ ︷︷ ︸
∈QG

=(u−1v−1u)︸ ︷︷ ︸
∈OG

v ∈ QG ∩ OG = ZG:

As [u; v][u; v]∗ = 1, it follows that [u; v] = ±g for some g ∈ G (just look at the
1-coe?cient of [u; v][u; v]∗ – this argument goes back to S.D. Berman). Hence [.; �]=
conj(g) ∈ Inn(G).

The picture would not be complete without examples showing that indeed any abelian
group occurs as some Outint(G). The groups given in the following proposition have
a similar structure as the groups given by Dade in [5, Section 2].

Proposition 3.2. Let q be a natural power of a prime p. Then there exists a 9nite
metabelian group G such that Outint(G) is cyclic of order q.

Proof. Let S= 〈1; 2; �: 1q = 2q =�q2 =1; [1; 2]= [1; �]=1; 2� = 12〉, a group of order q4.
Let K1 = 〈1; �q2−1〉 and K2 = 〈1; 2〉, both normal subgroups of S with S=K1 and S=K2

cyclic of order q2, generated by the image of �.
Choose primes p1 	= p2 such that pq does not divide pi−1. Put r=q=p. For i=1; 2,

let Mi be an indecomposable faithful Fpi〈�r〉-module of 3nite dimension, and let Pi be
the direct sum of r copies of Mi. De3ne a (faithful) operation of 〈�〉 on Pi by letting
(a1; a2; : : : ; ar−1; ar)� = (ar�r; a1; a2; : : : ; ar−1), for all aj ∈ Mi. Let Ri = Z[p−1

i ], and
note that each central primitive idempotent of  Pi · RiPi is of the form  Pi �U for some
maximal subgroup U of Pi (recall Notation 2:4 for idempotents). Since the module
Pi|〈�r〉 decomposes into a direct sum of copies of Mi, it follows from the Krull–Schmidt
theorem that �r operates 3xed-point free on the set of central primitive idempotents
belonging to  Pi · RiPi.

De3ne the group G to be the semi-direct product (P1 × P2)o S with CS(Pi) = Ki

and the given action of �.
Let ei be a central primitive idempotent of  Pi ·RiPi. Then for the inertia group T(ei)

of ei in G, it follows that [G;G] ≤ P1P2〈1〉 ≤ T(ei) ≤ P1P2〈1; 2; �q〉.
Let 4 ∈ Autint(G). Seeking for a ‘canonical’ coset representative of 4 in Inn(G) · 4,

choose gi ∈ Pi with CS(gi) = Ki (this can be done since S=Ki is cyclic). Then, as
4 ∈ Autc(G), the automorphism 4 can be altered by an inner group automorphism
so that gi4 = gi. By Coleman’s lemma, there are si ∈ S with �|Pi = conj(si)|Pi . Then
gi=gi4=gsi

i , and it follows that si ∈ Ki. Hence 4 3xes P1P2 element-wise. Additionally,
by Sylow’s theorem, 4 can be altered by an inner group automorphism so that 4 3xes
S; then there is x ∈ S with 4|S = conj(x)|S , again by Coleman’s lemma.

Clearly ei4 = ei, and 4 induces the identity on G=T(ei). Hence 4 induces an in-
ner automorphism of eiRiT(ei)ei, by Proposition 2.6. Note that T(e2) = P1P2H with
K2 ≤ H ≤ S, and that 4 induces an automorphism of the quotient e2R2(P2H)e2 of
e2R2T(e2)e2. Since 2 ∈ Z(P2H), it follows that 24 = 2 and x ∈ 〈1; 2; �q〉 = Z(S)〈2〉.
Thus without lost of generality, x is a power of 2.
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Now de3ne 4 ∈ Aut(G) by g4 = g for g ∈ P1P2, and 4|S = conj(2)|S . Then 4
induces the identity on the inertia group T(ei), and on the abelian quotient G=T(ei), so
4 ∈ Autint(G) by Proposition 2.6 and Theorem 2.1. Since Z(S)2r∩CP1P2 (S)=〈1; �q〉2r∩
〈1〉=∅, it follows that the image of 4 in Out(G) has order q. This completes the proof
of the proposition.

