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Let A (: Z [ z l , . , . ,  w,r] be a finite set. An A-invariant cylindrical algebraic decompo- 
sition (cad) iz a certain partitlon of r.dlmensi~mM euclidean space E r into semi-algebralc 
cells such that tile value ,*f each Ai 6 A has constant sign (positive, negative, or zero) 
throug|umt each cell. 'l'wt* cells are adjacen~ if their union is connected. Recently a number 
of math.de haw: been glw~n fi)r augmenting (3olllns j cad construction algorithm (1975)1 
so that in addition to specifying the cell~ that comprise a ead~ it identifies the pairs of 
adjacent cells. Assuming the availability of such an ad,iacency algorithm, in this paper we 
give a modified cad construction algorithm based on the utillzatloa of clusters of cells in a 
cad (a cluster is act,  llection of cells whose union is connected). Preliminary observations 
indicate that the 11ew algorithm can be significantly more efficient in some cases than the 
original, although in other examples it is somewhat less efficient. 

1 I n t r o d u c t i o n  

Recently a number  o f  me thods  have been given for augment ing  the cad  cons t ruc t ion  
algori thm (Collins, 1975), so t ha t  in addi t ion  to specifying the cells t ha t  comprise  a 
cad, it identifies the pairs of ad jacen t  cells (see e.g. Arnon et al., 1988~ Prill, 1986, 
Kozen & Yap 1985, Schwartz  & Shar i r  1983). A cluster of cells in a cad is a col lec t ion 
of cells whose union is connected.  Assuming the availabil i ty of a n  adjacency a lgor i thm,  
in this paper  we give a modif ied cad construct ion algori thm based  on the u t i l i za t ion  
of clusters. The  key idea  is tha t ,  as a cad of  E i-~ is extended to  a cad of  Ei~ ce r t a in  
(possibly expensive) c o m p u t a t i o n s  are performed only once for each cluster,  ra ther  t h a n  
once for each cell as in the or iginal  algori thm. Offsetting this saving is the ex t ra  cost of 
adjacency compu ta t i on .  P re l imina ry  observations indicate  t ha t  the  new a lgor i thm can  
be significantly more efficient in some cases than  the  original, a l though in other  e x a m -  
ples it is somewhat  less efficient. In this paper  we give both  a general f ramework for 
cluster-based cad  cons t ruc t ion ,  within which any available ad jacency a lgor i thm can be 
used, and a specific c lus te r -based  cad a lgor i thm that  uses the 2-space and 3-space ad j a -  
cency a lgor i thms of Arnon  et al. (1984b, 1988). The specific a lgor i thm we give has the  
following propert ies:  (1) it requires no coordinate  changes, and (2) in any cad of  E ~, E 2, 
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or E 3 that it builds, the boundary of each cell is a (disjoint) union of  lower-dimensional 
cells. The particular clusters that occur in cluster-based cad cons t ruc t ion  are of  math- 
ematical interest in their own right. For example, if A consists of  a single element F, 
then the (unions of the) v-space clusters are typically the connected componen t s  of the 
hypersurfaee F = 0 and its complement. 

In this Introduction we sketch the broad outlines of the clustering s t ra tegy  for cad 
construction, give an outline of the paper, and review prior related work. 

1.1 C a d  g r a p h s  a n d  c l u s t e r s  

Let us begin our discussion of clustering by recalling terminology f rom Arnon e~ al. 
(1984a, 1984b, 1988). We say that  a connected subset of E" is a region. If  A = 
(A1,..., A=) is a subset of I,  = Z [ z l , . . . ,  z,], if R is an A-invariant  region in E" (i.e. 
the value of each Ai E A has constant sign ( - 1 ,  0, or +1) th roughout  R), and ifcrl is the 
sign of Ai on R, then we say that  the ordered n-tuple cr --- (or1, ..., o'n) is the signature of 
R with respect to A (and also, the signature of A on R). A cell triple for a cell c of an 
A-invariant cad is a triple (I, o', S), where I is the cell index o r e  (cell indices are defined 
in Section 4 of Arnon et al., 1984a), ~ is the signature of the cell (with respect to the 
set A of input polynomials)~ and S is a sample point for c. We t empora r i ly  proceed 
as though sample points are represented as in Arnon et al. (1984a, 1988); we will have 
more to say about their representation later. 

