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Abstract

We prove the metastable behavior of reversible Markov processes on finite state spaces under minimal
conditions on the jump rates. To illustrate the result we deduce the metastable behavior of the Ising model
with a small magnetic field at very low temperature.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Metastability is a phenomenon observed in thermodynamic systems close to a first-order
phase transition. Describing the evolution among competing metastable states or from a
metastable state to a stable state in stochastic lattice spin systems at low temperatures is still
a subject of considerable interest. We refer the reader to [9,23,4,10] for recent monographs on
the subject.

Inspired by the metastable behavior of condensed zero-range processes [1] and from the
metastable behavior of random walks among random traps [15,16], we proposed in [2] a
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definition of metastability and developed some techniques, particularly effective in the reversible
case, for proving the metastability of sequences of Markov processes on countable state spaces.

To present the approach introduced in [2] in the simplest possible context, we examine in this
article the metastable behavior of reversible Markov processes on finite state spaces. The main
result of the article, Theorem 2.1, describes all metastable behaviors of such processes in all time
scales under the minimal conditions (2.1), (2.2) on the jump rates.

The minimal assumptions (2.1), (2.2) are clearly satisfied by all Markovian dynamics studied
so far. This includes the Glauber dynamics with a small external field at very low temperature
in two [20,21] and three [3] dimensions, anisotropic Glauber dynamics [17,18], conservative
Kawasaki dynamics [11–14], Markov processes with exponential transition probabilities [24]
and the reversible dynamics considered in [7].

Theorem 2.1 asserts the existence of time scales in which a metastable behavior is observed.
To apply this result to specific models, as pointed out in Remark 2.2, one needs to compute the
capacity between metastable sets and the hitting probabilities of metastable sets. In some cases,
as in the Kawasaki dynamics, the exact calculation of the hitting probabilities is impossible, but
one can at least determine whether the asymptotic hitting probability is strictly positive or not. In
these cases, an exact description of the metastable behavior of the process is not available. It is
only known that asymptotically the process spends an exponential time, of a computable mean,
in a metastable set, at the end of which it jumps to some other metastable set with an unknown
probability, where the same phenomenon is observed.

In contrast with the pathwise approach proposed in [8], the one presented in this article does
not highlight the saddle configurations visited by the process when moving from one metastable
state to another. However, to compute the exact depths of the valleys, a calculation which relies
on a precise estimation of the capacities, one needs to characterize the saddle configurations.
This is clearly illustrated in Section 8 where the saddle configurations of a valley Eσ , denoted by
W(σ ), appear when we compute the capacities between the metastable sets of the Ising model.

The lack of precise results on the saddle configurations is compensated by an exact description
of the asymptotic dynamics among wells. We are able, in particular, with methods similar to the
ones introduced in Bovier et al. [5,6], to show the existence of sequences θN for which TN /θN
converges to a mean 1 exponential distribution, if TN represents the time at which the process
leaves a metastable set. Furthermore, we also prove the asymptotic independence of TN /θN and
ηTN , where η represents the Markov process, a question not considered before. The proof of this
asymptotic independence requires the convergence of the average jump rates, defined in (2.6),
which is, in most cases, the main technical difficulty in the deduction of metastability.

To illustrate the main result, we consider in Section 3 the metastable behavior of the two-
dimensional Ising model with a small external field at very low temperature, the model of Neves
and Schonmann [20,21], and a case in which all parameters can be exactly computed.

2. Notation and results

We say that a sequence of positive real numbers (αN : N ≥ 1) is of lower magnitude than a
similar sequence (βN : N ≥ 1), αN ≺ βN or βN ≻ αN , if αN /βN vanishes as N ↑ ∞. We say
that two positive sequences (αN : N ≥ 1), (βN : N ≥ 1) are of the same magnitude, αN ≈ βN ,
if there exists a finite positive constant C0 such that

C−1
0 ≤ lim inf

N→∞

αN

βN
≤ lim sup

N→∞

αN

βN
≤ C0.

Finally, αN ≼ βN or βN ≽ αN means that αN ≺ βN or αN ≈ βN .
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We say that a set of sequences (αN (1) : N ≥ 1), . . . , (αN (ℓ) : N ≥ 1) is comparable if for
each i ≠ j one of three possibilities holds: αN (i) ≺ αN ( j) or αN ( j) ≺ αN (i) or αN (i)/αN ( j)
converges to a constant ci, j ∈ (0, ∞). Hence, for example, the possibility that the sequence
αN (i)/αN ( j) oscillates between two finite values and does not converge is excluded.

Fix a finite set E and sequences {λN ( j) : N ≥ 1}, 0 ≤ j ≤ n, such that λN (n) ≺ λN (n−1) ≺

· · · ≺ λN (0) ≡ 1. Consider a Markov process {ηN
t : t ≥ 0} on E with jump rates denoted by

RN (x, y), x ≠ y ∈ E . We assume that the process is irreducible, that the unique stationary state,
denoted by µN , is reversible, and that the jump rates satisfy the following multi-scale hypothesis.
There exists a : E × E → {0, . . . , n} such that

RN (x, y) = rN (x, y) λN (a(x, y)), x ≠ y ∈ E, (2.1)

where limN→∞ rN (x, y) = r(x, y) ∈ (0, ∞), x ≠ y. We assume, without loss of generality,
that a(x, y) = 0 for some x ≠ y. We assume, furthermore, that products of the rates λN ( j) are
comparable. More precisely, we suppose that for any (k1, . . . , kn) ∈ Zn,

lim
N→∞

n∏
i=1

λN (i)ki = C0 (2.2)

for some constant C0 ∈ [0, ∞] which depends on (k0, . . . , kn).
Fix two states x, y in E . By irreducibility, there exists a path x = x0, x1, . . . , xn = y such

that n ≤ |E |, RN (xi , xi+1) > 0, 0 ≤ i < n. By the detailed balance condition,

µN (y)

µN (x)
=

n−1∏
i=0

RN (xi , xi+1)

RN (xi+1, xi )
. (2.3)

It follows from assumptions (2.1) and (2.2) that the sequences {µN (x) : N ≥ 1}, x ∈ E , are
comparable. In fact, there exist m ≥ 1, sequences MN (m) ≺ · · · ≺ MN (1) ≺ MN (0) ≡ 1, a
function b : E → {0, . . . ,m} and a function m : E → (0, ∞) such that

µN (x) = m N (x) MN (b(x)), x ∈ E, (2.4)

where limN→∞ m N (x) = m(x) ∈ (0, ∞). We may choose each sequence MN ( j) to be equal to∏n
i=1 λN (i)ki for an appropriate choice of (k1, . . . , kn) with

∑
i |ki | ≤ 4|E |.

Let G N : E × E → R+ be given by G N (x, y) = µN (x)RN (x, y) and note that G N is
symmetric. As above, by (2.1) and (2.2) the sequences {G N (x, y) : N ≥ 1}, x ≠ y ∈ E , are
comparable. Moreover, there exist j ≥ 1, sequences G N (j) ≺ · · · ≺ G N (1) ≺ G N (0) ≡ 1, a
function c : E × E → {0, . . . , j} and a function g : E → (0, ∞) such that

G N (x, y) = gN (x, y) G N (c(x, y)), x, y ∈ E, (2.5)

where limN→∞ gN (x, y) = g(x, y) ∈ (0, ∞). Here also each sequence G N ( j) may be chosen
equal to

∏n
i=1 λN (i)ki for an appropriate choice of (k1, . . . , kn) with

∑
i |ki | ≤ 4|E | + 1.

Denote by PN
x , x ∈ E , the probability measure on the path space D(R+, E) induced by the

Markov process {ηN
t : t ≥ 0} starting from x . Expectation with respect to PN

x is denoted by EN
x .

For a subset A of E , denote by TA the time of hitting of A:

TA = inf{t > 0 : ηN
t ∈ A}.

When A is a singleton {x}, we denote T{x} by Tx .
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For a proper subset F of E , denote by {ηF
t : t ≥ 0} the trace of the Markov process

{ηN
t : t ≥ 0} on F . We refer the reader to [2, Section 2] for a precise definition. ηF

t is a Markov
process on F and we denote by RF

N (x, y), x, y ∈ F , its jump rates. Let r F
N (A, B), A, B ⊂ F ,

A ∩ B = ∅, be the average rates of jumping of ηF
t from A to B:

r F
N (A, B) =

1
µN (A)

−
x∈A

µN (x)
−
y∈B

RF
N (x, y). (2.6)

The main theorem of this article describes all metastable behaviors of the process {ηN
t :

t ≥ 0}.

Theorem 2.1. There exist M ≥ 1, sequences {θN (k) : N ≥ 1}, 1 ≤ k ≤ M, 1 ≺ θN (1) ≺

· · · ≺ θN (M), and, for each 1 ≤ k ≤ M, a partition E (k)
1 , . . . , E (k)

ν(k),∆k of the state space E
such that for all 1 ≤ k ≤ M:

(P1) 1 < ν(k) < ν(k − 1), k ≥ 2.
(P2) For k ≥ 2, 1 ≤ i ≤ ν(k), E (k)

i = ∪a∈Ik,i E (k−1)
a , where Ik,1, . . . , Ik,ν(k) are disjoint subsets

of {1, . . . , ν(k − 1)}.
(P3) For 1 ≤ i ≤ ν(k), µN (x) ≈ µN (E (k)

i ) for all states x in E (k)
i .

(P4) Let E (k)
= ∪

ν(k)
i=1 E (k)

i . For all 1 ≤ i ≠ j ≤ ν(k), the following limits exist:

rk(i, j) := lim
N→∞

θN (k) r E (k)

N (E (k)
i , E (k)

j ).

(P5) Property (M1′) of metastability holds: For every 1 ≤ i ≤ ν(k), every state x in E (k)
i and

every δ > 0,

lim
N→∞

max
y∈E (k)

i

PN
y


Tx > δθN (k)


= 0.

(P6) Property (M2) of metastability holds: Let Ψk : E (k)
→ {1, . . . , ν(k)} be given by

Ψk(x) =

ν(k)−
i=1

i 1{x ∈ E (k)
i }.

Denote by {η
N ,k
t : t ≥ 0} the trace of the process {ηN

t : t ≥ 0} on E (k). For every 1 ≤ i ≤

ν(k), x ∈ E (k)
i , under the measure PN

x , the blind speeded-up (non-Markovian) process

X N ,k
t = Ψk(η

N ,k
tθN (k)) converges to the Markov process on {1, . . . , ν(k)} starting from i and

characterized by the rates rk(i, j).
(P7) Property (M3′) of metastability holds: For every t > 0,

lim
N→∞

max
x∈E

EN
x

∫ t

0
1{ηN

sθN (k) ∈ ∆k} ds


= 0.

The sets E (k)
i , 1 ≤ i ≤ ν(k), are called the metastable states at level k or, simply, k-metastates.

Property (P2) asserts that as we pass from a description in the time scale θN (k−1) to a description
in the longer time scale θN (k), the new metastates are larger and obtained as unions of (k − 1)-
metastates. Moreover, by property (P3), all states in any metastable set have measure of the same
magnitude.
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Condition (P5) asserts that, with a probability increasing to 1, any state in a metastable set
is visited before the process leaves the metastable set. The process therefore thermalizes in the
metastable state or, in other words, reaches a local equilibrium, before leaving the metastable
state.

Condition (P7) states that on the time scale θN (k), the time spent outside the union of all
metastates is negligible. To examine the behavior of the process in this time scale we may
therefore restrict our attention to the trace process {η

N ,k
t : t ≥ 0} speeded up by θN (k).

It follows from properties (P5) and (P6) that the speeded-up trace process {η
N ,k
tθN (k) : t ≥ 0}

thermalizes in each metastable set E (k)
i and then, at the end of an exponential time, jumps to

another metastable set. By property (P4) the rate at which the process jumps from one metastable
set to another is given by the asymptotic mean rate at which the speeded-up trace process jumps.
Theorem 2.1 gives, therefore, a complete description of the evolution of the process on each time
scale θN (k).

Remark 2.2. In order to apply this result to concrete models, we proceed as follows. Consider
the Markov process on E obtained by suppressing all jumps RN (x, y) of magnitude smaller than
1: RN (x, y) ≺ 1. Note that this Markov process may not be irreducible. Denote by ν = ν(1)

the number of irreducible classes and by E1, . . . , Eν the irreducible classes. These sets are the
1-metastates. Let

θN ,i =
µN (Ei )

capN (Ei , Ĕi )
, 1 ≤ i ≤ ν, (2.7)

where capN (A, B) represents the capacity between A and B, defined in Section 4, and Ĕi =

∪ j≠i E j . By Proposition 5.8 the sequences (θN ,i : N ≥ 1), 1 ≤ i ≤ ν, are comparable. Let
θN = θN (1) = min{θN ,i : 1 ≤ i ≤ ν}. Since the sequences are comparable the following limits
exist:

λ(i) = lim
N→∞

θN

θN ,i
∈ [0, 1], 1 ≤ i ≤ ν.

By Lemma 4.3 and the first remark formulated at the end of Section 6, for every 1 ≤ i ≠ j ≤ ν,
the limits below also exist and do not depend on x ∈ Ei :

p(i, j) = lim
N→∞

PN
x


TE j = TĔi


. (2.8)

By (6.2), r1(i, j) = λ(i)p(i, j).
Hence, the characterization of the 1-metastates is very simple and the computation of θN ,i

(the depth of the valley Ei , as we shall see) is feasible. This computation provides the slowest
time scale θN (1) in which a metastable behavior is observed. To determine the exact asymptotic
evolution in this time scale, we need to compute (2.8) which may be difficult or even impossible.
In several cases, however, one may at least discern the pairs (i, j) for which r1(i, j) is strictly
positive. This permits us to iterate the argument and gives an imprecise picture of the metastable
behavior. In the time scale θN (1) the process remains in the 1-metastate Ei for a rate λ(i)
exponential time at the end of which it jumps to one of the remaining metastates such that
p(i, j) > 0.

Consider the Markov process on {E1, . . . , Eν} (instead of {1, . . . , ν}) with rates r1(i, j) and
denote by ν(2) the number of its irreducible classes, and by E (2)

1 , . . . , E (2)
ν(2) the irreducible

classes. Note that properties (P1) and (P2) are fulfilled and that we only need to know whether
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p(i, j) is strictly positive or not to determine the irreducible classes. Compute (2.7) and (2.8) for
this new class of sets to obtain the second time scale θN (2) and the rates r2(i, j). Iterating this
scheme we completely characterize the metastable behavior of the Markov process.

We conclude this section with some comments. In statistical mechanics models, the rates
RN (x, y) are usually exponential and given by eNh(x,y) for some function h : E × E → R.
Assumptions (2.1), (2.2) are trivially satisfied in this context.

In some models examined in statistical mechanics the time scales θN (k), 1 ≤ k < M,
correspond to the nucleation phase of the system, which may be very intricate even for simple
dynamics due to the variety of valleys and the complexity of their geometries. In most cases,
one only investigates the behavior in the largest time scale, θN (M), where one observes either an
exponential jump from a metastable to a stable state, or a Markovian evolution among competing
metastable states.

We prove in (6.3) and (7.1) that the process never jumps from a metastable set to another
metastable set which has probability of smaller order: rk(i, j) = 0 if µN (E (k)

j ) ≺ µN (E (k)
i ).

3. The Ising model at low temperature

To illustrate the methods presented in the first part of this article, we examine in this section the
metastable behavior of the Ising model at low temperature following Neves and Schonmann [20].

We consider the two-dimensional nearest neighbor ferromagnetic Ising model on a finite torus
ΛL = TL × TL , L ≥ 1, where TL = {1, . . . , L} is the discrete one-dimensional torus with L
points. The Hamiltonian is written as

H(σ ) = −
1
2

−
⟨x,y⟩

σ(x)σ (y) −
h

2

−
x∈ΛL

σ(x),

where σ(x) ∈ {−1, 1}, the first sum runs over the pairs of nearest neighbor sites of ΛL , counting
each pair only once, and the second is taken over ΛL . We will always consider h > 0.

At inverse temperature β > 0, the Gibbs measure µβ associated with the Hamiltonian H is
given by

µβ(σ ) =
1

Zβ

e−βH(σ ),

where Zβ is the normalizing partition function.
The Glauber dynamics on the state space Ω = ΩL = {−1, 1}

ΛL , also known as the Ising
model, is the continuous time Markov process whose generator Lβ acts on functions f : Ω → R
as

(Lβ f )(σ ) =

−
x∈ΛL

c(x, σ ) [ f (σ x ) − f (σ )],

where σ x is the configuration obtained from σ by flipping the spin at x :

σ x (y) =


σ(y) if y ≠ x,

−σ(x) if y = x,

where the rates c(x, σ ) are given by

c(x, σ ) = exp

−β[H(σ x ) − H(σ )]+


,
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and where a+, a ∈ R, stands for the positive part of a: a+ = max{a, 0}. The Markov process
{σ

β
t : t ≥ 0} with generator Lβ is reversible with respect to the Gibbs measures µβ , β > 0,

and ergodic. Denote by Rβ(σ, σ ′) the rate at which the process jumps from σ to σ ′, so Rβ(σ, σ ′)

vanishes unless σ ′
= σ x for some x ∈ ΛL , in which case Rβ(σ, σ x ) = c(x, σ ).

In this model the process jumps from a state σ to the state σ x at rate 1 if µβ(σ ) ≤ µβ(σ x ).
In particular, by the detailed balance condition, µβ(σ )Rβ(σ, σ x ) = min{µβ(σ ), µβ(σ x )} so
Gβ(σ, σ x ) = min{µβ(σ ), µβ(σ x )}.

We examine in this section the metastable behavior of the Markov process {σ
β
t : t ≥ 0} on Ω

as the temperature vanishes. To avoid degenerate cases, following [20] we assume from now on
that 0 < h < 2, that 2/h ∉ N and that L > (n0 + 1)2

+ 1, where n0 = [2/h] and [r ] stands for
the integer part of r . We refer the reader to [19] for the degenerate case 2/h ∈ N.

Let I be an interval of the one-dimensional torus TL . The sets I × TL , TL × I ⊂ ΛL are
called rings, while rectangles are subsets of the form I × J , where I, J are non-empty proper
intervals of TL .

To describe all metastable behaviors of the Ising model, we need to define the time scales
at which they occur, the metastable sets associated with each time scale, and the asymptotic
dynamics which specifies at which rate the process jumps from one metastable state to another.
We start defining the n0 + 1 time scales. For 1 ≤ k ≤ n0 − 1 let

θβ(k) = ekβh, θβ(n0) = eβ(2−h), θβ(n0 + 1) = eβ c(h),

where c(h) = 4(n0 + 1) − h[(n0 + 1)n0 + 1]. Note that θβ(1) ≺ · · · ≺ θβ(n0 + 1).
The presentation of the metastable sets requires some notation. Denote by Ωo ⊂ Ω the set of

configurations whose total jump rate
∑

x∈ΛL
Rβ(σ, σ x ) vanishes as β ↑ ∞. This is the set of

configurations in which a negative spin has at most one positive neighbor and in which a positive
spin has at most two negative neighbors. This set contains the configurations +1, −1, which are
the configurations with all spins positive, negative, respectively, and configurations formed by
positive rectangles and rings of length and width larger than 2 in a background of negative spins.
In these latter configurations, to fulfill the prescribed conditions the positive rectangles and rings
may not be at graph distance 2.