Corollary 3.3. For any 9nite abelian group A; there is a 9nite metabelian group G
with Outint(G) ∼= A.

Proof. Follows from Proposition 3.2 and Remark 4.3(1).

Corollary 3.4. For any 9nite abelian group A; there is a 9nite metabelian group G
such that ClZG(Z(ZG)) contains a copy of A (cf. Remark 2:3).

Proof. Follows from Proposition 3.2 and Krempa’s lemma.

4. Groups with abelian Sylow 2-subgroups

Let G be a 3nite group. If G has an abelian Sylow 2-subgroup P, it is conjectured
that OutZ(G)=1 [19, p. 176]. This is shown to be true if G has a normal 2-complement,
and P is cyclic, or abelian of exponent at most 4. However, also an example is given
showing that Outint(G) can be non-trivial (but OutZ(G) = 1 for this example).

The following simple but important observation explains why it is di?cult to dis-
prove (NP) for groups with abelian Sylow 2-subgroups: for a counterexample G of
minimal order, O2(G) = 1 holds, and thus � ∈ AutZ(G) cannot be a central group
automorphism.

Lemma 4.1. Assume that G has an abelian Sylow p-subgroup P; and that � ∈ Aut(G)
is of p-power order such that �|P = �|P for some � ∈ Inn(G). If � induces an inner
automorphism of G=Op(G); then � ∈ Inn(G).

Proof. Without lost of generality, � induces the identity on G=Op(G). There is x ∈ G
with �|P = conj(x)|P , and without lost of generality, x is a p-element since the order
of � is a power of p, and P is 3xed by �. It follows that x ∈ P, and, as P is abelian,
�|P=id|P . Now a common 1-cohomology argument [11, I 16.18] shows that � is given
by conjugation with some g ∈ Z(P).

Next, some elementary facts about class-preserving and Coleman automorphisms are
recorded which will be needed later.

Proposition 4.2. The prime divisors of |Autc(G)| and |AutCol(G)| lie in �(G); the set
of prime divisors of |G|.
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Proof. It is known that prime divisors of the order of Autc(G) lie in �(G) (see [11,
I.4 Aufgabe 12]). Let � ∈ AutCol(G), and assume that � has order r, with (r; |G|)= 1;
then � = id has to be shown. Let p ∈ �(G). Since the action of � on G is coprime,
there is a Sylow p-subgroup P of G which is 3xed by �. By assumption, there is
x ∈ G with �|P = conj(x)|P . So � induces an automorphism of P whose order divides
r and the order of x. It follows that �|P = id|P . As p ∈ �(G) was chosen arbitrary, it
follows that � = id.

Remark 4.3. (1) If � is a class-preserving or a Coleman automorphism of G, and N
a normal subgroup of G, then � 3xes N , and induces a class-preserving or a Coleman
automorphism of G=N , respectively. In particular, Autc(G ×H) ∼= Autc(G)×Autc(H)
for 3nite groups G and H (and similar for AutCol(−)).

(2) If � ∈ Aut(G) is of p-power order, and if there are U ≤ G and x ∈ G with
�|U = conj(x)|U , then there is � ∈ Inn(G) such that ��|U = id, and the order of �� is
still a power of p (taking for �� a suitable power of � conj(x−1)). In proofs, this fact
will be used several times without any further comment, just indicated by a phrase like
‘modifying � (by an inner automorphism)’.

Lemma 4.4. Let � ∈ Aut(G) be of p-power order; for some prime p. Assume that
there is N E G such that N� = N; and � induces the identity on G=N . Let U be a
subgroup of G. Then; if there is h ∈ G such that g�=gh for all g ∈ U; there is n ∈ N
with g� = gnhp for all g ∈ U; where hp denotes the p-part of h.