Given A C I , ,  a graph representation for an A-invariant cad D of E ~, or cad graph~ 
is a quintuple G = (A, B, V, E, G'), defined as follows. B is a basis (as defined in Arn0n 
eL al., 1988) for prim(A), such that  D is a basis-determined cad with basis B. (Recall 
that prim(A) the set of primitive parts of those elements of A which have positive 
degree). V is a set of cell triples for the cells that  comprise D. E is a set of unordered 
pairs of (distinct) elements of V, obeying the following condition: if (el ,  c2) is an element 
of E, then cells cl and e2 of the cad D are adjacent (thus (V, E)  is a cer ta in  undirected 
graph). For any given pair of cells cl and c2 of D, the converse m a y  or m a y  not hold. 
If for every pair of cells cl and c2 o l D  the converse does hold, i.e. (c l , c2)  E E if and 
only if c 1 and c2 are adjacent in D, then we say that  G is a full graph  for ./9; otherwise, 
G is partial. The reader will notice a certain abuse of notation here: we freely identify 
a cell c with the triple that  represents it. I f  v > 1, then G' is a g r aph  representation 
for the cad D'  of E ' - 1  induced by D, and G' = @ when v = 1. Typical ly  the cad 
graph representations we work with are partial. In case G is full, the undirected graph 
(V, E) has been called the connectivity graph of D (Schwartz & Sharir ,  1983, p. 320). 
We assume the availability of standard graph algorithms, e.g. dep th- f i r s t  search for 
connected components; see e.g. Aho et al. (1974). 

It is appropriate to check that  a graph representation for a cad supplies  the infor- 
mation about that cad called for at the beginning of Section 4 of Arnon  eg al. (1984a). 
It was stated there that a description of a cad must inform one of the n u m b e r  of cells in 
the cad, how they are arranged into stacks, and the signature of  each cell with respect 
to the set of input polynomials. Obviously a cad graph gives one the n u m b e r  of  cells 
and each cell's signature. As detailed in Arnon e~ al. (1984a), the indices of the cells 
comprising a cad tell one how those cells are arranged into stacks. 

Given A C I~, let G denote a full graph for an A-invariant cad D. It  is easy to show 
that the vertices of any connected subgraph of G correspond to a collection of cells of 
D whose union is a region in E ' .  Turning this around, we say t ha t  a collection C of 
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cells of D is a cluster' (of D) if the subgraph of G induced by (7, is connected. Clearly 
C is a chister if and only if the union of C is a region. The dimension of a cluster is 
the dimension of the largest cell in it. A partition of (the set of ceils of) a cad D into 
clusters is called a clustering of D. Obviously any D can be clustered in many ways. 

Assume now that G is either partial or full, and suppose given an equivalence relation 
R on the cells of D. Then R induces a clustering of D, which can be made explicit 
by computing the connected components of G subject to the constraint that we only 
"notice" an edge during the computation if the cells it joins belong to R. In this paper, 
we are exclusively interested in one particular equivalence relation, namely the relation 
to which a pair of cells belongs if and only if the two cells have the same signature (with 
respect to the set A of input polynomials). We call this the sign-invariance relation. (We 
will henceforth be using the term "sign-invariant" quite often in place of "A-invariant ' ,  to 
denote the condition that "each input polynomial is sign-invariaut", without mentioning 
the particular set A of input polynomials). We call a clustering induced by the sign- 
invariance relation in a graph representation for a cad D a sign-invariant clustering of 
D, and the clusters which comprise it sign-invariant clusters. 