For a configuration σ in Ωo, denote by ℓ(σ ) the smallest length or width of the positive
rectangles of σ . By convention, ℓ(−1) = 0, ℓ(+1) = L and ℓ(σ ) = L if σ contains no positive
rectangles, but only positive rings. Let Nr (σ ) be the number of positive ℓ(σ ) × m rectangles of
σ for some m > ℓ(σ), and let Ns(σ ) be the number of positive ℓ(σ ) × ℓ(σ ) squares of σ .

We may now introduce the metastable states Ωo,k appearing in the time scale θβ(k), 1 ≤ k ≤

n0 + 1. For 1 ≤ k ≤ n0, let

Ωo,k = {σ ∈ Ωo : ℓ(σ ) > k} ∪ {−1}, Ωo,n0+1 = {+1, −1}.

Note that Ωo = Ωo,1 ⊃ · · · ⊃ Ωo,n0+1. The metastable states appearing in the time scale
θβ(k), 1 ≤ k ≤ n0 + 1, are all the elements of Ωo,k .

To depict how the process jumps from one metastable state to another in the different time
scales, we need to introduce several sets. We use the terminology of graph theory to name some
of them. Denote by D(σ ) the set of direct successors of the configuration σ in Ωo, σ ≠ +1, −1.
If ℓ(σ ) = 2, D(σ ) is the set of configurations obtained from σ by flipping all positive
spins from one of the two sides of length 2 of a positive 2 × m rectangle, m > 2, and of
configurations obtained from σ by flipping all spins of a positive 2 × 2 square of σ . Clearly,
|D(σ )| = 2Nr (σ ) + Ns(σ ). When 3 ≤ ℓ(σ ) ≤ n0, D(σ ) is the set of configurations obtained
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from σ by flipping all positive spins from one of the sides of length ℓ(σ ) of a positive ℓ(σ ) × m
rectangle, m ≥ ℓ(σ ). In this case, |D(σ )| = 2Nr (σ ) + 4Ns(σ ). For ℓ(σ ) > n0, D(σ ) is the set
of configurations obtained by first flipping a negative spin from a site which has a neighbor site
with a positive spin, and then flipping in any order all negative spins surrounded by two positive
spins. Note that in this latter case two or more positive rectangles may be replaced by the smallest
rectangle which contains them all. For this reason an exact description of the direct successors
of a configuration in the case ℓ(σ ) > n0 is more complicated.

For σ ∈ Ωo, σ ≠ ±1, denote by W(σ ) the set of saddle points of the configuration σ . For
2 ≤ ℓ(σ ) ≤ n0, W(σ ) is the set of configurations obtained from σ by flipping ℓ(σ ) − 1 positive
spins from a side of length ℓ(σ ) of a positive ℓ(σ ) × m rectangle of σ, m ≥ ℓ(σ ). Note that
|W(σ )| = 2ℓ(σ )Nr (σ ) + 4ℓ(σ )Ns(σ ) for 3 ≤ ℓ(σ ) ≤ n0 and |W(σ )| = 4Nr (σ ) + 4Ns(σ )

for ℓ(σ ) = 2. For ℓ(σ ) > n0, W(σ ) consists of the set of configurations obtained from σ by
flipping a negative spin from a site which has one neighbor with a positive spin such that |W(σ )|

is equal to the sum of the perimeters of the positive rectangles of σ added to 2L times the number
of positive rings of σ .

For ℓ(σ ) > n0, let W(σ, σ ′), σ ∈ Ωo, σ ′
∈ D(σ ), be the subset of W(σ ) of all configurations

which attain σ ′ by flipping in any order all negative spins surrounded by two positive spins, and
let W j (σ ), 1 ≤ j ≤ 3, be the configurations ξ of W(σ ) with the following property. The site
where ξ differs from σ has three neighbors with negative spins. Among these three neighbors, j
sites have two neighbors with positive spins. The case j = 3 occurs when the configuration has
two positive rectangles or rings at distance 3. Let W j (σ, σ ′) = W j (σ ) ∩ W(σ, σ ′).

Fix a configuration σ ∈ Ωo and let Ωσ = Ωo \ {σ }. Recall that we denote by TA the time of
hitting of a set A ⊂ Ω . We prove in Lemma 8.2 that Pβ

σ [TD(σ ) = TΩσ
] converges, as β ↑ ∞, to

1 and that the process reaches σ ′ by first visiting a configuration of W(σ ).

Denote by S(σ ) the set of successors of the configuration σ in Ωo, σ ≠ +1, −1. The
difference between a successor and a direct successor is that the critical length ℓ(σ ′) of a
successor σ ′ may not be smaller than that of the original configuration: ℓ(σ ′) ≥ ℓ(σ ). If ℓ(σ ) = 2
or ℓ(σ ) > n0, the set of successors coincides with the set of direct successors: S(σ ) = D(σ ).
However, if 3 ≤ ℓ(σ ) ≤ n0, S(σ ) is the set of configurations obtained from σ by flipping
all positive spins from one of the two sides of length ℓ(σ ) of a positive ℓ(σ ) × m rectangle of
σ, m > ℓ(σ), and of configurations obtained from σ by flipping all spins of a positive ℓ(σ )×ℓ(σ )

square of σ .

The probability measure p introduced below describes how the process jumps from one
metastable state to another in the appropriate time scales. For each configuration σ ∈ Ωo, define
the probability measure p(σ, ·) on Ωo as follows. Let p(σ, σ ′) = 0 for σ ′

∉ S(σ ). For σ ′
∈ S(σ )

and ℓ(σ ) = 2 ≤ n0, let

p(σ, σ ′) =


(8/3)[2Nr + (8/3)Ns]

−1 for σ ′
∈ Ss(σ ),

[2Nr + (8/3)Ns]
−1 otherwise,

(3.1)

where Ss(σ ) ⊂ S(σ ) is the set of configurations obtained from σ by flipping all spins in a positive
2 × 2 square of σ . For σ ′

∈ S(σ ) and 3 ≤ ℓ(σ ) ≤ n0, let

p(σ, σ ′) =


4[2Nr + 4Ns]

−1 for σ ′
∈ Ss(σ ),

[2Nr + 4Ns]
−1 otherwise,

(3.2)
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where Ss(σ ) ⊂ S(σ ) is the set of configurations obtained from σ by flipping all spins in a positive
ℓ(σ ) × ℓ(σ ) square of σ . Finally, for σ ′

∈ S(σ ) and ℓ(σ ) > n0, let

p(σ, σ ′) =

3∑
j=1

j
j+1 |W j (σ, σ ′)|

3∑
j=1

j
j+1 |W j (σ )|

. (3.3)

It remains to describe the rates at which the process leaves a metastable state in the different
time scales. Let θ : Ωo \ {−1, +1} → R+ be given by

θ(σ ) =


(2/3)Ns(σ ) + 2Nr (σ ) if ℓ = 2 ≤ n0,
2ℓ − 1

3ℓ
|W(σ )| if 3 ≤ ℓ ≤ n0,

(1/2)|W1(σ )| + (2/3)|W2(σ )| + (3/4)|W3(σ )| if ℓ > n0.

(3.4)

We are now in a position to state the first main result of this section. Fix 1 ≤ k ≤ n0 + 1 and
denote by σ

β,k
t the trace of the process σ

β
t on Ωo,k . Recall that σ

β,k
t is a Markov process on Ωo,k .

Theorem 3.1. Fix 1 ≤ k ≤ n0. As β ↑ ∞, the Markov process σ
β,k
tθβ (k) converges to the Markov

process on Ωo,k with jump rates r given by

r(σ, σ ′) =


θ(σ )p(σ, σ ′) if σ ∈ Ωo,k \ Ωo,k+1,
0 if σ ∈ Ωo,k+1.

Moreover, the time spent outside Ωo,k by the process σ
β,k
tθβ (k) is negligible: for all t > 0 and

σ ∈ Ω ,

lim
β→∞

Eβ
σ

∫ t

0
1{σ

β,k
sθβ (k) ∉ Ωo,k} ds


= 0.

Fix a configuration σ ∈ Ωo,k, 1 ≤ k ≤ n0 − 1, and consider asymptotic behavior, as
the temperature vanishes, of the trace process σ

β,k
t in the time scale θβ(k) starting from σ .

Theorem 3.1 states that if ℓ(σ ) > k + 1, the configuration σ is an absorbing point for the
asymptotic dynamics, while if ℓ(σ ) = k + 1, the asymptotic dynamics visits a sequence of
configurations where each element of the sequence differs from the previous one either by
flipping all positive spins of one of the two sides of length k + 1 of a (k + 1) × m positive
rectangle, m > k + 1, or by flipping all spins of a (k + 1)× (k + 1) positive square. After a finite
number of jumps, the process reaches a configuration whose positive rectangles have all sides
larger than k + 1 and stays there forever.

For a configuration σ ∈ Ωo,n0 , Theorem 3.1 states that in the time scale θβ(n0) the trace

process σ
β,n0
t sees its positive rectangles and rings increase gradually until the configurations +1

is reached.
This result describes therefore the behavior of the Ising model in the intermediate scales where

first the small positive droplets are removed and then the large positive droplets increase to
eventually occupy all space. To complete the picture of the metastable behavior of the model
it remains to specify how the process jumps from the configuration −1 to the configuration +1.
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Denote by W(−1) the set of configurations which have a positive (n0 + 1)× n0 rectangle and
an extra positive spin which has a positive neighbor sitting on one of the sides of length n0 + 1
of the positive rectangle, all others spins being negative. All configurations of W(−1) have the
same measure. Denote by W1(−1) the configurations of W(−1) whose extra positive spin is next
to the corner of the positive rectangle and by W2(−1) the other configurations of W1(−1). Let

θ(−1) = (1/2)|W1(−1)| + (2/3)|W2(−1)|.

Theorem 3.2. As β ↑ ∞, the Markov process σ
β,n0+1
tθβ (n0+1) converges to the Markov process on

{−1, +1} in which +1 is an absorbing state and which jumps from −1 to +1 at rate θ(−1).
Moreover, the time spent outside {−1, +1} by the process σ

β,n0+1
tθβ (n0+1) is negligible: for all t > 0

and σ ∈ Ω ,

lim
β→∞

Eβ
σ

∫ t

0
1{σ

β,n0+1
sθβ (n0+1) ≠ ±1} ds


= 0.

4. Capacities and hitting times

Denote by DN the Dirichlet form associated with the generator of the Markov process
introduced in Section 2:

DN ( f ) =

−
{x,y}⊂E

µN (x)RN (x, y){ f (y) − f (x)}2, f : E → R,

where in the sum on the right hand side each bond {x, y} is counted only once. Let
capN (A, B), A, B ⊂ E , A ∩ B = ∅, be the capacity between A and B:

capN (A, B) = inf
f

DN ( f ), (4.1)

where the infimum is taken over all functions f : E → R such that f (x) = 1 for all x ∈ A, and
f (x) = 0 for all x ∈ B.

We may compute the order of magnitude of the capacity between two disjoint subsets of E . A
self-avoiding path γ from A to B, A, B ⊂ E , A ∩ B = ∅, is a sequence of sites (x0, x1, . . . , xn)

such that x0 ∈ A, xn ∈ B, xi ≠ x j , i ≠ j , RN (xi , xi+1) > 0, 0 ≤ i < n. Denote by ΓA,B the
set of self-avoiding paths from A to B and let

G N (A, B) := max
γ∈ΓA,B

G N (γ ), G N (γ ) := min
0≤i<n

G N (xi , xi+1).

Note that there might be more than one optimal path and that G N ({x}, {y}) ≥ G N (x, y), with
possibly a strict inequality.

We shall say that a bond (x p, x p+1) of a path γ = (x0, x1, . . . , xn) is critical if

G N (x p, x p+1) = min
0≤i<n

G N (xi , xi+1) = G N (γ ).

Note that for all disjoint sets A, B, C ,

G N (A, B ∪ C) = max{G N (A, B), G N (A, C)}. (4.2)

Indeed, the left hand side is greater than or equal to the right hand side because G N (A, D) ≤

G N (A, D′) if D ⊂ D′. On the other hand, there exists a self-avoiding path γ = (x0, . . . , xn)
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from A to B ∪ C such that G N (A, B ∪ C) = G N (γ ). We may assume without loss of generality
that xn belongs to B. Hence, γ is a self-avoiding path from A to B and G N (γ ) ≤ G N (A, B),
which proves (4.2).

Lemma 4.1. Fix A, B ⊂ E such that A ∩ B = ∅. The capacity capN (A, B) is of the same
magnitude as G N (A, B). There exists a positive and finite constant C1, depending only on E
and on the limiting rates r(x, y), such that

C−1
1 ≤

capN (A, B)

G N (A, B)
≤ C1

for all N sufficiently large.

Proof. Fix two subsets A, B of E such that A ∩ B = ∅. We shall obtain an upper and
a lower bound for capN (A, B). We start with a lower bound. Fix a self-avoiding path γ =

(x0, x1, . . . , xn) in ΓA,B such that G N (A, B) = min0≤i<n G N (xi , xi+1). This path always exists
because the number of paths is finite. For any function f : E → R,

DN ( f ) ≥

n−1−
i=0

G N (xi , xi+1)[ f (xi+1) − f (xi )]
2.

Therefore, minimizing over all f : E → R such that f (x) = 1, x ∈ A, f (y) = 0, y ∈ B, we
get that capN (A, B) is bounded below by

inf
f

n−1−
i=0

G N (xi , xi+1)[ f (xi+1) − f (xi )]
2,

where the infimum is taken over all functions f : {x0, . . . , xn} → R such that f (x0) =

1, f (xn) = 0. A simple computation shows that this expression is equal to
n−1−
i=0

1
G N (xi , xi+1)

−1

,

which is bounded below, for N large, by C1 min0≤i<n G N (xi , xi+1) for some positive constant
C1 depending only on E and the asymptotic rates r(x, y). By the definition of the path
γ = (x0, x1, . . . , xn), min0≤i<n G N (xi , xi+1) = G N (A, B), which proves the lower bound
for the capacity.

We now turn to the upper bound. Denote by BN the set of bonds (x, y) such that G N (x, y) >

G N (A, B). The state space E can be written as the disjoint union of maximal connected
components. More precisely, there exist disjoint subsets A1, . . . , Am of E , possibly singletons,
fulfilling the next three conditions:

• E = ∪1≤ j≤m A j ;
• for any x, y ∈ A j , there exists a path γ = (x = x0, x1, . . . , x p = y) such that G N (xi , xi+1) >

G N (A, B) for all 0 ≤ i < p;
• for any x ∈ A j , y ∈ Ak, j ≠ k, there does not exist a path γ = (x = x0, x1, . . . , x p = y)

such that G N (xi , xi+1) > G N (A, B) for all 0 ≤ i < p.

Note that if A j ∩ A ≠ ∅ then A j ∩ B = ∅. Otherwise, there would be a self-avoiding path
(x0, . . . , xn) from A to B such that G N (xi , xi+1) > G N (A, B) for all 0 ≤ i < n, in contradiction
with the definition of G N (A, B).
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Consider a self-avoiding path γ = (x0, x1, . . . , xn) in ΓA,B such that G N (A, B) =

min0≤i<n G N (xi , xi+1). The path γ may have bonds (xi , xi+1) in BN . We claim, however, that
there exists a bond (xq , xq+1) in γ such that G N (xq , xq+1) = G N (A, B) and such that there is
no maximal connected component A j of E such that

A j ∩ [A ∪ {x0, . . . , xq}] ≠ ∅ and A j ∩ [B ∪ {xq+1, . . . , xn}] ≠ ∅. (4.3)

To prove this claim, let L ≥ 1 be the number of critical bonds in γ and fix a critical bond
(x p, x p+1) for which (4.3) does not hold. There exists therefore a maximal connected component
A j of E such that A j ∩ [A ∪ {x0, . . . , x p}] ≠ ∅ and A j ∩ [B ∪ {x p+1, . . . , xn}] ≠ ∅. By
overlapping the bond (x p, x p+1) with a path in A j , we construct a new self-avoiding path
γ ′

= (x ′

0, . . . , x ′

n′) from A to B with possibly different initial or final point which avoids the
bond (x p, x p+1).

Since all bonds which belong to γ ′ and not to γ are in BN and since G N (xi , xi+1) ≥

G N (x p, x p+1) = G N (A, B), 0 ≤ i < n, G N (x ′

i , x ′

i+1) ≥ G N (A, B) for all 0 ≤ i < n′. On the
other hand, since γ ′ is a self-avoiding path from A to B, min0≤i<n′ G N (x ′

i , x ′

i+1) ≤ G N (A, B).
Hence, min0≤i<n′ G N (x ′

i , x ′

i+1) = G N (A, B).
On the other hand, since all bonds which belong to γ ′ and not to γ are in BN and since

(x p, x p+1) does not belong γ ′, the number of critical bonds of γ ′ is at most L − 1. It might be
smaller than L − 1 if the set A j overlaps more than one critical bond of γ .

If the new path γ ′ fulfills condition (4.3), the claim is proved. If it does not, we apply the
algorithm again. Since the algorithm reduces the number of critical bonds by at least 1, after a
finite number of iterations we obtain a path satisfying (4.3) as claimed.

We now define a function f equal to 1 on the set A and equal to 0 on the set B, and we
show that the Dirichlet form of f is bounded by C1G N (A, B) for some finite constant C1 which
depends only on E . Let (x p, x p+1) be a critical bond of a path γ = (x0, . . . , xn) satisfying
condition (4.3). Define f : E → R as follows. Let f (x) = 1 for x ∈ A, f (y) = 0, y ∈ B.
Define f on γ as f (xi ) = 1, 0 ≤ i ≤ p, f (x j ) = 0, p + 1 ≤ i ≤ n. On each maximal
connected component A j which intersects A ∪ {x0, . . . , x p}, set f = 1. Similarly, on each
maximal connected component Ak which intersects {x p+1, . . . , xn}∪ B set f = 0. Property (4.3)
ensures that this can be done. For the remaining sites we define f to be a fixed arbitrary constant
ω. Note that with this definition, f is constant on each maximal connected component Ak .

It remains to examine the Dirichlet form of f . There are three kinds of non-vanishing terms
in this Dirichlet form. The first one is G N (x p, x p+1) = G N (A, B). The second and third kinds
are expressions of the form G N (x, y)(1 − ω)2, G N (x, y)ω2, where (x, y) does not belong to
BN . In particular, the contribution to the Dirichlet form of f of these expressions is bounded by
C1G N (A, B){ω2

+ (1 − ω)2
} for some finite constant which depends only on E . This proves

that DN ( f ) ≤ C1G N (A, B). Since f is equal to 1 on the set A and is equal to 0 on the set
B, capN (A, B) ≤ C1G N (A, B), which proves the lemma. �

This lemma presents a typical estimation of asymptotic capacities. We first obtain a lower
bound of the Dirichlet form, uniform over all functions f , by disregarding some bonds. Then,
we prove an upper bound for a specific candidate, believed to be close to the optimal function
in view of the proof of the lower bound. This time, however, no bond can be neglected in the
Dirichlet form.