Proof. The proof consists of a straightforward calculation. Let q be a power of p such
that �q = id, and hq is the p′-part of h. Then for all g ∈ U ,

g = g�q = gk with k = h(h�)(h�2) : : : (h�q−1):

Since � induces the identity on G=N , there is n ∈ N with k = hqn−1. It follows that
g� = ghqhp = g(hqn−1)(nhp) = gk(nhp) = gnhp for all g ∈ U .

The following proposition has been proved for G supersolvable of odd order [17,
Theorem 5], and under additional assumptions in [17, Theorem 6].

Proposition 4.5. Let G be a solvable group of odd order; and let .;  be automor-
phisms of G such that:

(i) . and  are of 2-power order;
(ii) . ·  =  · .;
(iii) for all x ∈ G; x is conjugate in G to x. or to x .

Then . = id or  = id.

Proof. The hypothesis of the proposition is equally satis3ed if . is replaced by .2,
or  by  2, so without lost of generality, .2 = id and  2 = id. Since G is solvable,
there is a non-trivial, abelian normal subgroup A of G with A. = A and A = A, and
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whose order is minimal subject to this condition. The automorphisms . and  induce
automorphisms W. and W of WG = G=A. By induction on the order of G, assume that
W =id. Then A=CA( )× [A;  ] (coprime action since G is of odd order, cf. [1, 24.6]),
and CA( ) is a normal subgroup of G. Indeed, if x ∈ CA( ) and g ∈ G, then g = yg
for some y ∈ A, and xg = x g = xyg = xg since A is abelian. Moreover, CA( ) is
.-invariant, so either CA( ) = A or CA( ) = 1 by minimality of A. In the 3rst case,
 =id since G is of odd order, so assume that CA( )=1. Then a =a−1 for all a ∈ A.
Note that if some g ∈ G is conjugate to g−1 within G, then g = 1 since G is of odd
order. Hence, it follows from (iii) that a. is conjugate within G to a for all a ∈ A.
Since A=CA(.)× [A; .] and . inverts the elements of [A; .], it follows that [A; .]=1
and A = CA(.). Put W = CG( ) ≤ G. As  operates on each coset Ax, x ∈ G, with
at least one 3xed point, G = Ao W . Since . and  commute, W. = W . Take any
g ∈ G. Then ag = ag.= ag. for all a ∈ A, so c=(g.)g−1 ∈ CG(A). Write g=wa with
w ∈ W and a ∈ A. Then c = (w.)a · a−1w−1 = (w.)w−1 ∈ W . Fix some 1 	= b ∈ A.
Assume there is h ∈ G with (bc)h =(bc) = b−1c. As bc ∈ CG(A), and G=AW , there
is h ∈ W with this property. But then bbh = cc−h ∈ A ∩W = 1 as c ∈ W , so h inverts
b, a contradiction. Therefore, by (iii), bc and (bc). are conjugate in G. Now c.=c−1

by de3nition of c, so (bc). = bc−1, and it follows that Wc and Wc−1 are conjugate in
WG =G=A. Therefore, Wc = 1 and c ∈ A ∩W = 1. This shows that g.= g, and, as g was
arbitrary, . = id.

In [17], the following property of a 3nite group has been considered.

Property W . The group Outc(G) ∩ OutCol(G) is of odd order.

In [17, Remarks, p. 6270], it is asked whether there exist results similar to Proposition
4.5 for the action of abelian 2-groups on groups of odd order, which would allow one
to prove that groups with abelian Sylow 2-subgroups have property W. Example 4.11
below shows that this is not the case.

Mazur has proved that a 3nite group G with a Sylow 2-subgroup of order 2 has
property W [17, Theorem 7]. Note that such a group has a normal 2-complement, by
Burnside’s normal p-complement theorem (cf. [1, 39.1]). Proposition 4.5 allows us to
prove the following generalizations.

Proposition 4.6. Let G be a 9nite group with a Sylow 2-subgroup of order 2. Then
2 does not divide the order of Outc(G).