Given two clusterings Ft and F2 of a cad D, we say that P1 is finer than I'2, if each 
cluster of P1 is a subset of some cluster of F2. Equivalently, we say that P~ is a refinement 
of P2, and that t'2 is coarser than Ft. We say that a sign-invariant clustering of D is 
maximal if it is the coarsest possible sign-invariant clustering of D; its elements are then 
mazimal sign-invariant clusters. Given A, we call the maximal connected A-invariant 
subsets of E T the A-components of E r, or in general the sign-invariant components of 
E r (with respect to this A, of course). Note that this last definition is independent of 
any particular cad of E r. Clearly a sign-invariant clustering of D is maximal if and only 
if the union of each of its clusters is a sign-invariant component of E ' .  If G is a full 
graph for D, then clearly the sign-invariant connected components of G correspond to 
the maximal sign-invariant clusters of D, however if G is partial, this need not be the 
c a s e ,  

If G is partial, then an equivalence relation on the cells of D still induces a clustering 
of D when (just as above) we compute connected components in the cad graph under 
the constraint that we only notice edges between equivalent cells. Such a clustering is 
in general finer than the clustering we get with the same relation applied to a full G, 
since the edges in a partial G are a subset of the edges in a full G. This observation 
is important, because in general we will build clusterings using partial graphs, and we 
will be interested in how closely these elusterings correspond to the clusterings that the 
same equivalence relation induces in a full graph. 

Let us now look at some examples of the notions we have introduced. Consider the 
sample cad D from Section 5 of Atnon et al. (1984b), which we show in Fig. 1. Fig. 2 
shows a full graph for D. The figure uses the convention that 0-cells are indicated as solid 
vertices, 1-cells as half-filled vertices, and 2-cells as unfilled vertices. Edges satisfiying 
the sign-invariance relation are shown as solid lines, and those not are shown as dotted 
lines. We see that there are 15 maximal sign-invariant clusters. Fig. 3 shows a partial 
graph for D. Again, edges satisfiying the sign-invariance relation are drawn as solid 
lines, and those not satisfiying it are drawn as dotted lines. For this graph, we get 19 
sign-invariant clusters, many of which are not maximal. 
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Figure 3: Partial graph. 

1 .2  C l u s t e r - b a s e d  c a d  c o n s t r u c t i o n  

Let us now describe the basic idea of cluster-based cad construction. Essentially what 
we do is make the extension of a cad of E I-1 to E i more efficient, by building stacks over 
sign-invariant cIusters in E I-I ,  rather than over individual cells in E I-1. This general 
strategy requires the availability of adjacency algorithms, but does not require the use 
of any particular adjacency algorithm. We now explain in detail the formal basis for the 
strategy. 

Assume given A C I, .  In Section 3 of Arnon et al. (1984a), a map PRO J, which 
takes a subset of Ir to a subset of I~-1, is defined, and it is proved (Theorem 3.4) 
that over any PROJ(A)-invariant region in E ~-1, there exists an A-invariant stack. In 
applying this Theorem 3.4 to extend a cad of E ' - I  to a cad of  E T in algorithm CAD 
of Arnon et al. (1984a), the PROJ(A)-invariant regions in E ~-1 are the cells of the 
induced cad of E "-1. However, given an arbitrary PROJ(A)-invariant decomposition 

of E ~-1, Theorem 3.4 tells us that if we have a sample point for each region o f / ) ,  
then we can extend it to a decomposition D* of E" consisting of  the stacks over regions 
o f / ) ,  by exactly the steps used in CAD for extension over a single cell. Note that D* 
is not necessarily cylindrical in the sense of Arnon et al. (1984a), i.e. it may not be the 
case that b consists of stacks over the regions of some decomposition of E "-2. However, 
it is the case that i f / )  is algebraic, i.e. its regions are semi-algebraic sets, then so is D*. 