Of course, the function f proposed in the proof of the previous lemma gives only the correct
magnitude of the capacity capN (A, B) and not its exact asymptotic value. The computation of
the exact asymptotic value requires detailed information on the jump rates and has to be done
model by model.
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We may prove, however, that under certain assumptions the capacity between two sets
conveniently rescaled converges. Fix two disjoint subsets of E : A, B ⊂ E, A ∩ B = ∅. By
definition, G N (A, B) = G N (x, y) for some x, y ∈ E . By (2.5), G N (x, y) = gN (x, y) G N ( j)
for some 0 ≤ j ≤ j. Let gN (A, B) = G N ( j) ≼ 1 so that G N (A, B)/gN (A, B) converges, as
N ↑ ∞, to some number in (0, ∞).

Lemma 4.2. Fix two disjoint subsets of E : A, B ⊂ E, A ∩ B = ∅. Let fN : E → [0, 1] be
the function fN (x) = PN

x [TA < TB]. Assume that fN converges pointwise to some function f .
Denote by B(A, B) the set of pairs {x, y} such that G N (x, y) ≈ gN (A, B). Then, f (y) = f (x)

if G N (x, y) ≻ gN (A, B) and

lim
N→∞

capN (A, B)

gN (A, B)
=

−
{x,y}∈B(A,B)

g(x, y)[ f (y) − f (x)]2
∈ (0, ∞),

where g(x, y) has been introduced in (2.5). In particular, capN (A, B)/G N (A, B) converges, as
N ↑ ∞, to a finite and strictly positive limit:

lim
N→∞

capN (A, B)

G N (A, B)
=: Ξ (A, B) ∈ (0, ∞).

Proof. Fix two disjoint subsets of E : A, B ⊂ E, A ∩ B = ∅ and let fN : E → [0, 1] be the
function fN (x) = PN

x [TA < TB]. It is well known that

capN (A, B) = DN ( fN ) =

−
{x,y}⊂E

G N (x, y)[ fN (y) − fN (x)]2.

We first show that f (y) = f (x) if G N (x, y) ≻ gN (A, B). Indeed, fix such a pair and note
that

G N (x, y) [ fN (y) − fN (x)]2
≤ capN (A, B).

By Lemma 4.1, the right hand side is bounded above by C1gN (A, B) for some finite constant C1
independent of N . Since fN converges to f pointwise and since G N (x, y) ≻ gN (A, B), f (y) =

f (x), proving the claim.
Let B = B(A, B). To prove a lower bound for the capacity, note that

capN (A, B) ≥

−
{x,y}∈B

G N (x, y) [ fN (y) − fN (x)]2.

In view of (2.5), as N ↑ ∞ the right hand side divided by gN (A, B) converges to−
{x,y}∈B

g(x, y)[ f (y) − f (x)]2.

To prove the upper bound, recall the variational formula (4.1) for the capacity to write

capN (A, B) ≤

−
{x,y}⊂E

G N (x, y)[ f (y) − f (x)]2.

Since f (y) = f (x) if G N (x, y) ≻ gN (A, B), and since f is absolutely bounded by 1, we may
restrict the sum to the pairs (x, y) in B(A, B). Hence,

lim sup
N→∞

capN (A, B)

gN (A, B)
≤

−
{x,y}∈B

g(x, y)[ f (y) − f (x)]2,
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which proves the second assertion of the lemma. Moreover, by Lemma 4.1 and since
G N (A, B) ≈ gN (A, B), the limit belongs to (0, ∞).

The last assertion of the lemma follows from the fact, mentioned just before the statement
of the lemma, that G N (A, B)/gN (A, B) converges, as N ↑ ∞, to a finite and strictly positive
limit. �

This result shows that the sequence of capacities are comparable if the sequence of hitting
functions f N

A,B(x) = PN
x [TA < TB] converge. This remark highlights the interest of the

next result. Recall that we denote by RF
N (x, y), x, y ∈ F , the jump rates of the trace process

{ηF
t : t ≥ 0}, F ⊂ E .

Lemma 4.3. For every subset F of E, the sequences (RF
N (x, y) : N ≥ 1), x ≠ y ∈ F, are

comparable. Moreover, for all subsets A, B of E, A∩ B = ∅, and for every x ∈ E, the following
limits exist:

f A,B(x) := lim
N→∞

PN
x [TA < TB].

Proof. It follows from the displayed formula presented just after Corollary 6.2 in [2] that

RF
N (x, y) =

∑
z∈E

RN (x, y) RN (w, z) + RN (x, w) RN (w, y)∑
z∈E

RN (w, z)

if F = E\{w}. Iterating this formula, we may show that for every proper subset F of E, RF
N (x, y)

may be expressed as a ratio of sums of products of the rates RN (·, ·). The sum in the numerator
contains only products with the same number of terms and the same thing happens in the
denominator. In particular, by assumption (2.2), the sequences {RF

N (x, y) : N ≥ 1}, x ≠ y ∈ F ,
are comparable. This proves the first assertion of the lemma.

If we denote by pF
N (x, y) the jump probabilities associated with the rates RF

N (x, y),

pF
N (x, y) =

RF
N (x, y)∑

z∈F
RF

N (x, z)
, x ≠ y ∈ F,

pF
N (x, y) converges to some pF (x, y) as N ↑ ∞.

Denote by PN ,F
x , x ∈ F , the probability on the path space D(R+, F) induced by the trace

process {ηF
t : t ≥ 0} starting from x . Clearly, PN

x [TA < TB] = PN ,F
x [TA < TB], for

F = {x} ∪ A ∪ B. If x does not belong to A ∪ B, the last probability is equal to
∑

y∈A pF
N (x, y)

and we proved that this expression converges as N ↑ ∞. �

Corollary 4.4. For every subset F of E and all subsets A, B of F, A ∩ B = ∅, the ratio of
mean rates

r F
N (A, B)

r F
N (A, F \ A)

=

∑
x∈A

∑
y∈B

µN (x) RF
N (x, y)∑

x∈A

∑
z∈F\A

µN (x) RF
N (x, z)

converges to some number pF (A, B) ∈ [0, 1] as N ↑ ∞.
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Proof. It follows from the explicit formula for the rates RF
N , derived in the proof of the previous

lemma, from Eq. (2.3) and from assumption (2.2) that the sequences (µN (x) RF
N (x, y) : N ≥

1), x ≠ y ∈ F , are comparable. The result is a simple consequence of this observation. �

5. The shallowest valleys

Recall the definition of a valley with an attractor introduced in [2]. To avoid long sentences,
in this article we call a valley with an attractor simply a valley. We describe in this section the
shallowest valleys and we show that their depths are comparable.

We shall say that there exists an open path from x to y if there exists a sequence x =

x0, x1, . . . , xn = y such that RN (xi , xi+1) ≈ 1, 0 ≤ i < n. Two sites x ≠ y are said to be
equivalent, x ∼ y, if there exist an open path from x to y and an open path from y to x . If
we also declare any site to be equivalent to itself, ∼ is an equivalence relation. We denote by
C1, C2, . . . , Cα the equivalence classes.

Some equivalence classes are connected to other equivalence classes by open paths. On
drawing an arrow from a set Ci to a set C j if there exist x ∈ Ci , y ∈ C j such that RN (x, y) ≈ 1, the
set {C1, . . . , Cα} becomes an oriented graph with no directed loops. We denote by E1, E2, . . . , Eν

the leaves of this graph, in the terminology of graph theory, the equivalence classes with no
successors. Denote by ∆ the union of the remaining sets such that {E1, . . . , Eν,∆} forms a
partition of E :

E = E ∪ ∆, E = E1 ∪ · · · ∪ Eν . (5.1)

For 1 ≤ i ≤ ν, let Ĕi be the union of all leaves except Ei :

Ĕi =


j≠i

E j .

By construction, all sites in an equivalence class C j have probability of the same magnitude:
there exists a finite, positive constant C0 such that for all 1 ≤ j ≤ α,

C−1
0 ≤

µN (x)

µN (y)
≤ C0, x, y ∈ C j . (5.2)

We may also estimate the capacity between two states in a leaf Ei .

Lemma 5.1. Fix 1 ≤ i ≤ ν. There exists a finite constant C1, which depends only on E, such
that for any x ≠ y in Ei ,

C−1
1 ≤

capN ({x}, {y})

µN (Ei )
≤ C1.

Proof. Fix 1 ≤ i ≤ ν and x ≠ y in Ei . Consider a function f : E → R such that
f (x) = 1, f (y) = 0 and fix a self-avoiding open path γ = (x = x0, . . . , xn = y) from x
to y. By the Schwarz inequality,

1 = [ f (y) − f (x)]2
=


n−1−
i=0

{ f (xi+1) − f (xi )}

2

≤

n−1−
i=0

µN (xi )RN (xi , xi+1){ f (xi+1) − f (xi )}
2

n−1−
i=0

1
µN (xi )RN (xi , xi+1)

.
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Therefore, DN ( f ) is bounded below by

n−1−
i=0

µN (xi )RN (xi , xi+1){ f (xi+1) − f (xi )}
2

≥


n−1−
i=0

1
µN (xi )RN (xi , xi+1)

−1

.

Since γ is an open path, RN (xi , xi+1) is of order 1. Hence, by (5.2), there exists a constant C1
which depends only on E such that for any function f : E → R such that f (x) = 1, f (y) =

0, DN ( f ) ≥ C−1
1 µN (Ei ). This proves that capN ({x}, {y}) ≥ C−1

1 µN (Ei ).
To prove the reverse inequality, consider the function f∗ : E → R which is equal to 1 at x

and is 0 elsewhere. Clearly,

DN ( f∗) = µN (x)
−
z≠x

RN (x, z).

By hypothesis, RN (x, z) ≤ C0, so DN ( f∗) ≤ C ′

0µN (Ei ), proving the lemma. �

Recall Theorem 2.6 of [2] which presents sufficient conditions for a triple to be a valley in the
context of reversible Markov processes.

Fix a leaf Ei , 1 ≤ i ≤ ν, and a site x in Ei . Denote by Ei the set Ei as well as the constant
sequence of sets (Ei , Ei , . . .) and by x not only the site x but also the constant sequence equal to
x . This convention is used from now on without further notice. Denote by Bi the set of sites in
∆ of measure of lower magnitude than Ei : Bi = {y ∈ ∆ : µN (y) ≺ µN (Ei )}. Note that Bi is the
union of some equivalence classes.

Lemma 5.2. Fix 1 ≤ i ≤ ν and x in Ei . The triple (Ei , Ei ∪ Bi , x) is a valley of depth θN ,i :=

µN (Ei )/capN (Ei , [Ei ∪ Bi ]
c).

Proof. By [2, Theorem 2.6], to show that (Ei , Bi ∪ Ei , x) is a valley of depth µN (Ei )/capN
(Ei , [Ei ∪ Bi ]

c) we need to check that µN (Bi )/µN (Ei ) vanishes as N ↑ ∞ and that

lim
N→∞

capN (Ei , [Bi ∪ Ei ]
c)

capN (x)
= 0, (5.3)

where capN (x) = miny∈Ei capN ({x}, {y}). The first condition follows from the definition of
the set Bi . The second one is simple to check. Fix a positive function f : E → R bounded
by 1 and constant in Ei and in [Bi ∪ Ei ]

c. In the expression for the Dirichlet form DN ( f ) =∑
y,z G N (y, z)[ f (z) − f (y)]2, there are two kinds of non-vanishing terms. Either y belongs to

Ei and we may estimate G N (y, z)[ f (z)− f (y)]2 by µN (Ei ) maxy∈Ei ,z∉Ei RN (y, z), or y does not
belong to Ei and we may estimate G N (y, z)[ f (z) − f (y)]2 by µN (Bi ) because RN (y, z) ≤ C0.
Both expressions are of an order much smaller than that of µN (Ei ) because Ei has no successors.
Therefore, (5.3) follows from Lemma 5.1, proving that (Ei , Bi ∪ Ei , x) is a valley. �

The next lemma shows that a leaf is attained from any site in a time scale of magnitude 1.
Recall that TA, A ⊂ E , stands for the time of hitting of A.

Lemma 5.3. There exists a finite constant C0, independent of N , such that

max
x∈∆

EN
x


TE


≤ C0.
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Proof. Denote by {τ j : j ≥ 0} the jump times of the Markov process {ηN
t : t ≥ 0}:

τ0 = 0, τ j+1 = inf{t > τ j : ηN
t ≠ ηN

τ j
}, j ≥ 0.

Denote by {Y N
k : k ≥ 0} the jump chain associated with the Markov process {ηN

t : t ≥ 0},
i.e., the discrete time Markov chain formed by the successive sites visited by ηN

t :

Y N
k = ηN

τk
, k ≥ 0.

For each site x in ∆, there exists an open path γ = (x = x0, x1, . . . , xn(x)) such that xn(x) ∈ E ,
RN (xi , xi+1) > C0, 0 ≤ i < n(x), for some positive constant C0, independent of N , whose
value may change from line to line. In particular,

PN
x


Y N

k = xk : 0 ≤ k ≤ n(x)


≥ C0. (5.4)

Let n = max{n(x) : x ∈ ∆}.
By the strong Markov property and decomposing the space according to the partition {TE ≤

τn}, {TE > τn}, for every x ∈ ∆, since on the set {TE > τn}, TE = τn + TE ◦ τn ,

EN
x


TE


= EN
x


min{TE , τn}


+ EN

x


1{TE > τn}EN

ηN
τn


TE


.

As ηN
τn

belongs to ∆ when TE > τn , it follows from the previous identity that

max
x∈∆

EN
x


TE


≤

max
x∈∆

EN
x


min{TE , τn}


1 − max

x∈∆
PN

x


TE > τn

 .
It follows from (5.4) that the denominator is bounded below by a strictly positive constant C0. To
estimate the numerator, observe that TE =

∑
j≥1 τ j 1{A j }, where A j = {Y N

0 ∈ ∆, . . . , Y N
j−1 ∈

∆, Y N
j ∈ E }. Hence, min{TE , τn} =

∑
1≤ j<n τ j 1{A j } + τn1{Bn}, where Bn = ∪ j≥n A j . Since

on the set A j , Y N
k ∈ ∆, 0 ≤ k < j , on A j the random time τ j can be estimated by the sum of j

mean C0 independent exponential random variables. Hence,

max
x∈∆

EN
x


min{TE , τn}


≤ C0

n−
j=1

j,

which concludes the proof of the lemma. �

A similar argument permits us to increase the negligible set Bi of the valley (Ei , Ei ∪ Bi , x).

Lemma 5.4. Fix 1 ≤ i ≤ ν and x in Ei . The triple (Ei , Ei ∪ ∆, x) is a valley of depth
θN ,i = µN (Ei )/capN (Ei , [Ei ∪ Bi ]

c). Moreover, capN (Ei , [Ei ∪ Bi ]
c) ≈ capN (Ei , Ĕi ).

Proof. Fix 1 ≤ i ≤ ν and x in Ei . By Lemmas 5.2 and 10.1, to prove the first claim of the
proposition we need to show that for every δ > 0,

lim
N→∞

max
y∈∆\Bi

PN
y


TĔi

> δθN ,i


= 0.

Fix y in ∆ \ Bi . By definition, µN (y) ≽ µN (Ei ). In particular, there is no open path
from y to Ei . Indeed, if y = y0, . . . , yn−1 ∉ Ei , yn ∈ Ei is an open path from y to Ei , the
relation µN (yn−1) ≽ µN (y) ≽ µN (Ei ) contradicts the identity µN (yn−1)RN (yn−1, yn) =

µN (yn)RN (yn, yn−1) because maxz∈Ei ,z′∉Ei RN (z, z′) ≺ 1.
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Recall that we denote by {Y N
k : k ≥ 0} the jump chain associated with the Markov process

ηN
t . Its jump probabilities pN (x, y), x, y ∈ E, x ≠ y, are given by

pN (x, y) =
RN (x, y)∑

z∈E
RN (x, z)

.

In view of (2.1), as N ↑ ∞, pN (x, y) converges to some p(x, y) ∈ [0, 1] such that
∑

y p(x, y) =

1. Let {Zk : k ≥ 0} be the discrete time Markov chain associated with the jump probabilities
p(x, y). Note that the Markov chain Zk may not be irreducible.

Clearly, we may couple the two chains in such a way that for every n ≥ 1,

lim
N→∞

PN
y


n

k=1

{Y N
k ≠ Zk}


= 0. (5.5)

On the other hand, before reaching E the Markov chain Zk only uses open bonds. Since there
is no open path from y to Ei and since there are open paths from y to Ĕi , the chain Zk eventually
reaches Ĕi . Hence,

lim
n→∞

PN
y


n

k=1

{Zk ∉ Ĕi }


= 0.

Recall that {τn : n ≥ 1} stands for the jump times of the Markov process ηN
t . On the set

[∩
n
k=1{Y

N
k = Zk}] ∩ [∪

n
k=1{Zk ∈ Ĕi }], TĔi

≤ τk for some k ≤ n, and τk may be bounded by the
sum of k mean C0 i.i.d. exponential random variables, for some finite constant C0, independent
of N . Therefore, since θN ,i ≻ 1, for every n ≥ 1,

lim
N→∞

PN
y


TĔi

> δθN ,i ,

n
k=1

{Y N
k = Zk},

n
k=1

{Zk ∈ Ĕi }


= 0,

which proves the first assertion of the lemma.
In view of Lemma 4.1, to prove the second claim, it is enough to show that G N (Ei , [Ei ∪

Bi ]
c) ≈ G N (Ei , Ĕi ). In fact, we assert that

G N (Ei , [Ei ∪ Bi ]
c) = G N (Ei , Ĕi ) (5.6)

for all N sufficiently large.
On the one hand, since Ĕi ⊂ [Ei ∪ Bi ]

c, G N (Ei , Ĕi ) ≤ G N (Ei , [Ei ∪ Bi ]
c). On the other

hand, since the set E is finite, there exists a path γ = (x0, . . . , xn) in ΓEi ,[Ei ∪Bi ]
c such that

G N (Ei , [Ei ∪ Bi ]
c) = G N (γ ). By definition, x0 ∈ Ei , xn ∉ Ei ∪ Bi , and we may assume without

loss of generality that x1 ∉ Ei .
Since x1 ∉ Ei and Ei is a leaf, G N (x0, x1) ≺ µN (Ei ), so

G N (γ ) = min
0≤i<n

G N (xi , xi+1) ≺ µN (Ei ). (5.7)

Either xn belongs to ∆ \ Bi or xn belongs to Ĕi . In the latter case, γ is a path in ΓEi ,Ĕi
, so

G N (γ ) ≤ G N (Ei , Ĕi ), proving that G N (Ei , [Ei ∪ Bi ]
c) ≤ G N (Ei , Ĕi ).