Proof. Let � ∈ Autc(G), of order a power of 2; it has to be shown that � ∈ Inn(G).
Let w ∈ G be an element of order 2, and H a normal 2-complement. Without lost of
generality, w�=w. Then 2=� ·conj(w) ∈ Aut(G) is of 2-power order, and �2=2�. The
automorphisms �; 2 induce automorphisms .;  of H , respectively. Let h ∈ H . Then
h� = hg for some g ∈ G = H ∪ Hw, and it follows that h is conjugate in H to h. or
h . Hence, by Proposition 4.5 .= id or  = id, which implies �= id or �= conj(w).
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Proposition 4.7. Let G be a 9nite group with a cyclic Sylow 2-subgroup. Then G
has Property W.

Proof. Take a minimal counterexample G, and � ∈ Autc(G) ∩ AutCol(G), a non-inner
automorphism of order a power of 2. The proof proceeds in a number of steps.
(1) O2(G) = 1.

This follows from Lemma 4.1 and the minimality of G.
(2) The Frattini subgroup 7(G) of G is trivial, and the Fitting subgroup F(G) is the

direct product of minimal normal subgroups of G.
Assume the contrary. By minimality of G, the automorphism � can be modi3ed

by an inner automorphism so that it induces the identity on G=7(G). As 7(G) is
nilpotent (see [11, III 3.6]), it follows from (1) that 7(G) is a 2′-group, yielding the
contradiction � = id (see [11, III 3.18]). The second statement follows from the 3rst
one (see [11, III 4.4, 4.5]).
(3) G has more than one minimal normal subgroup (the trivial subgroup is not con-

sidered as being ‘minimal’).
Assume the contrary, and let A be the (unique) minimal normal subgroup of G. By

Burnside’s normal p-complement theorem (see [1, 39.1]), G has a normal 2-comple-
ment, so G is solvable, by the Odd Order Theorem. Therefore A is an abelian p-group
for some prime p, and F :=F(G) = Op(G). Hence � can be altered by an inner auto-
morphism to get �|F =id|F . As CG(F)⊆F (see [11, III 4.2]), it follows that � induces
the identity on G=F . As p 	= 2 by (1), it follows that � = id, a contradiction.
(4) Any 2-element of G operates trivial or 3xed-point free on each minimal normal

subgroup of G.
To see this, let A be a minimal normal subgroup of G, and modify � by an inner

automorphism so that � induces the identity on G=A. Then CA(�) E G, so either
A = CA(�) or A = [A; �]. In the 3rst case, � = id by (1), so A = [A; �]. By Lemma
4.4, there is a 2-element x ∈ G with �|A = conj(x)|A. It follows that A = [A; x], and
that CA(y) E G for all y ∈ 〈x〉. Since A is a minimal normal subgroup and Sylow
2-subgroups of G are cyclic, the assertion follows.
(5) Let S be a Sylow 2-subgroup of G. Then CS(A) 	= 1 for each minimal normal

subgroup A of G.
Assume there is a minimal normal subgroup A of G with CS(A) = 1. By (3); there

is a minimal normal subgroup B of G with A ∩ B = 1. Without lost of generality, �
induces the identity on G=B. As in (4) it follows that B=[B; �], and clearly �|A = idA.
Take any a ∈ A\{1} and b ∈ B\{1}. There is x ∈ G with (ab)�=axbx, and it is easily
seen (cf. Lemma 4.4) that x can be chosen to be 2-element. It follows that x ∈ CG(a)
and x 	∈ CG(b). So x ∈ CG(A) by (4), and x 	= 1, which implies that CS(A) 	= 1.

Now the proof of the proposition is easily completed. As S is cyclic, it follows from
(2); (5) and [11, III 4.2] that 1 	= CS(F(G)) ≤ F(G), contradicting (1).

Corollary 4.8. If G has cyclic Sylow 2-subgroups; then OutZ(G) = 1.
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Proof. By Krempa’s result, OutZ(G) is a 2-group, so the corollary follows from Cole-
man’s result and the above proposition.

Up to now, considerations were entirely group-theoretical. The proof of the following
lemma indicates further possibilities to analyze the group OutZ(G).