Suppose now that for some A C I~, we have (a graph for) a PROJ(A)-invariant 
cad D' of E ~-1, and a clustering of it into PROJ(A)-invariant clusters. Then forming 
the regions we ~et by taking the union of each cluster, we get a PROJ(A)-invariant, 
decomposition D of E T--I. As above, let us extend /) to a decomposition D* of E ~ by 
building stacks over f)'s regions, and let D denote the (A-invariant) cad of E r that  we 
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get by extending D ~. Then it is not hard to see t h a t  each element  of  D* is the union 
of certain elements of D. In particular, if C is a c lus te r  of D ~, and if 1?. is the union 
of C, then for any i _> 1, the i th element of the s t ack  over R (this stack is part of D*) 
is the union of the i th elements of the stacks over t h e  cells o f  C (these stacks are each 
part of D). Furthermore, if cells cl and c2 of C are adjacent  elements of  D l, then for 
any i > 1, the i th element of the stack over el, and t h e  i *h element of  the stack over c2, 
are adjacent elements of D. We call such clusters and  adjacencies in E r induced clusters 
and induced adjacencies, because they are "induced" in a cad D of  E" by a cluster or 
adjacency in the cad D ~ of E ' - I .  

Given D ~, a PROJ(A) - invar ian t  clustering of D I, and a sample  point  for (one cell 
in) each cluster, our observations above imply that  we can build D as follows. For each 
cluster, we determine a stack over its union R using i ts  sample  point,  as jus t  discussed. 
Having determined the number of elements, i.e. sect ions and sectors, of  this stack, and 
assuming that we have determined the signature of each  element of the stack with respect 
to A, we next look to see which cells of D ~ comprise (7 (i.e. wha t  their cell indices are), 
and we know immediately (i.e. we can write down the cell indices and signatures for) the 
cells of D which comprise each element of the stack over  R. When we have processed 
all clusters of D ~ in this way, we will have compiled the indices and signatures of all 
cells of D. Furthermore, for each cluster C of D I, each  adjacency {c, d} of  elements of 
C induces an adjacency between the i th elements of the  stacks over c and d. Clearly a 
graph for D which contains exactly these induced adjacencies  gives rise to an induced 
clustering of D (into induced clusters). 

Clearly the induced adjacencies of D are s ign-invariant  adjacencies. They  are likely 
to be only a proper subset of the set of all of D's  s ign- invar iant  adjacencies, however. 
In particular, if we do a sign-invariant components c o m p u t a t i o n  in the graph for D in 
the form that it has after the steps we have described,  the s ign-invariant  clusters we 
construct are likely not maximal. To get the most benef i t  f rom the use of  clusters, we 
would like to have the largest possible sign-invariant clusters.  Hence, the next  step of our 
general strategy is to build larger sign-invariant clusters  than those given to us by the 
induced adjacencies. As one might guess, we do this b y  comput ing fllrther adjacencies 
in E r using the adjacency algorithms that  we assume are  available to us. 