If xn belongs to ∆ \ Bi , by the definition of Bi and the leaves E j , there exists a self-avoiding
path γ̃ = (xn, xn+1, . . . , xl) from xn to E such that RN (xi , xi+1) ≥ C0, n ≤ i < l, for
some finite constant C0, independent of N , whose value may change from line to line. Since
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xn ∈ ∆\ Bi , µN (xn) ≥ C0µN (Ei ) and the same estimate holds for µN (x j ), n < j ≤ l, because
RN (xi , xi+1) ≥ C0, n ≤ i < l, and RN (y, z) ≤ C0 for all y, z ∈ E . From these estimates we
derive two facts. First, xl may not belong to Ei because µN (xl−1) ≥ C0µN (Ei ), RN (xl−1, xl) ≈

1 and RN (y, z) ≺ 1 for all y ∈ Ei , z ∈ E c
i . Second, minn≤i<l G N (xi , xi+1) ≥ C0µN (Ei )

because RN (xi , xi+1) ≥ C0, n ≤ i < l.
Therefore, if xn belongs to ∆ \ Bi , juxtaposing the paths γ and γ̃ , in view of (5.7), we obtain

a self-avoiding path from Ei to Ĕi such that min1≤i<l G N (xi , xi+1) = min1≤i<n G N (xi , xi+1) =

G N (Ei , [Ei ∪ Bi ]
c) for N sufficiently large. Hence, also in the case where xn belongs to

∆ \ Bi , G N (Ei , Ĕi ) ≥ G N (Ei , [Ei ∪ Bi ]
c), which proves (5.6). �

We may in fact compute the asymptotic behavior of the depth θN ,i of the valley (Ei , Ei ∪∆, x)

with the help of Lemma 4.2. Recall the definition of the Markov chain {Zk : k ≥ 0} introduced
in the previous proposition. Denote by PZ

x the probability on the path space D(Z+, E) induced
by the Markov chain {Zk : k ≥ 0} starting from x .

Lemma 5.5. Fix a subset I of {1, . . . , ν} and let J = {1, . . . , ν} \ I, fN (x) = PN
x [TE I < TE J ],

where E I = ∪i∈I Ei . We claim that

lim
N→∞

PN
x [TE I < TE J ] = f I,J (x) := PZ

x [TE I < TE J ], x ∈ E .

In particular,

lim
N→∞

capN (E I , E J )

gN (E I , E J )
=

−
(x,y)∈B(E I ,E J )

g(x, y)[ f I,J (y) − f I,J (x)]2
∈ (0, ∞).

Proof. Clearly, for every x ∈ E ,

lim
n→∞

PZ
x


n

k=1

{Zk ∈ E }


= 1.

It follows from this estimate and from (5.5) that for every x ∈ ∆,

lim
N→∞

PN
x


TE I < TE J


= PZ

x


TE I < TE J


,

which proves the first assertion of the lemma. The second one follows from the previous result
and Lemma 4.2. �

Note that this result is a particular case of Lemma 4.3. The same argument provides the
asymptotic value of the capacity between Ei and [Ei ∪ Bi ]

c.

Lemma 5.6. Fix 1 ≤ i ≤ ν and let fN : E → [0, 1] be given by fN (x) = PN
x [TEi < T[Ei ∪Bi ]

c ].
Then, fN converges pointwise to fi (x) = PZ

x [TEi < T[Ei ∪Bi ]
c ]. In particular,

lim
N→∞

capN (Ei , [Ei ∪ Bi ]
c)

gN (Ei , [Ei ∪ Bi ]
c)

=

−
(x,y)∈B(Ei ,[Ei ∪Bi ]

c)

g(x, y)[ fi (y) − fi (x)]2.

We may now state the first main result of this section.

Proposition 5.7. For 1 ≤ i ≤ ν, (Ei , Ei ∪ ∆, x), x ∈ Ei , is a valley of depth θN ,i = µN (Ei )/

capN (Ei , Ĕi ). Moreover,

lim
N→∞

capN (Ei , [Ei ∪ Bi ]
c)

capN (Ei , Ĕi )
= 1.



1652 J. Beltrán, C. Landim / Stochastic Processes and their Applications 121 (2011) 1633–1677

Proof. Fix 1 ≤ i ≤ ν and note that the set E J appearing in Lemma 5.5 is equal to Ĕi if I = {i}.
By (5.6), gN (Ei , [Ei ∪ Bi ]

c) = gN (Ei , Ĕi ), so B(Ei , [Ei ∪ Bi ]
c) = B(Ei , Ĕi ). Let gi = f I,J when

I = {i}. Since there is an open path from any state in ∆ \ Bi to Ĕi and no open path from a
state in ∆ \ Bi to Ei , fi (x) = PZ

x [TEi < T[Ei ∪Bi ]
c ] = PZ

x [TEi < TĔi
] = gi (x). This proves the

corollary in view of Lemmas 5.5 and 5.6. �

By Proposition 5.7 and Lemma 5.5,

ui := lim
N→∞

gN (Ei , Ĕi )

µN (Ei )
θN ,i ∈ (0, ∞). (5.8)

In particular, the depths of the valleys are comparable.

Proposition 5.8. The sequences (θN ,i : N ≥ 1), 1 ≤ i ≤ ν, are comparable and θN ,i ≻ 1, 1 ≤

i ≤ ν.

Proof. To prove this lemma, we have to show that, as N ↑ ∞, the sequences θN ,i/θN , j , i ≠ j ,
vanish, diverge, or converge. Fix i ≠ j . By (5.8),

lim
N→∞

θN ,i

θN , j
=

ui

u j
lim

N→∞

µN (Ei )

µN (E j )

gN (E j , Ĕ j )

gN (Ei , Ĕi )
.

By (5.2) and (2.4), µN (Ek) = µN (xk)aN for some xk ∈ Ek and some sequence aN which
converges to some a ∈ (0, ∞) as N ↑ ∞. On the other hand, by definition, gN (Ek, Ĕk) =

G N (yk, zk)bN = µN (yk)RN (yk, zk)bN for some bond (yk, zk), where bN converges to some
limit b ∈ (0, ∞) as N ↑ ∞. Hence,

θN ,i

θN , j
= cN

µN (xi ) µN (y j ) RN (y j , z j )

µN (x j ) µN (yi ) RN (yi , zi )

for some sequence cN which converges to some limit c ∈ (0, ∞) as N ↑ ∞. In view of identity
(2.3) and assumption (2.2), the sequences θN ,i are comparable. This proves the first assertion of
the lemma.

Fix 1 ≤ i ≤ ν and recall the definition of θN ,i given in Proposition 5.7. By Lemma 4.1, it
is enough to show that µN (Ei )/G N (Ei , Ĕi ) ≻ 1. Fix a self-avoiding path γ = (x0, . . . , xn)

from Ei to Ĕi such that G N (γ ) = G N (Ei , Ĕi ). There exists a bond (x j , x j+1) such that
x j ∈ Ei , x j+1 ∉ Ei . By the definition of G N (γ ), by (5.2) and since Ei is a leaf, G N (γ ) ≤

G N (x j , x j+1) ≺ µN (x j ) ≈ µN (Ei ), proving the second assertion of the lemma. �

6. Metastability among the shallowest valleys

We describe in this section the asymptotic behavior of the Markov process {ηN
t : t ≥ 0} on

the smallest time scale needed for the process to jump from one leaf to another.
Let θN (1) = min{θN ,i : 1 ≤ i ≤ ν} and denote by S1 the indices of the shallowest leaves,

i.e., the ones whose valleys have depth of magnitude θN (1):

S1 =

i : θN ,i ≈ θN (1)


.

Since, by Proposition 5.8, the depths of the valleys are comparable and since θN (1) is the
depth of the shallowest valley, θN (1)/θN ,i converges as N ↑ ∞:

λ(i) := lim
N→∞

θN (1)

θN ,i
∈ (0, ∞). (6.1)
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Lemma 6.1. For any 1 ≤ i ≠ j ≤ ν, θN (1) r E
N (Ei , E j ) converges, as N ↑ ∞, to some number

r(i, j) ∈ [0, ∞).

Proof. Fix 1 ≤ i ≠ j ≤ ν. By [2, Lemma 6.7] and by Proposition 5.7, we may rewrite
θN (1) r E

N (Ei , E j ) as

θN (1) r E
N (Ei , Ĕi )

r E
N (Ei , E j )

r E
N (Ei , Ĕi )

= θN (1)
capN (Ei , Ĕi )

µN (Ei )

r E
N (Ei , E j )

r E
N (Ei , Ĕi )

=
θN (1)

θN ,i

r E
N (Ei , E j )

r E
N (Ei , Ĕi )

.

By (6.1), θN (1)/θN ,i converges to λ(i). On the other hand, by Corollary 4.4, r E
N (Ei , E j )/r E

N (Ei , Ĕi )

converges, as N ↑ ∞, to some number q(i, j) ∈ [0, 1]. This proves the lemma with r(i, j) =

λ(i) q(i, j). �

Let Ψ : E → {1, . . . , ν} be given by Ψ(x) =
∑

1≤i≤ν i 1{x ∈ Ei }.

Lemma 6.2. Fix 1 ≤ i ≤ ν and x ∈ Ei . Under PN
x , the speeded-up process X N

t = Ψ(ηE
tθN (1))

converges to a Markov process on {1, . . . , ν} with rates r(·, ·) starting from i.

Proof. We need to check that the assumptions of [2, Theorem 2.7] are fulfilled. On the one hand,
condition (H1) follows from Lemma 5.1 and Proposition 5.8 which asserts that θN ,i ↑ ∞ as
N ↑ ∞. On the other hand, condition (H0) has been proven in Lemma 6.1. �

Note that λ( j) = 0 if j ∉ S1. The points in Sc
1 are therefore absorbing for the asymptotic

dynamics.
Recall Definition 3.7 of [2]. The main result of this section, stated below in Proposition 6.3,

asserts that the Markov process {ηN
t : t ≥ 0} exhibits a metastable behavior on the time

scale θN (1) with asymptotic dynamics characterized by the jump rates r(i, j) introduced in
Lemma 6.1. Denote by {Pi : 1 ≤ i ≤ ν} the laws on the path space D(R+, {1, . . . , ν}) of a
Markov process on {1, . . . , ν} whose sites in Sc

1 are absorbing and which jumps from i ∈ S1 to
j ≠ i at rate r(i, j).

Proposition 6.3. Fix a site xi on each leaf Ei . The sequence of Markov processes {ηN
t : t ≥ 0}

exhibits a metastable behavior on the time scale θN (1) with metastates {Ei : 1 ≤ i ≤ ν},
metapoints {xi : 1 ≤ i ≤ ν} and asymptotic Markov dynamics {Pi : 1 ≤ i ≤ ν}.

Proof. Condition (M2) has been proven in Lemma 6.2.
To prove (M3′), observe that for every x ∈ E ,

EN
x

∫ t

0
1{ηN

sθN (1) ∈ ∆} ds


≤ max

y∈∆
EN

y

∫ t

0
1{ηN

sθN (1) ∈ ∆} ds


.

Fix y ∈ ∆ and denote by Uk, Vk, k ≥ 1, the successive lengths of the sojourns in ∆ and ∆c:

U1 = inf{t > 0 : ηN
t ∉ ∆}, V1 = inf{t > 0 : ηN

t+U1
∈ ∆},

Uk+1 = inf{t > 0 : ηN
t+Vk

∉ ∆}, Vk+1 = inf{t > 0 : ηN
t+Uk+1

∈ ∆}.

Denote by {Nt : t ≥ 0} the counting process associated with the sequence {Vk : k ≥ 1} : {Nt =

k} = {V1 + · · · + Vk ≤ t < V1 + · · · + Vk+1}, k ≥ 0, and observe that∫ tθN (1)

0
1{ηN

s ∈ ∆} ds ≤ U1 +

NtθN (1)−
k=1

Uk+1.
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Let λN = max1≤ j≤ν maxy∈E j

∑
z∉E j

RN (y, z) ≺ 1. We may estimate from below the random

variables {Vk : k ≥ 1} by independent exponential times of rate λN : Vk ≥ V̂k , where
{V̂k : k ≥ 1} is a sequence of i.i.d. mean λ−1

N exponential random variables, independent also
from the sequence {Uk : k ≥ 1}.

Let {N̂t : t ≥ 0} be the Poisson process associated with the sequence {V̂k : k ≥ 1}. Since
the sequence {V̂k : k ≥ 1} is independent of the sequence {Uk : k ≥ 1}, in view of the previous
estimate,

EN
y

∫ tθN (1)

0
1{ηN

s ∈ ∆} ds


≤ EN

y


U1 +

N̂tθN (1)−
k=1

Uk+1



≤ EN
y


U1

+

−
ℓ≥0

EN
y


ℓ−

k=1

Uk+1


P N

y


N̂tθN (1) = ℓ


.

By Lemma 5.3 this expression is bounded by C0{1+ t θN (1) λN }, which proves condition (M3′).
The proof of condition (M1′) is similar to that of Lemma 5.3. However, we may not estimate

the expectation of Txi which might be very large if the process leaves the metastable set Ei before
reaching the state xi . We may of course assume that Ei is not a singleton, so

∑
z∈E RN (y, z) is

of magnitude 1 for all y ∈ Ei .
Recall that we denote by {τk : k ≥ 0} the successive jump times of ηN

t and by {Y N
k : k ≥ 0}

the jump chain. Fix 1 ≤ i ≤ ν, xi ∈ Ei and let now λN = maxy∈Ei ,z∉Ei RN (y, z) ≺ 1. For each
y ∈ Ei , there exists an open path γ = (y0 = y, . . . , yn(y) = x) from y to x contained in Ei . Let
n = max{n(y) : y ∈ Ei , y ≠ x}. There exists a constant a, independent of N , such that

max
y∈Ei

PN
y


Y N

k ≠ xi , 0 ≤ k ≤ n


≤ a < 1.

On the one hand, for every ℓ ≥ 1, y ∈ Ei ,

PN
y


τℓn ≤ min{Txi , TE c

i
}


≤ PN
y


Y N

k ≠ xi , Y N
k ∈ Ei , 0 ≤ k ≤ ℓn


.

By the Markov property and by the previous estimate, this expression is bounded by aℓ. On the
other hand, since the process jumps from Ei to E c

i at rate λN ≺ 1,

PN
y


τnℓ ≥ TE c

i


≤ PN

y


nℓ

k=1

Y N
k ∉ Ei


≤ C0ℓnλN

for some finite constant C0 independent of N .
In view of the previous bounds, to estimate PN

y [Txi > δθN ] it remains to consider the term

PN
y


Txi > δθN , Txi < τnℓ < TE c

i


≤ PN

y


δθN < τnℓ < TE c

i


.

Since
∑

z∈E RN (y, z) is of magnitude 1 for all y ∈ Ei , before leaving the set Ei , we may estimate
the times between jumps by i.i.d. exponential random times with finite mean independent of N .
By the Tchebycheff inequality, the previous expression is thus bounded by C0nℓ/δθN for some
finite constant C0 independent of N .

We have thus proved that for every δ > 0, y ∈ Ei ,

PN
y


Txi > δθN


≤ aℓ

+ C0 ℓ n λN +
C0nℓ

δθN
.

The second assertion of the lemma follows by taking N ↑ ∞ and then ℓ ↑ ∞. �
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We conclude this section with two remarks. Denote by PN (x, i, j), 1 ≤ i ≠ j ≤ ν, x ∈ Ei ,
the hitting probabilities

PN (x, i, j) := PN
x


TE j = TĔi


.

By Lemma 4.3, PN (x, i, j) converges to some P(x, i, j) ∈ [0, 1]. Since, by Proposition 5.7,
(Ei , Ei ∪ ∆, y), y ∈ Ei , is a valley, it is not difficult to show that the limit P(x, i, j) does not
depend on the starting point x . Therefore, by Lemma 10.2, for any 1 ≤ i ≠ j ≤ ν,

r(i, j) = λ(i) p(i, j), where p(i, j) := lim
N→∞

PN
x


TE j = TĔi


(6.2)

and where λ(i) is defined in (6.1).
Consider a leaf Ei , i ∈ S1, and a leaf E j such that µN (E j ) ≺ µN (Ei ). By reversibility,

µN (Ei ) r E
N (Ei , E j ) = µN (E j ) r E

N (E j , Ei ).

By [2, Lemma 6.7], r E
N (E j , Ei ) ≤ r E

N (E j , Ĕ j ) = capN (E j , Ĕ j )/µN (E j ) = 1/θN , j , so θN (1) r E
N

(E j , Ei ) is bounded. Therefore, θN (1) r E
N (Ei , E j ) vanishes as N ↑ ∞. We have just proved that

r(i, j) = lim
N→∞

θN (1) r E
N (Ei , E j ) = 0 for all j; µN (E j ) ≺ µN (Ei ). (6.3)

Hence, in the asymptotic dynamics, the process may only jump from a leaf Ei to a leaf E j if the
measure of E j is of the same magnitude as or of a larger magnitude than that of Ei .

7. Multi-scale analysis

In the previous section, we proved that the Markov process {ηN
t : t ≥ 0} exhibits a metastable

behavior on the time scale θN (1) with metastates {Ei : 1 ≤ i ≤ ν}, metapoints {xi : 1 ≤ i ≤ ν}

and asymptotic Markov dynamics {Pi : 1 ≤ i ≤ ν}.
We describe in this section, by a recursive argument, the metastable behavior of the Markov

process {ηN
t : t ≥ 0} on longer time scales. In the statement of the hypothesis T below, by

convention, θN (0) ≡ 1, ν(0) = |E | and the sets E (0)
1 , . . . , E (0)

ν(0) are all singletons of E .

Assumption T at level p: For each 1 ≤ k ≤ p there exists a sequence (θN (k) : N ≥ 1),
1 ≺ θN (k) ≺ θN (k + 1), 1 ≤ k < p, and a partition {E (k)

1 , . . . , E (k)
ν(k),∆k} of the state space E ,

such that:

(T1) 1 ≤ ν(k) < ν(k − 1).
(T2) For 1 ≤ i ≤ ν(k), E (k)

i = ∪ j∈Ik,i E (k−1)
j , where Ik,1, . . . , Ik,ν(k) are disjoint subsets of

{1, . . . , ν(k − 1)}.

(T3) For all 1 ≤ i ≤ ν(k), µN (x) ≈ µN (E (k)
i ) for all x ∈ E (k)

i .
(T4) There exists a positive constant C1, independent of N , such that for all 1 ≤ i ≤ ν(k) and

all x, y ∈ E (k)
i , x ≠ y, capN (x, y) ≥ C1µN (E (k)

i )/θN (k − 1).

(T5) For all 1 ≤ i ≤ ν(k), µN (E (k)
i )/capN (E (k)

i , Ĕ (k)
i ) ≽ θN (k), where Ĕ (k)

i = ∪ j≠i E (k)
j .

(T6) Let

E (k)
=

ν(k)
i=1

E (k)
i , Sk =


i :

µN (E (k)
i )

capN (E (k)
i , Ĕ (k)

i )
≈ θN (k)


.