Lemma 4.9. Let G be a 9nite group with a normal 2-complement H. Let P be a
Sylow 2-subgroup of G; and S E P such that P=S is abelian of exponent ≤ 4. Then for
any � ∈ AutZ(G); there is � ∈ Inn(G) such that �� induces a Coleman automorphism
of HS.

Proof. By assumption, there is a unit u of ZG with � = conj(u), and it does no
harm if u is assumed to be augmented (i.e. the ‘sum over the coe?cients’ is 1). Let
N = HS. By a well-known result of G. Higman, u maps to an element of G=N under
the natural map ZG → ZG=N (see [28, Theorem (2:7)]). Let g1; : : : ; gr be a set of coset
representatives of N in G. Then u=

∑
yigi for some y1; : : : ; yr ∈ ZN , and without lost

of generality, yi has augmentation 1 if i=1 (and augmentation 0 otherwise). Note that
G acts (from the right) on the coset Ng1 via ng1 · g := g−1(ng1)(g�) (for all n ∈ N ,
g ∈ G). As g−1(y1g1)(g�)= y1g1, it follows that in y1g1, viewed as an integral linear
combination of elements of Ng1, the elements of an orbit all have the same coe?cient.
Let p be a prime, and P a Sylow p-subgroup. Since the augmentation of y1g1 is
not divisible by p, there must be a 3xed-point ng1 (n ∈ N ) in the support of y1g1

under the operation of P. It follows that �|P = conj(ng1)|P , and � · conj(g−1
1 ) induces

a Coleman automorphism of N .

Corollary 4.10. Let G be a 9nite group with a normal 2-complement and an abelian
Sylow 2-subgroup of exponent at most 4. Then OutZ(G) = 1.

Proof. Let H be the normal 2-complement, and � ∈ AutZ(G); then � ∈ Inn(G) has to
be shown. By Krempa’s result, it can be assumed that the order of � is a power of 2.
By Lemma 4.9, � can be modi3ed by an inner automorphism such that � induces a
Coleman automorphism of H , so �|H = id|H by Proposition 4.2. But then � = id.

Finally, some illuminating examples of groups G with abelian Sylow subgroups are
given. They include some Frobenius groups, which belong to a certain family of sub-
groups of a?ne semi-linear groups having non-inner class-preserving automorphisms;
see [10] for further details on these groups.

Example 4.11. Consider the following matrices in GL(2; 5):

A =
[
2 1
3 2

]
; B =

[
3 0
0 2

]
; T1 =

[
4 0
0 1

]
:
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Let U =F5⊕F5 be the underlying vector space on which these matrices act. It is easily
shown that

• A; B and T1 are of order 3; 4 and 2, respectively, and AB = A−1, AT1 = A−1. The
group H = 〈A; B〉= 〈A〉o 〈B〉 has order 12.

• The semi-direct product F1 = U o H , i.e.

F1 = 〈v; w; a; b : v5 = w5 = [v; w] = 1; a3 = b4 = 1; ab = a2;

va = v2w; wa = v3w2; vb = v3; wb = w2〉;
is a Frobenius group.

• Each of the 6 = (52 − 1)=(5− 1) matrices of order 4 in H has eigenvalues 2 and 3.
In particular, for each 0 	= u ∈ U there is M ∈ H such that uM = 2u.

• The automorphism �1 of F1, de3ned by u�1 = 2u and h�1 = h for all u ∈ U , h ∈ H ,
is a non-inner class-preserving automorphism.

Note that �1 	∈ AutZ(5) (F1), by Coleman’s result.
On the other hand, let R = Z

[
1
5

]
. Then �1 ∈ AutR(F1). To see this, let 0 	= u ∈ U ,

and recall that there is M ∈ H of order 4 with uM = 3u, and u′M = 2u′ for some
u′ ∈ U with U = 〈u; u′〉. Then N :=NF1 (〈u〉) = U 〈M 〉, and �1 induces on WN = N=〈u〉
the inner automorphism conj( WM). It follows from Proposition 2.8 that �1 induces an
inner automorphism of Z

[
1
5

]
F1.