Let us consider a simple example of these ideas. L e t  A = {u 2 + z 2 -t- y2 _~_ z2 _ 1}, 
i.e. A consists of the polynomial which defines the ( three-d imensional )  unit  sphere in 
4-space. We have P R O J ( A )  = {z 2 + y 2 + ~ 2 - 1 } ,  P R O J 2 ( A )  = {y2 + z ~ _ l } ,  and 
P R O J a ( A )  = {:~2 _ 1}. The cad of ].-space clearly h a s  five cells; recall f rom Section 4 
of Arnon a at. (1984a) that we write the indices for these  cells as ( t ) ,  (2), (3), (4), (5). 
The maximal sign-invariant clusters for this cad of E 1 are jus t  the five singleton sets. 
In 2-space, we have 13 cells, which can be parti t ioned in to  three max ima l  sign-invariant 
clusters: the unit circle (consisting of four cells, wi th  indices (2,2), (3,2), (3,4), and 
(4,2)), its interior (consisting of one cell, with index (3,3)), and its exter ior  (consisting 
of eight cells, with indices (1,1), (2,1), (2,3), (3,1), (3,5), (4,1), (4,3), and (5,1)). The 
discussion of the previous paragraphs tells us that  to de te rmine  the cad of  3-space, it 
suffices to have a sample point for each of these three 2-space clusters. When  we extend 
over the unit circle, for example, we get a stack in E a consisting of three elements (i.e. 
two sectors and one sections), that corresponds to four s tacks in the cad of 3-space that 
each have three elements. The adjacencies among the cells in E 9" that  comprise the unit 
circle induce certain adjaeencies (and three clusters) a m o n g  the cells of  these four stacks 
in 3-space. Similarly, extending into E z over the interior  of the unit circle in E 2, we get 
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a stack with tive elements, and extending over the exterior of the circle, a stack in E a 
with one element. The latter stack corresponds to eight one-element stacks, with the 
obvious induced adjacencies and a single induced cluster, of the cad of 3-space. Clearly, 
the induced clusters in 3-space that we have described are not maximal sign-inwriant 
clusters. Using a 3-space adjacency algorithm, we can compute additional adjaeeneies 
among the 3-space cells that enable us to obtain the three maximal sign-invariant clusters 
that there clearly are in 3-space (which correspond to the unit sphere, its interior, and 
its exterior). We can then build stacks in 4-space over these three 3-space clusters to 
determine a sign-invariant cad of 4-space. 

Altogether the three steps of the cluster-based cad algorithm are: (1) If r > 1, call 
the algorithm recursively to build a graph for the induced cad of r -  1 space, (2) If r > I, 
extend, over the maximal sign-invariant clusters of the induced cad, to a graph for the 
cad of r-space, or if r = 1, build a graph directly, (3) Construct additional adjacencies 
in r-space. The simplest, trivial, case of cluster-based cad construction is the "original" 
cad algorithm, i.e. no adjacency computation at all, which means that we generally have 
just singleton clusters in the cad's of E l, E 2, ... that we build. 

1.3 O u t l i n e  o f  t h e  p a p e r  a n d  p r i o r  w o r k  

Sections 2-4 fill in the details of the cluster-based cad construction strategy, by partition- 
ing it into algorithms of four kinds: basis (Section 2), projection (Section 2), extension 
(Section 3), and adjacency (Section 4). Section 3 begins by defining several possible 
representations for sample points in cad graphs. This is fundamental material for this 
paper: careful management of sample point representations is an important reason why 
cluster-based cad construction is more efficient than previous cad algorithms in those 
cases that it is. Section 4 presents the particular adjacency algorithms for E 2 and E a 
that we currently use; these rely on certain adjacency subalgorithms from Arnon et al. 
(1984b) and Arnon el al. (1988). Section 5 presents a main algorithm CLCAD for 
cluster-based cad construction, which has procedure parameters for the four key subal- 
gorithms. Also in Section 5 we specify the values of these procedure parameters that  
we use in our current implementation of CLCAD. Section 6 reports the comparative 
performance of algorithms CLCAD and CAD on a number of examples. 

The work we report in this paper was done between 1979 and 1981. The use of 
adjacencies and clusters in cad construction was presaged by Arnon (1979), where it was 
shown that incidence of cells is decidable. A first version of CLCAD was presented, and 
some examples of its use and comparative performance with CAD given, in Arnon (1981). 
Applications of cluster-based cad construction can be found in Arnon & McCallum 
(1988), and Arnon (1988). 

Defining formula construction is an important part of the cad algorithm, especially for 
applications to quantifier elimination (see e.g. Arnon & Mignotte, 1988). Constructing 
a defining formula for each cell of a cad is easily accomplished in cluster-based cad 
construction, by constructing such formulas for certain cells, and then inferring formulas 
for the remaining cells by much the same inference process as used for induced clusters 
and adjacencies in Section 1.2. See Arnon (1981) or Collins (]975) for details of Collins' 
original algorithm for cell defining formula construction. 