1656 J. Beltrán, C. Landim / Stochastic Processes and their Applications 121 (2011) 1633–1677

Then,

lim
N→∞

θN (k) r E (k)

N (E (k)
i , E (k)

j ) = rk(i, j), 1 ≤ i ≠ j ≤ ν(k),−
j≠i

rk(i, j) > 0 for each i ∈ Sk and
−
j≠i

rk(i, j) = 0 for each i ∉ Sk ,

and rk(i, j) = 0 if µN (E (k)
j ) ≺ µN (E (k)

i ).

(7.1)

Moreover, recall the definition of the speeded-up blind process X N ,k
t = Ψk(η

N ,k
tθN (k))

introduced in the statement of Theorem 2.1. For every 1 ≤ i ≤ ν(k), and x ∈ E (k)
i , under

the measure PN
x ,

the speeded-up blind process X N ,k
t converges (7.2)

to a Markov process on {1, . . . , ν(k)} characterized by rates rk(l, m), 1 ≤ l ≠ m ≤ ν(k),
starting from i .

(T7) Property (M1′) of metastability holds. For every 1 ≤ i ≤ ν(k), every x ∈ E (k)
i and δ > 0,

lim
N→∞

max
y∈E (k)

i

PN
y


Tx > δθN (k)


= 0.

(T8) Property (M3′) of metastability holds. For every t > 0,

lim
N→∞

max
x∈E

EN
x

∫ t

0
1{ηN

sθN (k) ∈ ∆k} ds


= 0.

Note that all these properties have been proved in the previous section for p = 1 with:
ν(1) = ν; E (1)

1 , . . . , E (1)
ν(1),∆1 given by the sets E1, . . . , Eν,∆ defined just before (5.1); θN (1) =

θN = pN (1) defined at the beginning of Section 6; and r1 = r defined in Lemma 6.1.
The main result of this section states that if assumption T holds at level p and ν(p) ≥ 2, then

it holds at level p + 1.
To begin the recursive argument, suppose that ν(p) > 1. We first describe the metastates at

level p + 1. We say that there exists an open path from E (p)
a to E (p)

b if there exists a sequence
a = a0, a1, . . . , an = b such that rp(ak, ak+1) > 0, where rp is the asymptotic jump rate

introduced in (7.2). We say that two sets E (p)
a , E (p)

b are equivalent, E (p)
a ∼ E (p)

b , if there exist an

open path from E (p)
a to E (p)

b and an open path from E (p)
b to E (p)

a .

Two equivalent sets E (p)
a , E (p)

b have measure of the same magnitude. Indeed, if E (p)
a , E (p)

b

are equivalent, there exists an open path (a = a0, . . . , an = b, . . . , an+m = a) from E (p)
a

to E (p)
a passing through E (p)

b . By (7.1), µN (E (p)
ai ) ≼ µN (E (p)

ai+1), 0 ≤ i < n + m. Since

E (p)
a0 = E (p)

an+m = E (p)
a , we obtain that

µN (E (p)
a ) ≈ µN (E (p)

b ), (7.3)

as claimed.
We call a metastate in the time scale θN (k) a k-metastate. If we declare a p-metastate

equivalent to itself, the relation ∼ introduced in the penultimate paragraph becomes an equiv-
alence relation among the p-metastates E (p)

1 , . . . , E (p)

ν(p). Denote by C(p+1)
1 , C(p+1)

2 , . . . , C(p+1)

α(p+1)

the equivalence classes. Some equivalence classes are connected to other equivalence classes.
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On drawing an arrow from a set C(p+1)
i to a set C(p+1)

j if there exist E (p)
a ⊂ C(p+1)

i , E (p)
b ⊂ C(p+1)

j

such that rp(a, b) > 0, the set {C(p+1)
1 , . . . , C(p+1)

α(p+1)} becomes an oriented graph with no directed

loops. We denote by E (p+1)
1 , E (p+1)

2 , . . . , E (p+1)

ν(p+1) the leaves of this graph, i.e., the set of equiva-
lence classes with no successors in the terminology of graph theory, and by ∆o

p+1 the union of

the remaining sets such that {E (p+1)
1 , . . . , E (p+1)

ν(p+1),∆p+1},∆p+1 = ∆o
p+1 ∪ ∆p, forms a partition

of E :

E = E (p+1)
∪ ∆p+1, E (p+1)

= E (p+1)
1 ∪ · · · ∪ E (p+1)

ν(p+1).

For 1 ≤ i ≤ ν(p + 1), let Ĕ (p+1)
i be the union of all leaves except E (p+1)

i :

Ĕ (p+1)
i =


j≠i

E (p+1)
j .

We may now state the main result of this section.

Theorem 7.1. Let {ηN
t : t ≥ 0} be a sequence of irreducible, reversible Markov processes on a

finite state space E satisfying assumptions (2.1) and (2.2). Suppose that assumption T at level p

holds and that ν(p) ≥ 2. Define ν(p + 1), E (p+1)
i , Ĕ (p+1)

i , 1 ≤ i ≤ ν(p + 1), E (p+1),∆o
p+1, ∆p+1

as above. Then:

(1) For 1 ≤ i ≤ ν(p + 1) and x in E (p+1)
i , the triple (E (p+1)

i , E (p+1)
i ∪ ∆o

p+1, x) is a valley for

the trace process {η
N ,p
t : t ≥ 0} of depth θN ,i = µN (E (p+1)

i )/capN (E (p+1)
i , Ĕ (p+1)

i ).
(2) The sequences (θN ,i : N ≥ 1), 1 ≤ i ≤ ν(p + 1) are comparable.
(3) Let θN (p + 1) = min{θN ,i : 1 ≤ i ≤ ν(p + 1)}. Then, θN (p + 1) ≻ θN (p).
(4) Assumption T at level p + 1 holds.

In the next remark, we summarize what information is needed in each model to prove all of
its metastable behavior. It says, in essence, that to prove the metastable behavior of a particular
dynamics, we need only to obtain information on the measure, on the capacity and on the times
of hitting of subsets of the process.

Remark 7.2. In the applications, once the metastable behavior in the time scale θN (1) among
the shallowest valleys has been determined, we shall use Theorem 7.1 to describe the metastable
behavior of the process in the longer time scales. We first characterize the k-metastates following
the recipe presented above the statement of Theorem 7.1. According to this theorem, the k-
metastates form valleys of different depths. To determine the time scale at which metastability at
level k can be observed we need to compute the depth of each valley. This computation requires
estimates on the capacities among metastates and estimates on the measure of each metastate.
Once this has been done, we may define the time scale θN (k). At this point, to complete the
description of the metastable behavior of the process at level k, it remains to obtain the rates
rk(i, j). Theorem 7.1 asserts that the asymptotic rates rk(i, j) exist. By (7.9) the rates may
be expressed in terms of the asymptotic depths of the valleys and the hitting probabilities of
the metastates. Hence, to conclude we need to compute, in each model, the limit of the hitting
probabilities defined in (7.8), which exist by virtue of Lemma 4.3.

For some evolutions, such as the Kawasaki dynamics, it may be difficult to obtain an exact
expression for the limit of the hitting probabilities. Nevertheless, if we may at least determine
whether the rates rk(i, j) are positive or equal to 0, we may apply Theorem 7.1 and determine
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the time scales at which a metastable behavior is observed and the metastates at each time scale,
without an exact knowledge of the asymptotic dynamics among the metastates.

The proof of Theorem 7.1 is divided into several lemmas. We first show that conditions (T1)
and (T2) are satisfied for k = p + 1.

Lemma 7.3. We have that ν(p + 1) < ν(p) and that E (p+1)
i = ∪a∈Ip+1,i E (p)

a , 1 ≤ i ≤ ν(p + 1),
where Ip+1,1, . . . , Ip+1,ν(p+1) are disjoint subsets of {1, . . . , ν(p)}.

Proof. A p-metastate E (p)
a , a ∈ Sp, is either contained in ∆o

p+1 or part of a larger leaf E (p+1)
i , in

the sense that E (p)
a ( E (p+1)

i , because by (7.1) each p-metastate whose index belongs to Sp has
at least one successor. In particular, the number of leaves at level p + 1 is strictly smaller than
the number of p-metastates, so ν(p + 1) < ν(p), proving condition (T1). Condition (T2) follows
from the construction. �

Next lemma shows that conditions (T3), (T4) are in force for k = p + 1.

Lemma 7.4. For all 1 ≤ i ≤ ν(p + 1), x ∈ E (p+1)
i , µN (x) ≈ µN (E (p+1)

i ). Moreover, there

exists a positive constant C1 such that for all 1 ≤ i ≤ ν(p + 1) and all x, y ∈ E (p+1)
i , x ≠ y,

capN (x, y) ≥ C1µN (E (p+1)
i )/θN (p).

Proof. Fix 1 ≤ i ≤ ν(p + 1), x ∈ E (p+1)
i . By definition, the leaf E (p+1)

i is the union of p-

metastates: E (p+1)
i = ∪a∈I E (p)

a , where I is a subset of {1, . . . , ν(p)}.

By (7.3), all p-metastates E (p)
a , a ∈ I , have measures of the same magnitude, so µN (E (p+1)

i ) ≈

µN (E (p)
a ) for all a ∈ I . By assumption (T3) for k = p, µN (y) ≈ µN (E (p)

a ) for all y ∈ E (p)
a , which

proves the first claim of the lemma.
To prove the second claim, fix x, y in E (p+1)

i . If x, y belong to the same set E (p)
a , the

lemma follows from assumption (T4) for k = p, the first part of the lemma and the fact that
θN (p − 1) ≺ θN (p).

Assume that x, y belongs to different p-metastates, say x ∈ E (p)
a , y ∈ E (p)

b , a ≠ b. Since

E (p)
a ∼ E (p)

b , there exists an open path, a = a0, . . . , an = b, from E (p)
a to E (p)

b . This means that

θN (p) r E (p)

N (E (p)
am , E (p)

am+1) converges to a positive number for 0 ≤ m < n. Therefore, by (10.3),
there exists a positive number C0 > 0, independent of N and which may change from line to
line, such that

θN (p)
capN (E (p)

am , E (p)
am+1)

µN (E (p)
am )

≥ C0

for all N large enough and 0 ≤ m < n. Since by Lemma 4.1 capN (A, B) ≈

G N (A, B), G N (E (p)
am , E (p)

am+1) ≥ C0 µN (Eam )/θN (p). There exists, in particular, a path γm from

xm ∈ E (p)
am to ym+1 ∈ E (p)

am+1 , 0 ≤ m < n, with G N (γm) ≥ C0 µN (E (p)
am )/θN (p).

By assumption (T4) for k = p and arguments similar to the ones used above, there exist: a
path γ ′

0 from x ∈ E (p)
a to x0 ∈ E (p)

a such that G N (γ ′

0) ≥ C0 µN (E (p)
a )/θN (p − 1); paths γ ′

m from

ym ∈ E (p)
am to xm ∈ E (p)

am , 1 ≤ m < n, such that G N (γ ′
m) ≥ C0µN (E (p)

am )/θN (p − 1); and a path

γ ′
n from yn ∈ E (p)

b to y ∈ E (p)
b such that G N (γ ′

n) ≥ C0 µN (E (p)
b )/θN (p − 1).
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Since, by the first part of the lemma, µN (E (p+1)
i ) ≈ µN (E (p)

c ) for all c ∈ I , juxtaposing all

these paths, we obtain a path γ from x to y such that G N (γ ) ≥ C0 µN (E (p+1)
i )/θN (p). This

shows that

capN (x, y) ≈ G N ({x}, {y}) ≽ G N (γ ) ≥
C0 µN (E (p+1)

i )

θN (p)
,

which proves the lemma. �

We next show that condition (T7) is in force on any time scale longer than θN (p).

Lemma 7.5. Let {θN : N ≥ 1} be a sequence such that θN ≻ θN (p). Then for every
1 ≤ i ≤ ν(p + 1), x ∈ E (p+1)

i and δ > 0,

lim
N→∞

max
y∈E (p+1)

i

PN
y


Tx > δ θN


= 0.

Proof. Fix 1 ≤ i ≤ ν(p + 1), x, y ∈ E (p+1)
i and δ > 0. Denote by E (p)

a , E (p)
b ⊂ E (p+1)

i the
p-metastates which contain x, y, respectively. Since θN ≻ θN (p), by the strong Markov property,
for every t > 0 and for every N large enough,

PN
y


Tx > δθN


≤ PN

y


TE (p)

a
> t θN (p)


+ max

z∈E (p)
a

PN
z


Tx > δθN /2


. (7.4)

We claim that both expressions vanish as N ↑ ∞ and then t ↑ ∞. Denote by T (p)

E (p)
a

the time

of hitting of E (p)
a by the trace process η

N ,p
t defined just before (7.2). The first term on the right

hand side of the previous formula is bounded above by

PN
y

∫ t

0
1{ηN

sθN (p) ∈ ∆p} ds > ϵ


+ PN

y


T (p)

E (p)
a

> (t − ϵ) θN (p)


for every 0 < ϵ < t . By property (T8) for k = p, the first term vanishes as N ↑ ∞ for
every ϵ > 0. By the convergence of the process Ψp(η

N ,p
tθN (p)) to the Markov process with rates

rp(i, j), assumed in (T6), the second term converges as N ↑ ∞ to Pb[Ta > (t − ϵ)], where Ta

stands for the hitting time of a. Since E (p+1)
i is a leaf, the asymptotic dynamics is an irreducible

Markov process on the set of indices c ∈ {1 . . . , ν(p)} such that E (p)
c ⊂ E (p+1)

i . In particular,
Pb[Ta > (t − ϵ)] vanishes as t ↑ ∞. This proves that the first term in (7.4) vanishes as N ↑ ∞

and then t ↑ ∞.
The second term in (7.4) vanishes as N ↑ ∞ by property (T7) for k = p. This proves the

lemma. �

The next lemma shows that we may from now on restrict our attention to the trace process
{η

N ,p
t : t ≥ 0} in our investigation of the metastability of {ηN

t : t ≥ 0} on a time scale longer
than θN (p).

Lemma 7.6. Assume that the trace processes {η
N ,p
t : t ≥ 0} satisfy condition (T8) on some time

scale θN ≻ θN (p) and for some subset ∆∗

p+1 of E (p):

lim
N→∞

max
x∈E (p)

EN
x

∫ t

0
1{η

N ,p
sθN

∈ ∆∗

p+1} ds


= 0.
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Then, the same property holds for the Markov process {ηN
t : t ≥ 0} with ∆p ∪ ∆∗

p+1 in place of
∆∗

p+1:

lim
N→∞

max
x∈EN

EN
x

∫ t

0
1{ηN

sθN
∈ ∆p ∪ ∆∗

p+1} ds


= 0.

Proof. Fix x ∈ E and observe that

EN
x

∫ t

0
1{ηN

sθN
∈ ∆p ∪ ∆∗

p+1} ds


≤ EN

x

∫ t

0
1{ηN

sθN
∈ ∆p} ds



+ max
y∈E (p)

EN
y

∫ t

0
1{η

N ,p
sθN

∈ ∆∗

p+1} ds


.

The second term vanishes as N ↑ ∞ by assumption. The first one is bounded by

θN (p)

θN

[θN /θN (p)]−
n=0

EN
x

∫ (n+1)t

nt
1{ηN

sθN (p) ∈ ∆p} ds


,

where [r ] stands for the integer part of r . By the Markov property, this expression is bounded
above by

2 max
y∈E

EN
y

∫ t

0
1{ηN

sθN (p) ∈ ∆p} ds


,

which vanishes as N ↑ ∞ in virtue of (T8) for k = p. �

Consider the trace process {η
N ,p
t : t ≥ 0}. By formula (6.12) in [2], its invariant probability

measure is the measure µN conditioned to E (p), and by [2, Lemma 6.9] the capacity between
two disjoint subsets of E (p) for the trace process {η

N ,p
t : t ≥ 0} is equal to the capacity for the

original process divided by µN (E (p)).

The evolution the trace process {η
N ,p
t : t ≥ 0} on E (p) is similar to that of {ηN

t : t ≥ 0} among
the shallowest valleys. We claim, for instance, that (E (p+1)

i , Ĕ (p+1)
i , x), x ∈ E (p+1)

i , 1 ≤ i ≤

ν(p + 1), are valleys for the trace process {η
N ,p
t : t ≥ 0}. The proof of this assertion is divided

into several steps. We first show that

G N (E (p+1)
i , Ĕ (p+1)

i ) ≺
µN (E (p+1)

i )

θN (p)
, 1 ≤ i ≤ ν(p + 1). (7.5)

Indeed, since E (p+1)
i is a leaf, there is no open path from some E (p)

a ⊂ E (p+1)
i to some

E (p)
b ⊄ E (p+1)

i . Therefore, since by Lemma 7.4 µN (x) ≈ µN (E (p+1)
i ), x ∈ E (p+1)

i , by the
definition of the average rate,

lim
N→∞

θN (p) r E (p)

N


E (p+1)

i ,


b

E (p)
b


= lim

N→∞
θN (p)

−
a

r E (p)

N


E (p)

a ,


b

E (p)
b


= 0,
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where the sum is taken over all p-metastates E (p)
a ⊂ E (p+1)

i and the union over all p-metastates

E (p)
b ⊄ E (p+1)

i . Hence, by [2, Lemma 6.7] and Lemma 4.1,

lim
N→∞

θN (p)

G N


E (p+1)

i ,

b

E (p)
b


µN (E (p+1)

i )
= 0. (7.6)

This proves (7.5) in view of (4.2) and because Ĕ (p+1)
i ⊂ ∪b E (p)

b .

Recall the definition of the set ∆o
p+1 introduced just before Lemma 7.4. Denote by B(p+1)

i , 1 ≤

i ≤ ν(p + 1), the union of all p-metastates E (p)
b which have measure of lower magnitude than

E (p+1)
i and which are contained in ∆o

p+1. Let also

F (p+1)
i = E (p)

\


E (p+1)
i ∪ B(p+1)

i


, 1 ≤ i ≤ ν(p + 1).

Lemma 7.7. Fix 1 ≤ i ≤ ν(p + 1) and x in E (p+1)
i . The triple (E (p+1)

i , E (p+1)
i ∪ B(p+1)

i , x) is a

valley for the trace process {η
N ,p
t : t ≥ 0} of depth θN ,i = µN (E (p+1)

i )/capN (E (p+1)
i , F (p+1)

i ).
Moreover, θN ,i ≻ θN (p).

Proof. Fix 1 ≤ i ≤ ν(p + 1) and x in E (p+1)
i . In view of Theorem 2.6, formula (6.12) and

Lemma 6.9 in [2], we only need to check that

lim
N→∞

max
y∈E (p+1)

i

capN (E (p+1)
i , F (p+1)

i )

capN (x, y)
= 0.