Let N = 〈n〉 ∼= C3 and T = 〈t〉 ∼= C2. Let t act on N by nt = n−1, and on F1 ≤
U o GL(2; 5) by conjugation with the matrix T1. Form the corresponding semi-direct
product G = (N × F1)o T , and note that G has abelian Sylow subgroups.

The automorphism �1 extends to an automorphism � of G with n�=n and t�=t. Note
that � ∈ Autcol(G). As before, one can show that � induces an inner automorphism of
Z
[
1
5

]
G. In particular, � ∈ Autc(G), and it follows that Property W need not hold for

a group with abelian Sylow subgroups.
Let / = exp(2�i=3), and R = Z(5)[/]. For the idempotent e = 1

3(1 + /n + /2n2), it is
easily seen that e RT(e) e = e R(N × F1) e ∼= RF1. Hence condition (i) of Proposition
2.6 does not hold, and � 	∈ AutZ(5) (G).

Example 4.12. A group of order 25 ·3 ·7 ·52 ·132=2839200, with all Sylow subgroups
being abelian, shall be constructed such that

Outint(G) 	= 1 and OutZ(G) = 1:

Let F1 and T1 be as in the previous example.
The following matrices are elements of GL(2; 13):

C =
[
5 7
9 5

]
; D =

[
8 0
0 5

]
; T2 =

[
12 0
0 1

]
:

Let V be the underlying vector space. One veri3es the following:

• C, D and T2 are of order 7, 4 and 2, respectively, and CD = C−1, CT2 = C−1. The
group K = 〈C;D〉= 〈C〉o 〈D〉 has order 28.
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• The semi-direct product F2 = V o K is a Frobenius group.
• Each of the 14= (132 − 1)=(13− 1) matrices of order 4 in K has eigenvalues 5 and

8. In particular, for each 0 	= v ∈ V there is M ∈ K such that vM = 5v.
• The automorphism �2 of F2, de3ned by v�2 = 5v and k�2 = k for all v ∈ V , k ∈ K ,

is a non-inner class-preserving automorphism.
The group G is a semi-direct product

G = (F1 × F2)o 〈t : t2〉;
where the involution t acts on F1 ≤ U oGL(2; 5) by conjugation with the matrix T1,
and on F2 ≤ U o GL(2; 13) by conjugation with T2.

Let � be the automorphism of G which 3xes each element of VHK〈t〉, and acts on
U by multiplication with 2. Clearly, � is a non-inner automorphism.

Let 0 	= u ∈ U . Recall that there is M ∈ H of order 4 with uM = 3u, and u′M =
2u′ for some u′ ∈ U with U = 〈u; u′〉. If M = A−iBjAi (such i; j ∈ N exist), then
N :=NG(〈u〉)=UV 〈M;A−itAi〉K . Hence, � induces on WN=N=〈u〉 an inner automorphism,
given by conjugation with WM . It follows from Proposition 2.8 that � induces an inner
automorphism of Z

[
1
5

]
G.

Note that � · conj(B−1tD) 3xes each element of UHK〈t〉, and acts on V by mul-
tiplication with 5. In the same way as before, it is veri3ed that � induces an inner
automorphism of Z

[
1
13

]
G.

Hence �∈Autint(G) by Theorem 2.1. It follows from Corollary 4.10 that OutZ(G)=1.
Thus, everything is proved.

References

[1] M. Aschbacher, Finite Group Theory, Cambridge University Press, Cambridge, 1986.
[2] A.H. Cli7ord, Representations induced in an invariant subgroup, Ann. Math. 38 (1937) 533–550.
[3] D.B. Coleman, On the modular group ring of a p-group, Proc. Amer. Math. Soc. 15 (1964) 511–514.
[4] C.W. Curtis, I. Reiner, Methods of Representation Theory, vols. I, II, Wiley, New York, 1981, 1987.
[5] E.C. Dade, Locally trivial outer automorphisms of 3nite groups, Math. Z. 114 (1970) 173–179.
[6] A. FrTohlich, The Picard groups of non-commutative rings, in particular of orders, Trans. Amer. Math.