As mentioned above, in the present paper we only make use of one equivalence 
relation of cells, namely the sign-invariance relation. The order-invariance relation of 
McCallum (1988) is another equivalence relation of cells in a cad whose use for duster- 
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based cad construction is attractive. 

2 Basis, Project ion,  and Base steps 

In this Section we discuss the first few steps of the cluster-based cad construction algo- 
rithm. We have relatively little to say about them. The reader may wish either to look 
ahead to algorithm CLCAD in Section 5, or skip this Section for the moment .  

In general, it doesn't matter  what type of basis (e.g. coarsest or finest squarefree 
basis) our basis procedure computes (see Arnon et. al., 1988, and Collins, 1975, for 
basis-related definitions). The actual projection operator we current ly  use is determined 
by the adjacency algorithms of Arnon e~ hi. (1984b, 1988) t h a t  we use (cf. Section 
4). We want to build the same cad's as these algorithms do. Hence ra ther  than use 
PROJ(A) as a projection operator, as we did in Section 1, we henceforth assume that 
we have computed a basis B for p~im(A), and that  we use PROJ(B)  U con~(A) as our 
projection operator (eon~(A) is the set of non-zero non-unit contents  of  elements of A; 
see Arnon et hi., 1988, for futher discussion). For r _< 3, we could use MeCallum (1988) 
projection instead; it would then be necessary that  our basis procedure  compute  a finest 
squarefree basis. The projection operator would then be the P opera tor  as defined in 
McCallum (1988). The resulting cad's of E r, 1 < r < 3, would still have the boundary 
property, i.e. the boundary of each cell would be a (disjoint) union of lower-dimensional 
cells, and i f r  > 1, then the induced cad o f E  ~-1 would also have the bounda ry  property. 

The base step of our cad algorithm, i.e. the algorithm for cons t ruct ion  of cad's of 
E t, is essentially that of Arnon e~ al. (1984a). It is easy to make the graph for the cad 
of E t full, since we trivially know what its adjacencies are. Th e  reader may consult 
algorithm CLCAD in Section 5 for details of the base step. 

3 Extension step 

Our task in this section is to develop the method (algorithm Ex~endCadClusters of 
Fig. 6) that we use for the extension step of cluster-based cad construct ion.  We begin 
by considering the issue of sample point representation. Assume th roughout  this section 
that  our cad input polynomials have r _> 1 variables. 

So far we have assumed that cell sample points are represented as in Arnon e~ al. 
(1984a, 1984b, 1988). In fact, cell sample points in the cluster-based cad algorithm may 
have one of three representations: (a) uull (no information), or (b) ez~ended, consisting 
of  a real algebraic number c~, an r - 1 tuple of  elements of Q(c~), a nonzero  squarefree 
polynomial g(z) e Q(a)[~], and an isolating interval for a (real) root of g(~)  (this root 
is the r tu coordinate of the sample point), or (c) primitive, consisting of  a real algebraic 
number a (the primitive element) and an r-tuple of elements of  Q(a). 

In fact~ this extended representation is present in passing in the extension step of 
the cad algorithms in Arnon e~ al. (1984a, 1984b, 1988), a l though ul t imately  all cell 
sample points become primitive in these algorithms. To be specific, when we have 
a sample point for the base of a stack, and we isolate the real roots of  a squarefree 
univariate algebraic polynomial to determine the sections of the stack, the base sample 
point, the algebraic polynomial, and each isolating interval for one of its roots  give us an 
extended sample point representation for a section of the stack. As described in Section 
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5 of Arnon el al. (1984a), we can use the NORMAL and SIMPLE algorithms of Loos 
(1982) to convert an extended representation to a primitive one. This conversion process 
has been observed to often be expensive, and avoiding it whenever possible is a major 
goal of the cluster-based cad algorithm. Working with extended rather than primitive 
representations whenever possible is one step towards that goal; another such step is to 
make do with null sample points, whenever possible, which we also will do. 