This follows from Lemmas 7.4 and 4.1, (4.2) and (7.6).
It remains to show that θN ,i ≻ θN (p). Since F (p+1)

i is contained in ∪b E (p)
b , where the union

is performed over all p-metastates which are not contained in E (p+1)
i , and since capN (A, B) ≤

capN (A, C) if B ⊂ C , by Lemma 4.1, θN (p)/θN ,i is bounded above by

C1 θN (p)

G N


E (p+1)

i ,

b

E (p)
b


µN (E (p+1)

i )

for some finite constant C1 independent of N . By (7.6) this expression vanishes as N ↑ ∞. �

Denote by PN ,p
x , x ∈ E (p), the probability on the path space D(R+, E (p)) induced by the trace

process {η
N ,p
t : t ≥ 0} starting from x .

Lemma 7.8. Fix 1 ≤ i ≤ ν(p + 1) and x in E (p+1)
i . The triple (E (p+1)

i , E (p+1)
i ∪ ∆o

p+1, x) is a

valley for the trace process {η
N ,p
t : t ≥ 0} of depth θN ,i = µN (E (p+1)

i )/capN (E (p+1)
i , F (p+1)

i ).

Moreover, capN (E (p+1)
i , F (p+1)

i ) ≈ capN (E (p+1)
i , Ĕ (p+1)

i ).

Proof. Fix 1 ≤ i ≤ ν(p + 1) and recall the definition of θN ,i introduced in Lemma 7.7. By this
lemma and by Lemma 10.1, to prove the first assertion we need to show that for every δ > 0,

lim
N→∞

max
y∈∆o

p+1\B(p+1)
i

PN ,p
y


TĔ (p+1)

i
> δθN ,i


= 0.
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Since, by Lemma 7.7, θN ,i ≻ θN (p), it is enough to show that

lim
t→∞

lim
N→∞

max
y∈∆o

p+1\B(p+1)
i

PN ,p
y


TĔ (p+1)

i
> t θN (p)


= 0.

Fix y ∈ ∆o
p+1 \ B(p+1)

i . By definition, y belongs to some p-metastate E (p)
b ⊄ E (p+1)

i and

µN (E (p)
b ) ≽ µN (E (p+1)

i ). We claim that there is no open path from E (p)
b to E (p+1)

i .
Indeed, suppose that there is an open path. In this case, since µN (E (p)

b ) ≽ µN (E (p+1)
i ), by

(7.1), we necessarily have µN (E (p)
b ) ≈ µN (E (p+1)

i ). Considering the last two p-metastates of the

open path from E (p)
b to E (p+1)

i , we find a p-metastate E (p)
c ⊄ E (p+1)

i , µN (E (p)
c ) ≈ µN (E (p+1)

i ),

and a p-metastate E (p)
a ⊂ E (p+1)

i such that rp(c, a) > 0. Therefore, by (7.1) and by reversibility,

rp(a, c) = lim
N→∞

θN (p) r E (p)

N (E (p)
a , E (p)

c )

= lim
N→∞

µN (E (p)
c )

µN (E (p)
a )

θN (p) r E (p)

N (E (p)
c , E (p)

a ) = rp(a, c) lim
N→∞

µN (E (p)
c )

µN (E (p)
a )

> 0,

which contradicts the fact that E (p+1)
i is a leaf.

By (7.2) with k = p, starting from y the process X N ,p
tθN (p) converges to the Markov process on

{1, . . . , ν(p)} with rates rp starting from b. Therefore,

lim
N→∞

PN ,p
y


TĔ (p+1)

i
> t θN (p)


≤ Pb


TA > t


,

where A = {c : E (p)
c ⊂ Ĕ (p+1)

i }. Since there is no open path from E (p)
b to E (p+1)

i and since

E (p)
b ⊂ ∆o

p+1, the state b is transient for the Markov process on {1, . . . , ν(p)} with rates rp and
all its limit points are contained in A. Hence, Pb[TA > t] vanishes as t ↑ ∞. This proves the first
assertion of the lemma.

To prove the second statement, note that capN (E (p+1)
i , F (p+1)

i ) ≽ capN (E (p+1)
i , Ĕ (p+1)

i )

because Ĕ (p+1)
i ⊂ F (p+1)

i .
By Lemma 4.1, to prove the reverse inequality we may replace the capacities by the function

G N . There exists a path γ = (x0, . . . , xn) from E (p+1)
i to F (p+1)

i such that G N (γ ) =

G N (E (p+1)
i , F (p+1)

i ). If xn belongs to Ĕ (p+1)
i , we have that G N (γ ) ≤ G N (E (p+1)

i , Ĕ (p+1)
i ) and

the statement is proved.
If, on the other hand, xn belongs to some metastate E (p)

b ⊂ ∆o
p+1 \ B(p+1)

i we proceed as
follows. We have already shown in the first part of the proof that there exists an open path
from E (p)

b to Ĕ (p+1)
i . Repeating the arguments presented in the proof of Lemma 7.4 and keeping

in mind the second assertion of (7.1), we show that there exists a path γ̃ from xn to Ĕ (p+1)
i

such that G N (γ̃ ) ≥ C0µN (xn)/θN (p) for some finite constant C0 independent of N . By the
definition of B(p+1)

i , this latter expression is bounded below by C0µN (E (p+1)
i )/θN (p). By (7.6),

G N (γ ) = G N (E (p+1)
i , F (p+1)

i ) ≺ µN (E (p+1)
i )/θN (p). Hence, if we denote by γ ⊕ γ̃ the

juxtaposition of γ and γ̃ , we have a path γ ⊕ γ̃ from E (p+1)
i to Ĕ (p+1)

i such that G N (γ ⊕ γ̃ ) =

G N (γ ) = G N (E (p+1)
i , F (p+1)

i ). This proves the second assertion of the lemma. �

It follows from the two previous lemmas that the depth θN ,i of the valley (E (p+1)
i , E (p+1)

i ∪

∆o
p+1, x), 1 ≤ i ≤ ν(p + 1), is of the same magnitude as µN (E (p+1)

i )/capN (E (p+1)
i , Ĕ (p+1)

i ) and
much larger than θN (p).
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Fix a subset I of {1, . . . , ν(p + 1)} and let J = {1, . . . , ν(p + 1)} \ I, EK ,p+1 =

∪i∈K E (p+1)
i , K ⊂ {1, . . . , ν(p + 1)}. By Lemma 4.3, the following limit exists:

f (p+1)
I,J (x) := lim

N→∞
PN

x [TE I,p+1 < TE J,p+1 ].

In particular, by Lemma 4.2,

lim
N→∞

capN (E (p+1)
I , E (p+1)

J )

gN (E (p+1)
I , E (p+1)

J )
=

1
2

−
g(x, y) [ f (p+1)

I,J (y) − f (p+1)
I,J (x)]2

∈ (0, ∞),

where the sum on the right hand side is taken over all pairs (x, y) ∈ B(E (p+1)
I , E (p+1)

J ).
For the same reasons, the limit

f (p+1)
i (x) := lim

N→∞
PN

x


TE (p+1)

i
< TF (p+1)

i


exists and

lim
N→∞

capN (E (p+1)
i , F (p+1)

i )

gN (E (p+1)
i , F (p+1)

i )
=

1
2

−
g(x, y) [ f (p+1)

i (y) − f (p+1)
i (x)]2

∈ (0, ∞),

where the sum on the right hand side is taken over all pairs (x, y) ∈ B(E (p+1)
i , F (p+1)

i ).

Let g(p+1)
i = f (p+1)

I,J for I = {i}. We claim that g(p+1)
i = f (p+1)

i , in other words, that for all
x ∈ E ,

lim
N→∞

PN
x [TE (p+1)

i
< TF (p+1)

i
] = lim

N→∞
PN

x [TE (p+1)
i

< TĔ (p+1)
i

]. (7.7)

Indeed, fix x ∈ E . Since limN→∞ PN
x [TE (p) = Ty], y ∈ E (p), exists by Lemma 4.3, and since

all sets involved are contained in E (p), taking conditional expectation with respect to TE (p) and
applying the strong Markov property, to prove (7.7) it is enough to show that for all y ∈ E (p),

lim
N→∞

PN
y [TE (p+1)

i
< TF (p+1)

i
] = lim

N→∞
PN

y [TE (p+1)
i

< TĔ (p+1)
i

].

At this point we may replace the process ηN
t by the trace process η

N ,p
t . Since Ĕ (p+1)

i is contained

in F (p+1)
i , by the strong Markov property, to prove the previous identity we have to show that for

every z ∈ F (p+1)
i ,

lim
N→∞

PN
z [TE (p+1)

i
< TĔ (p+1)

i
] = 0.

Since there is no open path from F (p+1)
i to E (p+1)

i , since by (7.2) the speeded-up blind process

X N ,p
t converges to the Markov process with rates rp whose recurrent states are the indices

a ∈ {1, . . . , ν(p)} such that E (p)
a ⊂ E (p+1), the previous identity holds, proving claim (7.7).

We proved in Lemma 7.8 that capN (E (p+1)
i , F (p+1)

i ) ≈ capN (E (p+1)
i , Ĕ (p+1)

i ). Hence, by

Lemma 4.1, G N (E (p+1)
i , F (p+1)

i ) ≈ G N (E (p+1)
i , Ĕ (p+1)

i ). In particular, gN (E (p+1)
i , F (p+1)

i ) =

gN (E (p+1)
i , Ĕ (p+1)

i ) and, in consequence, B(E (p+1)
i , F (p+1)

i ) = B(E (p+1)
i , Ĕ (p+1)

i ).
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If follows from the previous considerations that

lim
N→∞

capN (E (p+1)
i , Ĕ (p+1)

i )

gN (E (p+1)
i , Ĕ (p+1)

i )
= lim

N→∞

capN (E (p+1)
i , F (p+1)

i )

gN (E (p+1)
i , Ĕ (p+1)

i )
∈ (0, ∞),

so

lim
N→∞

capN (E (p+1)
i , Ĕ (p+1)

i )

capN (E (p+1)
i , F (p+1)

i )
= 1.

In consequence, by Lemma 7.8, the following result holds.

Lemma 7.9. Fix 1 ≤ i ≤ ν(p + 1) and x in E (p+1)
i . The triple (E (p+1)

i , E (p+1)
i ∪ ∆o

p+1, x) is a

valley for the trace process {η
N ,p
t : t ≥ 0} of depth θN ,i = µN (E (p+1)

i )/capN (E (p+1)
i , Ĕ (p+1)

i ).
Moreover,

up+1,i := lim
N→∞

gN (E (p+1)
i , Ĕ (p+1)

i )

µN (E (p+1)
i )

θN ,i ∈ (0, ∞).

Since the sequences gN (E (p+1)
i , Ĕ (p+1)

i )/µN (E (p+1)
i ), 1 ≤ i ≤ ν(p + 1), are comparable,

repeating the arguments presented in the proof of Proposition 5.8 we deduce the next result.

Lemma 7.10. The sequences {θN ,i : N ≥ 1}, 1 ≤ i ≤ ν(p + 1), are comparable.

Let θN (p + 1) = min{θN ,i : 1 ≤ i ≤ ν(p + 1)} and let Sp+1 = {i : θN ,i ≈ θN (p + 1)}.
Observe that θN (p) ≺ θN (p + 1) and that (T5) holds for k = p + 1 with this definition.

Denote by X N ,p+1
t = Ψk(η

N ,p+1
tθN (p+1)) the speeded-up blind process introduced in the statement

of Theorem 2.1.

Lemma 7.11. Condition (T6) holds for k = p + 1.

Proof. The arguments presented in Section 6 until Lemma 6.1 apply to the present context and
show that conditions (7.1) are fulfilled for k = p + 1.

It remains to prove the convergence of X N ,p+1
t . We need to check that the assumptions of

[2, Theorem 2.7] are fulfilled. On the one hand, condition (H1) follows from condition (T4) for
k = p + 1, proved in Lemma 7.4, and from the fact that θN ,i ≽ θN (p + 1) ≻ θN (p), proved right
after Lemma 7.10. On the other hand, condition (H0) is part of (7.1) which has already been
proven. �

To conclude the recurrence argument, it remains to show that property (T8) holds for k =

p + 1. We first show that it holds for the trace process η
N ,p
t .

Lemma 7.12. For all t > 0,

lim
N→∞

max
x∈E (p)

EN
x

∫ t

0
1{η

N ,p
sθN (p+1) ∈ ∆o

p+1} ds


= 0.

Proof. Since θN (p) ≺ θN (p + 1), a change of variables in the time integral and the Markov
property show that for every T > 0 and for every N large enough,

EN
x

∫ t

0
1{η

N ,p
sθN (p+1) ∈ ∆o

p+1} ds


≤

2t

T
max

y∈E (p)
EN

y

∫ T

0
1{η

N ,p
sθN (p) ∈ ∆o

p+1} ds
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for every x ∈ E (p). Note that the process on the right hand side is speeded up by θN (p) and no
longer by θN (p + 1).

We estimate the expression on the right hand side of the previous formula. We may, of course,
restrict the maximum to ∆o

p+1. Let T1 be the first time that the trace process hits E (p+1) and let
T2 be the time that it takes for the process to return to ∆o

p+1 after T1:

T1 = TE (p+1) , T2 = inf

s > 0 : η

N ,p
T1+s ∈ ∆o

p+1


.

Fix x ∈ ∆o
p+1 and note that

EN
x


1
T

∫ T

0
1{η

N ,p
sθN (p) ∈ ∆o

p+1} ds


≤ PN ,p

x


T1 > t0θN (p)


+ PN ,p

x


T2 ≤ T θN (p)


+

t0
T

for all t0 > 0. We have proved, in Lemma 7.8 for instance, that the first term on the right hand
side vanishes as N ↑ ∞ and then t0 ↑ ∞. By the strong Markov property, the second term
is bounded by maxy∈E (p+1) PN ,p

y [T∆o
p+1

≤ T θN (p)]. Since there is no open path from E (p+1) to
∆o

p+1 this probability vanishes as N ↑ ∞ for all T > 0. This concludes the proof. �

The next result follows from Lemmas 7.6 and 7.12 and concludes the proof of Theorem 7.1.

Corollary 7.13. Condition (T8) holds for k = p + 1:

lim
N→∞

max
x∈E

EN
x

∫ t

0
1{ηN

sθN (p+1) ∈ ∆p+1} ds


= 0.

We conclude this section with a remark. Fix a level q and denote by PN (x, i, j), 1 ≤ i ≠ j ≤

ν(q), x ∈ E (q)
i , the hitting probabilities

PN (x, i, j) := PN
x


TE (q)

j
= TĔ (q)

i


. (7.8)

Recall from Lemma 7.9 that θN ,i = µN (E (q)
i )/capN (E (q)

i , Ĕ (q)
i ). It follows from Lemma 7.10

with q = p + 1 that θN (q)/θN ,i converges to some number denoted by Λ(i) ∈ [0, ∞). On
the other hand, by Lemma 4.3, PN (x, i, j) converges to some P(x, i, j) ∈ [0, 1]. Since by
Lemma 7.9 (E (q)

i , E (q)
i ∪∆o

q, y), y ∈ E (q)
i , is a valley for the trace process η

N ,q
t , it is not difficult to

show that the limit P(x, i, j) does not depend on the starting point x . Therefore, by Lemma 10.2,
for any 1 ≤ i ≠ j ≤ ν(q),

rq(i, j) = lim
N→∞

θN (q)

θN ,i
lim

N→∞
PN

x


TE (q)

j
= TĔ (q)

i


. (7.9)

8. Valleys and hitting times of the Ising model at low temperature

The proof of Theorem 3.1 follows the strategy presented in the previous sections. As we have
seen, the approach relies on the characterization of the shallowest valleys of the model and on
the computation of the depths and the hitting times of these valleys. We present in this section
the shallowest valleys of the Ising model at low temperature and some estimates of the capacities
and the hitting times.
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In the present context, a path γ = (η0, . . . , ηp) is a sequence of configuration in Ω such that
for each 0 ≤ j < p, η j+1 = ηx

j for some x ∈ ΛL . We shall say that two configurations ξ and η

in Ω are neighbors if ξ = ηx for some x ∈ ΛL .

Lemma 8.1. Fix a configuration σ in Ωo, σ ≠ +1, −1. For all β > 0,

Gβ({σ },Ωσ ) =


µβ(σ ) e−β[ℓ(σ )−1]h if ℓ(σ ) ≤ n0,
µβ(σ ) e−β(2−h) otherwise.

(8.1)

Moreover,

Gβ({−1},Ω−1) = µβ(−1) e−β(8−3h), Gβ({+1},Ω+1) = µβ(+1) e−β(8+3h).

Proof. Fix a configuration σ satisfying the assumptions of the lemma and assume that ℓ :=

ℓ(σ ) ≤ n0. Fix a positive rectangle R of σ of size ℓ × m and assume that m ≥ 3. Consider the
sequence of configurations σ = η0, . . . , ηℓ obtained by first flipping the spin at a corner of the
rectangle R and then flipping contiguous spins along the smaller side. The last configuration ηℓ

is the configuration σ where the rectangle R has been replaced by a rectangle R′
⊂ R of size

ℓ × (m − 1).
The configuration ηℓ belongs to Ωσ and the path γ to Γ{σ },Ωσ

. A simple computation shows
that µβ(ηℓ−1) = min{µβ(ηk) : 0 ≤ k ≤ ℓ}, so Gβ({σ },Ωσ ) ≥ Gβ(γ ) = µβ(ηℓ−1) =

µβ(σ )e−β(ℓ−1)h .
To prove the reverse inequality, note that the configuration σ has five kinds of different

neighbors σ x . A simple computation shows that µβ(σ x ) < µβ(σ )e−β(ℓ−1)h in four cases
because ℓ ≤ n0 < 2/h. The only type where this inequality does not hold occurs when we
flip the spin at a corner of a positive rectangle of σ .

To compute Gβ({σ },Ωσ ) we need to maximize Gβ(γ ) over all paths γ from σ to Ωσ . The
previous observations show that the unique possible paths are those where we start flipping the
corner of a positive rectangle.

This argument can be iterated. At each step we are only allowed to flip a positive spin which
has two negative neighbors. After k flips we reach configurations of measure µβ(σ )e−βkh . Since
we are not allowed to pass the level µβ(σ )e−β(ℓ−1)h , the only configurations in Ωo which can be
reached after ℓ flips are the ones where a rectangle R of length ℓ × m is replaced by a rectangle
R′

⊂ R of length ℓ × (m − 1).
The case of a rectangle R of size 2×2 is treated in a similar way. In this case, once one corner

is removed, the next spins of the square flip at rate 1 to reach the configuration where the square
R is removed. This proves the lemma in the case ℓ(σ ) ≤ n0.