Soc. 180 (1973) 1–46.
[7] M. Hertweck, Zentrale und primzentrale Automorphismen, Darstellungstheorietage 7–9 Mai 92 in Erfurt,

Sitzungsber. Math.-Naturwiss. Kl., No. 4, 1992, pp. 67–76.
[8] M. Hertweck, Eine LTosung des Isomorphieproblems fTur ganzzahlige Gruppenringe von endlichen

Gruppen, Ph.D. Thesis, University of Stuttgart, 1998.
[9] M. Hertweck, A solution of the isomorphism problem for integral group rings, manuscript, 1999,

submitted for publication.
[10] M. Hertweck, Class-preserving automorphisms of 3nite groups, manuscript, 1999, submitted for

publication.
[11] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
[12] S. Jackowski, Z. Marciniak, Group automorphisms inducing the identity map on cohomology, J. Pure

Appl. Algebra 44 (1987) 241–250.
[13] H. Jacobinski, TUber die Geschlechter von Gittern Tuber Ordnungen, J. Reine Angew. Math. 230 (1968)

29–39.
[14] W. Kimmerle, On the normalizer problem, in: I.B.S. Passi (Ed.), Algebra. Some Recent Advances

Trends in Mathematics, BirkhTauser, Basel, 1999, pp. 89–98.



276 M. Hertweck / Journal of Pure and Applied Algebra 163 (2001) 259–276

[15] W. Kimmerle, K.W. Roggenkamp, Projective limits of group rings, J. Pure Appl. Algebra 88 (1993)
119–142.

[16] Y. Li, On the normalizers of the unitary subgroup in an integral group ring, Comm. Algebra 25 (10)
(1997) 3267–3282.

[17] M. Mazur, Automorphisms of 3nite groups, Comm. Algebra 22 (15) (1994) 6259–6271.
[18] M. Mazur, On the isomorphism problem for in3nite group rings, Expositiones Mathematicae, vol. 13,

Spektrum Akademischer Verlag, Heidelberg, 1995, pp. 433–445.
[19] M. Mazur, The normalizer of a group in the unit group of its group ring, J. Algebra 212 (1) (1999)

175–189.
[20] D.S. Passman, The Algebraic Structure of Group Rings, Wiley-Interscience, New York, 1977.
[21] K.W. Roggenkamp, An extension of the Noether–Deuring theorem, Proc. Amer. Math. Soc. 31 (1972)

423–426.
[22] K.W. Roggenkamp, The isomorphism problem for integral group rings of 3nite groups, Progress in

Mathematics, vol. 95, BirkhTauser, Basel, 1991, pp. 193–220.
[23] K.W. Roggenkamp, Group rings: units and the isomorphism problem, in: K.W. Roggenkamp, M.J.

Taylor, Group Rings and Class Groups, DMV Seminar Band 18, BirkhTauser, Basel, 1992, Part I.
[24] K.W. Roggenkamp, M.J. Taylor, Group Rings and Class Groups, DMV Seminar Band 18, BirkhTauser,

Basel, 1992.
[25] K.W. Roggenkamp, A. Zimmermann, Outer group automorphisms may become inner in the integral

group ring, J. Pure Appl. Algebra 103 (1995) 91–99.
[26] A.I. Saksonov, On the group ring of 3nite groups I, Publ. Math. Debrecen 18 (1971) 187–209 (in

Russian).
[27] L.L. Scott, Recent progress on the isomorphism problem, in: Representations of Finite Groups,

Proceedings Conference, Arcata, CA, 1986, Proceedings of Symposium on Pure Mathematics, vol. 47,
1987, pp. 259–274.

[28] S.K. Sehgal, Units in Integral Group Rings, Pitman Monographs Surveys Pure and Applied Mathematics,
vol. 96, Longman Scienti3c & Technical, Essex, 1993.