Assume now that ℓ(σ ) > n0. Consider the path γ = (σ = η0, . . . , ηm), where η1 is the
configuration obtained from σ by flipping a negative spin contiguous to a positive rectangle,
and where η j+1 is obtained from η j , 2 ≤ j < m, by flipping a negative spin surrounded
by two positive spins. The final configuration ηm is reached when no negative spin has two
positive neighbors. Clearly, µβ(η1) = min{µβ(ηk) : 0 ≤ k ≤ m}, so Gβ({σ },Ωσ ) ≥ Gβ(γ ) =

µβ(η1) = µβ(σ )e−β(2−h).
An argument similar to the one presented in the first part of the proof of this lemma shows

that the path proposed is the optimal one. This concludes the proof of the first part of the lemma.
Consider the path γ = (σ0 = −1, σ1, . . . , σ4) where σ j+1 is the configuration obtained

from σ j , 0 ≤ j ≤ 3, by flipping a negative spin from a site with the largest possible number
of neighbors with a positive spin. Hence, σ4 ∈ Ω−1 is obtained from −1 by flipping the
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spins of a 2 × 2 square and Gβ(γ ) = µβ(−1) e−β(8−3h). In particular, Gβ({−1},Ω−1) ≥

µβ(−1) e−β(8−3h).
To prove the reverse inequality, consider a path γ = (σ0, . . . , σp) from −1 to Ω−1. Let σi

be the first configuration in the path γ which has three positive spins. A simple computation
shows that µβ(σi ) ≤ µβ(−1) e−β(8−3h). This proves that Gβ(γ ) ≤ µβ(−1) e−β(8−3h), so
Gβ({−1},Ω−1) ≤ µβ(−1) e−β(8−3h), which proves the penultimate assertion of the lemma.
The last statement is proved in a similar way. �

Recall the definition of the transition probabilities p(σ, σ ′), σ ∈ Ωo, σ
′
∈ S(σ ), introduced

in (3.1), (3.3). For ℓ(σ ) = 2 and ℓ(σ ) > n0, cases where S(σ ) = D(σ ), let q(σ, σ ′) = p(σ, σ ′).
For σ ∈ Ωo, 3 ≤ ℓ(σ ) ≤ n0, σ

′
∈ D(σ ), let q(σ, σ ′) be defined by

q(σ, σ ′) =
1

|D(σ )|
.

Note that q(σ, σ ′) = p(σ, σ ′) for σ ′
∈ D(σ ) ∩ S(σ ) = D(σ ) ∩ Ωo,ℓ(σ )−1.

Lemma 8.2. Fix a configuration σ in Ωo, σ ≠ +1, −1, and a configuration σ ′
∈ D(σ ). Then,

lim
β→∞

Pβ
σ


Tσ ′ = TΩσ


= q(σ, σ ′).

Proof. Fix a configuration σ satisfying the assumptions of the lemma and a configuration
σ ′

∈ D(σ ) and assume that 3 ≤ ℓ(σ ) ≤ n0. Denote by W(σ, σ ′) the set of configurations in
W(σ ) which are equal to σ ′ when we flip the positive spin surrounded by three negative spins.
Note that |W(σ, σ ′)| = ℓ(σ ).

We present the proof for ℓ(σ ) = 3, the other cases being analogous. Since 3 = ℓ(σ ) ≤ n0 <

2/h, we have that h < 2/3. For a configuration η for which all positive spins are surrounded by
at most two negative spins, let F1(η) be the set of all configurations obtained from η by flipping
a positive spin surrounded by two negative spins.

Let fβ(η) = Pβ
η [Tσ ′ = TΩσ

] and denote by f a limit point of the sequence fβ , as β ↑ ∞. We
need to show that f (σ ) = 1/|D(σ )|. Since fβ is harmonic, a simple computation shows that

fβ(σ ) =
1

|F1(σ )|

−
ξ∈F1(σ )

fβ(ξ) + o1(β), (8.2)

where o1(β) is an expression absolutely bounded by C0 exp{−2β[1−h]} for some finite constant
C0 independent of β which may change from line to line. It follows from this identity that
f (σ ) = |F1(σ )|−1∑

ξ∈F1(σ ) f (ξ).
A similar argument shows that f (η) = f (σ ) for any configuration η in F1(σ ). Let F2(σ )

be the set of configurations obtained from a configuration in F1(σ ) by flipping a positive spin
surrounded by two negative spins. For the same reasons, f (ξ) = f (σ ) for any configuration ξ in
F2(σ ) \ W(σ ). Fix now a configuration η in W(σ, σ ′). If η differs from σ ′ by a spin in a corner
of a positive rectangle of σ, f (η) = (1/2)[1 + f (σ )], while if η differs from σ ′ by a spin not in
a corner, f (η) = (1/3)[1 + 2 f (σ )]. For a configuration η in W(σ ) \ W(σ, σ ′), if η differs from
σ ′ by a spin in a corner of a positive rectangle of σ, f (η) = (1/2) f (σ ), while if η differs from
σ ′ by a spin not in a corner, f (η) = (2/3) f (σ ).

Finally, observe that on applying the harmonic identity to the terms fβ(ξ) in Eq. (8.2), after
some elementary computations we obtain that−

ξ∈F1(σ )

−
η∈F1(ξ)

{ fβ(η) − fβ(σ )} = o2(β),
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where o2(β) is absolutely bounded by C0{e−βh
+ e−β[2−3h]

}. Since h < 2/3, the right hand side
vanishes as β ↑ ∞, so

∑
η∈F2(σ ){ f (η) − f (σ )} = 0. By the previous identities, this relation is

reduced to
∑

η∈W(σ ){ f (η)− f (σ )} = 0. From this identity and the explicit values of f in W(σ ),
we obtain that f (σ ) = 1/|D(σ )|, which proves the lemma.

Suppose now that ℓ(σ ) = 2 ≤ n0 and note that Eq. (8.2) holds. The argument is analogous to
the previous one, with one difference. If ξ ∈ F1(σ ) is a configuration in which a spin of a 2 × 2
positive square Q of σ has been flipped, we have that 3 f (ξ) = f (σ ) + f (η1) + f (η2), where f
is any limit point of the sequence fβ and η1, η2 are configurations obtained from σ by flipping
a row or a column of the square Q. Iterating the argument on the basis of the harmonicity of fβ ,
we conclude that 3 f (ξ) = f (σ ) + 2 f (σ ∗), where σ ∗ is the configuration obtained from σ by
flipping all spins of Q.

The proof for ℓ(σ ) > n0 is similar. Observe first that n0 = 1 if h > 1. In this case, it is easier
to flip a negative spin surrounded by a positive spin than to flip a positive spin surrounded by two
negative spins and the proof presented below simplifies. We assume that h < 1 so that n0 ≥ 2.

Recall the definition of the set F1(σ ) introduced at the beginning of the proof. By the harmonic
property of fβ ,

fβ(σ ) =
1

|F1(σ )|

−
ξ∈F1(σ )

fβ(ξ) +
e−2β[1−h]

|F1(σ )|2

−
η∈G1(σ )

−
ξ∈F1(σ )

[ fβ(η) − fβ(ξ)] + o(β),

where G1(σ ) is the set of configurations obtained from σ by flipping a negative spin surrounded
by a positive spin and where o(β) has an expression which vanishes faster than e−2β[1−h] as
β ↑ ∞.

We claim that

lim
β→∞

e2β[1−h]
−

ξ∈F1(σ )

{ fβ(ξ) − fβ(σ )} = 0. (8.3)

To prove this claim, denote by Fk(σ ), 1 ≤ k ≤ n0, the configurations obtained from σ by
successively flipping k distinct positive spins surrounded by two negative spins: F j+1(σ ) =

∪ξ∈F j (σ ) F1(ξ). Denote by G1(η) the predecessors of η, that is, the configurations obtained from
η by flipping a negative spin surrounded by two positive spins. Hence, G1(η) ⊂ F j−1(σ ) if η

belongs to F j (σ ). By the harmonic property, for every η ∈ F j (σ ), 1 ≤ j < n0,−
ξ∈G1(η)

{ fβ(η) − fβ(ξ)} = e−βh
−

ζ∈F1(η)

{ fβ(ζ ) − fβ(η)} + O(e−β[2−h]).

Replacing this identity in the sum appearing in (8.3), we reduce the proof of (8.3) to the proof
that

e2β[1−h]e−(n0−1)βh
−

ξ1∈F1(σ )

−
ξ2∈F1(ξ1)

· · ·

−
ξn0∈F1(ξn0−1)

{ fβ(ξn0) − fβ(ξn0−1)}

vanishes as β ↑ ∞. This holds because fβ is bounded by 1 and 2/h < n0 + 1.
By the harmonic property of fβ at ξ ∈ F1(σ ), f (ξ) = f (σ ) for any limit point f of the

sequence fβ . Moreover, by (8.3) and by the displayed formula appearing just before (8.3),−
η∈G1(σ )

[ f (η) − f (σ )] = 0.
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Recall the notation introduced in Section 3. Note that G1(σ ) = W(σ ) and that f (η) =

[ j + f (σ )]/( j + 1) if η belongs to W j (σ, σ ′), 1 ≤ j ≤ 3, while f (η) = f (σ )/( j + 1) if
η ∈ W j (σ ) \ W j (σ, σ ′). This observation permits us to conclude the proof of the lemma. �

Recall the definition of the sets Ωo,k, 1 ≤ k ≤ n0, and S(σ ) introduced in Section 3.

Corollary 8.3. Fix a configuration σ in Ωo,k \ Ωo,k+1, 1 ≤ k ≤ n0, σ ≠ +1, −1. Let
Ωk,σ = Ωo,k \ {σ }. Then, for all σ ′

∈ Ωk,σ ,

lim
β→∞

Pβ
σ


Tσ ′ = TΩk,σ


= p(σ, σ ′).

Proof. Fix 1 ≤ k ≤ n0 and a configuration σ in Ωo,k \ Ωo,k+1, σ ≠ +1, −1. For k = 1 and
k = n0, since D(σ ) = S(σ ) and

∑
σ ′∈D(σ ) q(σ, σ ′) = 1, by Lemma 8.2,

lim
β→∞

Pβ
σ


TS(σ ) = TΩσ


= 1.

Since S(σ ) ⊂ Ωk,σ ⊂ Ωσ we may replace TS(σ ) by TΩk,σ
in the previous equation. The corollary

follows now from Lemma 8.2 and the fact that p = q for k = 1 and k = n0.
Consider now the case 2 ≤ k < n0. Fix a configuration σ ′

∈ D(σ ) ∩ Ωo,k ⊂ S(σ ). Since
TΩσ

≤ TΩk,σ
, and since p(σ, σ ∗) = q(σ, σ ∗) for σ ∗

∈ S(σ ), by Lemma 8.2,

lim inf
β→∞

Pβ
σ


Tσ ′ = TΩk,σ


≥ lim

β→∞
Pβ

σ


Tσ ′ = TΩσ


= p(σ, σ ′).

Fix now a configuration σ ′
∈ S(σ ) \ D(σ ). This configuration is obtained from σ by flipping all

spins of a positive ℓ(σ ) × ℓ(σ ) square of σ . Denote by σ j , 1 ≤ j ≤ 4, the four configurations
obtained from σ by flipping all spins from one of the sides of this square. Of course,

Pβ
σ


Tσ ′ = TΩk,σ


≥

4−
j=1

Pβ
σ


Tσ ′ = TΩk,σ

, Tσ j = TΩσ


.

Since TΩσ
≤ TΩk,σ

and σ j ∉ Ωk,σ , by the strong Markov property, the right hand side is equal to

4−
j=1

Pβ
σ


Tσ j = TΩσ


Pβ

σ j


Tσ ′ = TΩk,σ


.

By Lemma 8.2, Pβ
σ


Tσ j = TΩσ


converges to q(σ, σ j ) as β ↑ ∞. We also claim that

Pβ
σ j


Tσ ′ = TΩk,σ


converges to 1 as β ↑ ∞ for 1 ≤ j ≤ 4. Indeed, for a fixed j, ℓ(σ j ) = ℓ(σ )−1

and the configuration σ j has one and only one positive rectangle R with a side of length ℓ(σ )−1.
It follows from Lemma 8.2 and from the definition of the sets D(σ ∗) that the process first flips
the spins of one side of the rectangle R, transforming it into a positive [ℓ(σ ) − 1] × [ℓ(σ ) − 1]

square. Then, it flips the spins of one side of this square, transforming it into a positive
[ℓ(σ ) − 2] × [ℓ(σ ) − 1] rectangle, and so on, until the process reaches a configuration where
the initial rectangle R is transformed into a 2 × 2 square, without flipping in this process any
other site which is not contained in the original ℓ(σ )× ℓ(σ ) positive square of σ . In the last step,
all spins of the 2 × 2 positive square are flipped and the process reaches the configuration σ ′

which belongs to Ωk,σ and is the first one to belong to this set in the evolution just described.
This proves the claim.
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It follows from this argument that

lim inf
β→∞

Pβ
σ


Tσ ′ = TΩk,σ


≥

4−
j=1

q(σ, σ j ) = p(σ, σ ′).

Since this inequality holds for all σ ′
∈ S(σ ) and

∑
σ ′∈S(σ ) p(σ, σ ′) = 1, the lemma is

proved. �

The proof of Lemma 8.2 describes the asymptotic behavior of Pβ
η [Tσ < TΩσ

] for some
configurations η, but not for all. We may not, therefore, apply blindly Lemma 4.2 to deduce
the limit of the capacity capβ({σ },Ωσ ). The next result fills the gaps.

For 3 ≤ ℓ(σ ) ≤ n0, denote by W1(σ ) the configurations in W(σ ) whose positive spin
surrounded by three negative spins is in the corner of a positive rectangle of σ and denote
by W2(σ ) the remaining configurations of W(σ ). Note that configurations in W j (σ ) jump to
Ωσ with probability ( j + 1)−1

+ o(β) and that |W1(σ )| = 4Nr (σ ) + 8Ns(σ ), |W2(σ )| =

2[ℓ(σ ) − 2]Nr (σ ) + 4[ℓ(σ ) − 2]Ns(σ ).

Lemma 8.4. Fix a configuration σ in Ωo, σ ≠ +1, −1. If 2 ≤ ℓ := ℓ(σ ) ≤ n0,

lim
β→∞

eβ[ℓ−1]h µβ(σ )−1 capβ({σ },Ωσ ) = θ(σ ),

and if ℓ > n0,

lim
β→∞

eβ(2−h) µβ(σ )−1 capβ({σ },Ωσ ) = θ(σ ),

where θ(σ ) has been defined in (3.4).

Proof. Fix a configuration σ satisfying the assumptions of the lemma and assume that 3 ≤ ℓ :=

ℓ(σ ) ≤ n0. By Lemmas 4.1 and 8.1, we know that capβ({σ },Ωσ ) is of order µβ(σ )e−β(ℓ−1)h .
We start with the proof of the upper bound for the capacity. Recall that we denote by W(σ )

the set of saddle configurations of the valley ({σ }, {σ } ∪ ∆, σ ). Denote by B the set of all
configurations η which do not belong to W(σ ) and which can be reached from σ by self-avoiding
paths γ = (σ = η0, η1, . . . , ηp = η) such that µβ(ηk) ≥ µβ(σ )e−β[ℓ−1]h, 0 ≤ k ≤ p.
It follows from the proof of Lemma 8.1 that all these configurations are obtained from σ by
successively flipping at most ℓ − 1 positive spins which are surrounded by two negative spins.
Note that all neighbors ξ of a configuration η ∈ B which do not belong to B have measure
µβ(ξ) < µβ(σ )e−β[ℓ−1]h .

Consider the function f : Ω → [0, 1] defined as follows. Set f (σ ) = 1, f = 1 on
B, f = j/( j + 1) on W j (σ ) and f = 0 elsewhere. By the definition of capacity and by
the definition of the function f, capβ({σ },Ωσ ) ≤ Dβ( f ) = µβ(σ )e−β[ℓ−1]h

{(2/3)|W2(σ )| +

(1/2)|W1(σ )|} + o(β), where o(β) ≺ µβ(σ )e−β[ℓ−1]h . This proves the upper bound.
To prove the lower bound, consider a function f equal to 1 at σ and 0 on Ωσ . Denote

by A0 the set of all configurations η which can be reached from σ by self-avoiding paths
γ = (σ = η0, η1, . . . , ηp = η) such that µβ(ηk) ≥ µβ(σ )e−β[ℓ−1]h, 0 ≤ k ≤ p, and let
A = A0 ∪ D(σ ). By the definition of the Dirichlet form,

Dβ( f ) ≥

−
{η,ξ}⊂A

Gβ(η, ξ)[ f (ξ) − f (η)]2.

Denote by fβ : A → [0, 1] the function which minimizes the right hand side with the boundary

conditions imposed above. It is well known that fβ(η) = PA,β
η [Tσ < TD(σ )] where PA,β stands
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for the probability on the path space induced by the reversible Markov process whose Dirichlet
form is the one appearing on the right hand side of the previous formula. The asymptotic behavior
of fβ(η), as β ↑ ∞, has been examined in the previous lemma for certain configurations. The
arguments presented in the proof of the lower bound of Lemma 4.2 permit us to conclude.

The proofs for ℓ(σ ) = 2 ≤ n0 and ℓ(σ ) > n0 are simpler and left to the reader. �

Recall the definition of the set Ωk,σ introduced in Corollary 8.3 and fix 2 ≤ k ≤ n0. Since
Ωk,σ ⊂ Ωσ , capβ({σ },Ωk,σ ) ≤ capβ({σ },Ωσ ). The method of the proof of the lower bound for
capβ({σ },Ωσ ), together with the asymptotic behavior of the hitting times stated in Corollary 8.3,
provides the next result.

Corollary 8.5. Fix 2 ≤ k < n0 and a configuration σ in Ωk,σ \ Ωk+1,σ . Then,

lim
β→∞

eβkh µβ(σ )−1 capβ({σ },Ωk,σ ) = θ(σ ).

Moreover, for σ in Ωn0,σ \ Ωn0+1,σ ,

lim
β→∞

eβ(2−h) µβ(σ )−1 capβ({σ },Ωn0,σ ) = θ(σ ).

9. Proofs of Theorems 3.1 and 3.2

The proof of Theorem 3.1 is based on the theory developed in the early sections of this article.
A simple computation shows that H(σ x ) − H(σ ) =

∑
y:|y−x |=1 σ(y) σ (x) + h σ(x), where | · |

stands for the Euclidean norm. Since 0 < h < 2, the jump rates c(x, σ ) may only assume the
values 1, e−β[4+h], e−β[2+h], e−βh, e−β[4−h] and e−β[2−h]. Assumptions (2.1), (2.2) are therefore
satisfied.

Recall the terminology and the notation introduced in Section 5. According to the theory
developed in the previous sections, the first step in the proof of the metastable behavior of a
Markov process is the description of the evolution among the shallowest valleys which we now
determine. Since a negative (resp. positive) spin surrounded by two (resp. three) positive (resp.
negative) spins flips at rate 1, it is not difficult to show that the leaves E1, . . . , Eν defined in
Section 5 are all the singletons formed by the elements of Ωo and so ν = |Ωo| and ∆ = Ω \ Ωo.

Denote by Eσ the singleton {σ }, σ ∈ Ωo. By Lemma 5.4, Proposition 5.7 and Lemma 8.4,
({σ }, {σ } ∪ ∆, σ ), σ ≠ −1, +1, is a valley of depth eβ[ℓ(σ )−1]hθ(σ )−1 if 2 ≤ ℓ(σ ) ≤ n0 and
of depth eβ(2−h)θ(σ )−1 if ℓ(σ ) > n0. Moreover, by Lemmas 8.1 and 4.1 and the same results
invoked above, ({±1}, {±1} ∪ ∆, ±1) is a valley whose depth is of order eβ(8±3h). The exact
depth of these latter valleys is not important at this stage.

To describe the evolution among the shallowest valleys, recall the notation introduced in
Section 6. For a subset F of Ω , denote by RF

β (σ, σ ′), σ , σ ′
∈ F , the jump rates of the trace

σ F
t of the process σt on F . Let r F

β (A, B), A, B ⊂ F , A ∩ B = ∅, be the average rates of

jumping of σ F
t from A to B:

r F
β (A, B) =

1
µβ(A)

−
σ∈A

µβ(σ )
−
σ ′∈B

RF
β (σ, σ ′).

In view of the depths of the valleys ({σ }, {σ } ∪ ∆, σ ), σ ∈ Ωo, the set S1 can be identified
as the set Ωo,1 \ Ωo,2. Recall that θβ(1) = eβh if n0 ≥ 2 and θβ(1) = eβ(2−h) if n0 = 1.
By Lemma 6.1, Corollary 8.3, the explicit expression for the depth of the valleys obtained
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above, and Lemma 10.2, the scaled average rates eβh rΩo
β (σ, σ ′), σ , σ ′

∈ Ωo, converge to
r(σ, σ ′) = θ(σ )p(σ, σ ′), where p(σ, σ ′) and θ(σ ) have been introduced in (3.1)–(3.4).

Recall that we denote by σ
β,1
t the trace of the Markov process σ

β
t on Ωo,1. By Lemma 6.2

with θβ(1) = eβh and by the observations of the previous paragraph, the speeded-up process

σ
β,1
tθβ (1) converges to a Markov process on Ωo,1 with jump rates r(σ, σ ′) = θ(σ )p(σ, σ ′).

By Proposition 6.3, on the time scale θβ(1), the time spent in ∆ is negligible. This proves
Theorem 3.1 for k = 1.

The proof of Theorem 3.1 in the longer time scales is based on Theorem 7.1 and follows the
strategy presented in Remark 7.2. Recall the notation introduced in Section 7 and assumption
T. Since Theorem 3.1 has been proven for k = 1, assumption T holds at level 1 because all
1-metastates are singletons.

Theorem 3.1 for 2 ≤ k ≤ n0 follows from Theorem 7.1. As explained in Remark 7.2, we
just need to characterize the metastates at each level, the depth of each valley and the asymptotic
rates. This has been done for 2 ≤ k ≤ n0 in Corollaries 8.3 and 8.5, in view of Lemma 10.2. We
present in detail the case k = 2 and leave the rest of the recursive argument to the reader.

Assume that n0 ≥ 2. It follows from the dynamics generated by the rates r introduced above
that the leaves at level 2, E (2)

1 , . . . , E (2)
ν(2), are all the singletons formed by the elements of Ωo,2 so

that ν(2) = |Ωo,2| and ∆2 = Ω \ Ωo,2, ∆o
2 = Ωo,1 \ Ωo,2.

By Theorem 7.1 with p = 1 and Corollary 8.5, the triples ({σ }, {σ } ∪ ∆o
2, σ ), σ ∈ Ωo,2, σ ≠

−1, +1, are valleys for the trace process σ
β,1
t of depth eβ[ℓ(σ )−1]hθ(σ )−1 if 3 ≤ ℓ(σ ) ≤ n0 and

of depth eβ(2−h)θ(σ )−1 if ℓ(σ ) > n0. Moreover, by Lemmas 8.1 and 4.1, ({±1}{±1} ∪ ∆o
2, ±1)

is a valley for the trace process σ
β,1
t whose depth is of order eβ(8±3h).

Note that the Ising model presents the particularity that the p-metastates are 1-metastates, and
not a union of 1-metastates.

Recall the definition of the set S2 introduced just after Lemma 7.10. The set S2 can be
identified as the set Ωo,2 \ Ωo,3. Set θβ(2) = e2βh if n0 > 2 and θβ(2) = eβ(2−h) if n0 = 2. By

Theorem 7.1 with p = 1, Lemma 10.2, Corollaries 8.3 and 8.5, σ
β,2
tθβ (2) converges to a Markov

process on Ωo,2 with jump rates r(σ, σ ′) = θ(σ )p(σ, σ ′) introduced in (3.1)–(3.4). Furthermore,
by Theorem 7.1 with p = 1, on the time scale θβ(2), the time spent in ∆2 is negligible. This
proves Theorem 3.1 for k = 2. �

We now turn to the proof of Theorem 3.2. It relies on the following lemma. Recall the
definition of the sets W(−1), W1(−1) and W2(−1) and of the number θ(−1) introduced just
before the statement of Theorem 3.2.

Lemma 9.1. For β > 0, Gβ({−1}, {+1}) = µβ(σ ∗), for any σ ∗
∈ W(−1). Moreover,

lim
β→∞

eβ c(h) µβ(−1)−1 capβ({−1}, {+1}) = θ(−1),

where c(h) = 4(n0 + 1) − h[(n0 + 1)n0 + 1] and θ(−1) = (2/3)|W2(−1)| + (1/2)|W1(−1)|.

Proof. The proof of the first assertion is left to the reader. The proof of the second one is similar
to that of Lemma 4.2.

Denote by B the set of all configurations η which do not belong to W(−1) and which
can be reached from −1 by self-avoiding paths γ = (−1 = η0, η1, . . . , ηp = η) such that
µβ(ηk) ≥ µβ(σ ∗), 0 ≤ k ≤ p, for some σ ∗

∈ W(−1). All these configurations are obtained
from −1 by flipping at most n0(n0+1) negative spins. Note that all neighbors ξ of a configuration
η ∈ B which do not belong to B have measure µβ(ξ) < µβ(σ ∗).
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Consider the function f : Ω → [0, 1] defined as follows. Set f (−1) = 1, f = 1 on
B, f = 1/( j + 1) on W j (σ ) and f = 0 elsewhere. By the definition of capacity and by
the definition of the function f, capβ({−1}, {+1}) ≤ Dβ( f ) = µβ(σ ∗){(2/3)|W2(−1)| +

(1/2)|W1(−1)|} + o(β), where o(β) ≺ µβ(σ ∗). This proves the upper bound.
To prove the lower bound, recall that the function f : Ω → R which minimizes the Dirichlet

form under the constraint that f (−1) = 1, f (+1) = 0 is the hitting time gβ(σ ) = Pβ
σ [T−1 <

T+1].
Denote by A the set of all neighbors ξ of W(−1) which are obtained from a configuration

η ∈ W(−1) by either flipping the positive spin surrounded by three negative spins or by flipping
a negative spin surrounded by two positive spins. By the definition of the Dirichlet form,

capβ({−1}, {+1}) = Dβ(gβ) ≥

−
η∈W(−1),ξ∈A

Gβ(η, ξ)[gβ(ξ) − gβ(η)]2.

It follows from Corollary 8.3 that gβ(ξ) converges to 0 (resp. 1) as β ↑ ∞ if ξ is a configuration
obtained from a configuration in W(−1) by flipping a negative spin surrounded by two positive
spins (resp. by flipping the positive spin surrounded by three negative spins). On the other hand,
since gβ is harmonic and since a configuration η ∈ W j (−1) jumps to configurations in A, where
the asymptotic behavior of gβ is known, at rates of order 1, and jumps to other configurations at
rate o(β), gβ(η) converges, as β ↑ ∞, to 1/( j + 1) if η ∈ W j (−1). This proves the lower bound
since Gβ(η, ξ) = µβ(σ ∗) for η ∈ W(−1), ξ ∈ A. �

We are now in a position to prove Theorem 3.2 which relies on Theorem 7.1 and the
strategy presented in Remark 7.2. Up to this point we have proved assumption T at level
n0. In view of the asymptotic dynamics of the trace process σ

β,n0
t described in Theorem 3.1,

there are only two (n0 + 1)-metastates, {−1} and {+1}. By Theorem 7.1 and by Lemma 9.1,
({−1}, {−1} ∪ ∆o

n0+1, −1) is a valley for the trace process σ
β,n0
t of depth eβc(h)θ(−1)−1. A

computation similar to that presented in Lemma 9.1 shows that ({+1}, {+1} ∪ ∆o
n0+1, +1) is

a valley for the trace process σ
β,n0
t whose depth is of magnitude larger than that of the valley

({−1}, {−1}∪∆o
n0+1, −1). Recall that θβ(n0 + 1) = eβc(h) and note that we may identify the set

Sn0+1 with the singleton {−1}.

Since the state space of the trace process σ
β,n0+1
t is a pair, by Theorem 7.1, by the explicit

computation of the depth of the valley ({−1}, {−1} ∪ ∆o
n0+1, −1) and by Lemma 10.2, the

speeded-up trace process σ
β,n0+1
tθβ (n0+1) converges to the Markov process on {−1, +1} in which +1

is an absorbing state and which jumps from −1 to +1 at rate θ(−1). The second assertion of
Theorem 3.2 also follows from Theorem 7.1. �

10. General results

We state in this section some general results on metastability of continuous time Markov
chains used in the previous sections. We assume that the reader is familiar with the notation and
terminology of [2].

Fix a sequence (EN : N ≥ 1) of countable state spaces. The elements of EN are denoted
by the Greek letters η, ξ . For each N ≥ 1 consider a matrix RN : EN × EN → R such that
RN (η, ξ) ≥ 0 for η ≠ ξ, − ∞ < RN (η, η) ≤ 0 and

∑
ξ∈EN

RN (η, ξ) = 0 for all η ∈ EN .

Let {ηN
t : t ≥ 0} be the minimal right-continuous Markov process associated with the jump

rates RN (η, ξ) [22]. It is well known that {ηN
t : t ≥ 0} is a strong Markov process with respect
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to the filtration {F N
t : t ≥ 0} given by F N

t = σ(ηN
s : s ≤ t). Let Pη, η ∈ EN , be the probability

measure on D(R+, EN ) induced by the Markov process {ηN
t : t ≥ 0} starting from η.

Consider two sequences W = (WN ⊆ EN : N ≥ 1), B = (BN ⊆ EN : N ≥ 1) of subsets of
EN , the second one containing the first and being properly contained in EN : WN ⊆ BN $ EN .
Fix a point ξ = (ξN ∈ WN : N ≥ 1) in W and a sequence of positive numbers θ = (θN : N ≥ 1).

Lemma 10.1. Assume that the triple (W , B, ξ) is a valley of depth θ with attractor ξ . Let
C = (CN ⊂ EN : N ≥ 1) be a sequence of sets such that:
(1) CN ∩ BN = ∅.
(2) For every δ > 0,

lim
N→∞

sup
η∈CN

Pη


1
θN

T(B∪C )c > δ


= 0. (10.1)

Then, the triple (W , B ∪ C , ξ) is a valley of depth θ with attractor ξ .

Proof. We need to check the three conditions of [2, Definition 2.1]. Since (BN ∪ CN )c
⊂ Bc

N ,
condition (V1) is clearly fulfilled.

To prove (V3), decompose the event T(B∪C )c (∆ ∪ C ) > δθN according to whether TC <

T(B∪C )c or TC > T(B∪C )c . In the latter case, T(B∪C )c (∆ ∪ C ) = TBc (∆), so for every point
η = (ηN

: N ≥ 1) in W ,

lim sup
N→∞

PηN


1
θN

T(B∪C )c (∆ ∪ C ) > δ, TC > T(B∪C )c


≤ lim

N→∞
PηN


1
θN

TBc (∆) > δ


= 0,

where the last identity follows from the fact that the triple (W , B, ξ) is a valley and from
condition (V3) in the definition of a valley. On the other hand, since on the set TC < T(B∪C )c ,

T(B∪C )c (∆ ∪ C ) =

∫ TC

0
1{ηN

s ∈ ∆N ∪ CN } ds +

∫ T(B∪C )c

TC

1{ηN
s ∈ ∆N ∪ CN } ds

=

∫ TBc

0
1{ηN

s ∈ ∆N } ds +

∫ T(B∪C )c

TC

1{ηN
s ∈ ∆N ∪ CN } ds,

by the strong Markov property,

PηN


1
θN

T(B∪C )c (∆ ∪ C ) > δ, TC < T(B∪C )c


≤ PηN


1
θN

TBc (∆) > δ/2



+ sup
η∈CN

Pη


1
θN

∫ T(B∪C )c

0
1{ηN

s ∈ ∆N ∪ CN } ds > δ/2


.

The right hand side of this inequality vanishes as N ↑ ∞ by hypothesis (10.1) and by the fact
that the triple (W , B, ξ) is a valley.

Putting together the two previous estimates, we obtain that for every δ > 0 and every point
η = (ηN

: N ≥ 1) in W ,

lim
N→∞

PηN


1
θN

T(B∪C )c (∆ ∪ C ) > δ


= 0.

This shows that the triple (W , B ∪ C , ξ) satisfies assumption (V3) for a valley with depth θN .
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It remains to check that the assumption (V2) for a valley is fulfilled. On the one hand, since
T(B∪C )c ≥ TBc and since the triple (W , B, ξ) is a valley of depth θN , for every t > 0 and every
point η = (ηN

: N ≥ 1) in W ,

lim inf
N→∞

PηN


1
θN

T(B∪C )c > t


≥ lim

N→∞
PηN


1
θN

TBc > t


= e−t . (10.2)

On the other hand, decompose the set {T(B∪C )c > tθN } according to the partition TC <

T(B∪C )c , TC > T(B∪C )c . In the latter set, T(B∪C )c = TBc , while in the first one, T(B∪C )c =

TBc + T(B∪C )c ◦ TC . Therefore, for every t > 0 and every point η = (ηN
: N ≥ 1) in W ,

PηN


1
θN

T(B∪C )c > t


= PηN

 1
θN

TBc > t, TC > T(B∪C )c


+ PηN


TBc + T(B∪C )c ◦ TC > tθN , TC < T(B∪C )c


.

By the strong Markov property, the second term on the right hand side is bounded above by

sup
η∈CN

Pη


T(B∪C )c > δθN


+ PηN


TBc > (t − δ)θN , TC < T(B∪C )c


for every δ > 0. Therefore, in view of the two previous displayed formulas, for every δ > 0,

PηN


1
θN

T(B∪C )c > t


≤ PηN


1
θN

TBc > t − δ


+ sup

η∈CN

Pη


T(B∪C )c > δθN


.

By (10.1), the second term on the right hand side vanishes as N ↑ ∞ for every δ > 0. Since the
triple (W , B, ξ) is a valley of depth θN , by condition (V2) for a valley, the first term converges
to e−(t−δ) as N ↑ ∞. Hence, letting δ ↓ 0 after N ↑ ∞, we obtain that for every t > 0 and every
point η = (ηN

: N ≥ 1) in W ,

lim sup
N→∞

PηN


1
θN

T(B∪C )c > t


≤ e−t .

This estimate together with (10.2) shows that the triple (W , B ∪ C , ξ) satisfies condition (V2)
for a valley with depth θN . �

Of course, this result is only interesting if the process may jump from BN to CN .

10.1. The positive recurrent reversible case

We assume from now on that the Markov process {ηN
t : t ≥ 0} is positive recurrent and

reversible with respect to its unique invariant probability measure denoted by µN .
Fix N ≥ 1 and a proper subset FN of EN . Denote by RFN (η, ξ) the jump rates of the trace

of the process {ηN
t : t ≥ 0} on the set FN . We refer the reader to [2, Section 6.1] for a precise

definition. For each pair A, B of disjoint subsets of FN , denote by rFN (A, B) the average rate at
which the trace process on FN jumps from A to B:

rFN (A, B) =
1

µN (A)

−
η∈A

µN (η)
−
ξ∈B

RFN (η, ξ).
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We claim that

rFN (A, B) ≤
capN (A, B)

µN (A)
, (10.3)

where capN (A, B) stands for the capacity between A and B for the process {ηN
t : t ≥ 0}. Indeed,

denote by R A∪B the jump rates of the trace of {ηN
t : t ≥ 0} on A ∪ B. By [2, Corollary 6.2],

R A∪B(η, ξ) ≥ RFN (η, ξ) for every η, ξ ∈ A ∪ B, η ≠ ξ . Hence, by definition of the average
rates and by [2, Lemma 6.7],

rFN (A, B) =
1

µN (A)

−
η∈A

µN (η)
−
ξ∈B

RFN (η, ξ) ≤ rA∪B(A, B) =
capN (A, B)

µN (A)
,

which proves (10.3).
Fix a finite number of disjoint subsets E 1

N , . . . ,E κ
N , κ ≥ 2, of EN : E x

N ∩E
y
N = ∅, x ≠ y. Let

EN = ∪x∈S E x
N and let Ĕ x

N := EN \E x
N . Denote by rN (E x

N , E
y
N ) the average rates rEN (E x

N , E
y
N ) and

denote by PN (η, x, y), 1 ≤ x ≠ y ≤ κ, η ∈ E x
N , the probabilities of hitting among metastates:

PN (η, x, y) := Pη


TE y = TĔ x


.

The next result shows that if the average rates appropriately rescaled converge, their limit can be
expressed in terms of the depth of the metastates and their hitting probabilities.

Lemma 10.2. Suppose that for each 1 ≤ x ≤ κ there exists a point ξ x = (ξ N
x : N ≥ 1) in E x

such that the triple (E x , E x
∪ ∆, ξ x ) is a valley of depth ΛN (x)−1 and such that

lim
N→∞

sup
η∈E x

N

capN (E x , Ĕ x )

capN (ξ N
x , η)

= 0.

Suppose, furthermore, that there exists a sequence (θN : N ≥ 1) for which the mean rates,
the depth and the jump probabilities converge: for any 1 ≤ x ≠ y ≤ κ and any sequence
(ηN

: N ≥ 1) in E x ,

lim
N→∞

θN ΛN (x) = Λ(x), lim
N→∞

PN (ηN , x, y) = P(x, y)

lim
N→∞

θN rN (E x , E y) = r(x, y).

Then, r(x, y) = Λ(x) P(x, y).

Proof. Note that we assumed that the limit P(x, y) does not depend on the sequence (ηN
:

N ≥ 1).
It follows from [2, Theorem 2.7] that for any 1 ≤ x ≤ κ and any sequence (ηN

: N ≥ 1)

in E x , under the measure PηN the speeded-up process X N
t = Ψ(ηN

tθN
) converges to a Markov

process on {1, . . . , κ} with jump rates r(y, z), starting from x . In particular, if we denote by
τ N

1 the time of the first jump of X N
t , τ N

1 converges to an exponential time of rate λ(x) =∑
y≠x r(x, y) and X N

τ N
1

converges to a random variable with distribution p(y) = r(x, y)/λ(y).

On the other hand, since the triple (E x , E x
∪ ∆, ξ x ) is a valley of depth ΛN (x)−1, τ N

1 ΛN (x)

converge to a mean 1 exponential time and so Λ(x) = λ(x). Moreover, PηN [X N
τ N

1
= y] =

PηN [TE y = TĔ x ] converges to P(x, y), so P(x, y) = p(y), which proves the lemma. �
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