As we have noted, however, it is a required of a cad algorithm to construct input 
polynomial signatures for each of its cells. Previous cad algorithms (such as those in 
Arnon ei al., 1984a, 1984b, 1988) have done so by evaluating the input polynomials at 
primitive cell sample points. We now show that it is possible to compute the signature 
(with respect to the input polynomials) of a cell in a basis-determined cad of E r given 
an extended representation for the cell's sample point. In fact, the method we give could 
be used in the original as well as the cluster-based cad algorithm, to avoid extended-to- 
primitive conversions of section sample points in dimension r, i.e. the highest dimension. 

We proceed in two steps. First, we show how to get the signatures of cells in E '  
with respect to the basis polynomials from extended representations for their sample 
points. Second, we infer input polynomial signatures from these basis signatures plus 
signatures for the contents of the input polynomials. Here is a sketch of the first step. 
Suppose that r > 2, that s is a cell o f a  cad D o r E  ~, and thai; c is the unique cell of the 
induced cad D ~ of E "  l for which s C Z(e). Suppose that we have already determined 
(i.e. found thc numl)cr of sections of) the stack S(c) C D, by isolating the real roots of 
some suitable g(m~) C Q(~)[;~]. Thus, about each real root of g(zr), we have an open 
isolating interval with rational number endpoints. For each basis polynomial Bi, we 
compute the greatest squarefree divisor d(z,)  of Bi(a, z,) ,  d(~,) has the same roots as 
B~(a, z,),  but only simple roots; see Kaltofen (1982) for more information on gleatest 
squarefree divisors. Since we are assuming S(c) to be B-invariant, any root of B~(o~, z,)  
is a root of g(,~r), tIence for any section s of S(e), Bi vanishes on s if and only if d has 
opposite signs at the endpoints of the isolating interval for the unique root o fg(z r )  that 
corresponds to s. If B; doesn't vanish on s, then it has the same sign on s, on the sector 
immediately above s, and on the sector immediately below s. We can determine the 
sign of Bi on sectors of S(c) as follows. The endpoints of the isolating intervals for the 
roots of g(a~r) give us sample points of the form < a,b >, b rational, for the sectors of 
S(c) (much as we got sample points for the sectors of stacks in Section 5 ofArnon e~ at., 
1984a). By evaluating each Bi(a, b), we determine the sign of B; on each sector of S(c). 
Fig. 4 gives the algorithm BasisSignatuvesOverCell that embodies this strategy. The 
map gsfd in the algorithm is "greatest squarefree divisor". 

To infer input polynomial signatures from basis signatures, we need only a few more 
observations. Suppose C(z) = conient(Ai). If C(a)  = 0 then A; vanishes on every 
element of S(c), and we are done. If not, we use the sign of content( Ai ), and the 
factorization of pp(Ai) (pp(Ai) denotes the primitive part of Ai) as a power product of 
basis polynomials, to "infer" the sign of Ai on each element of the stack. Algorithm 
InputSignatuvesOvevCell in Fig. 5 has the details. 

With algorithm InputSignatuvesOverCell available to us, we have the following 
situation. We have no need to convert any extended sample point representations to 
primitive form in the cad of r-space. In dimensions less than v, we need primitive 
sample points for any cell or cluster that we are going to "extend over", i.e. build a 
stack over, as we extend our cad to the next higher-dimensional space. Thus the first 
step of E~tendCadClustevs is to compute the sign-invariant connected components of 
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*- B a s i s S i g n a t u r e s O v e r C e l l  ( B , p ,  J )  

Inputs G,ven A = (Al ,  ,A,~) C I~, r > 1, B = ( B , ,  ,B ,~ )  ,s a b a s i s  for  p r z m ( A ) ,  p = 
(p~, ~p~_l) ~s a pr imi t ive  sample  po in t  for a P R O J ( B ) - m v a n a n t  a n d  cont(A)-mvariant  cell c 
m a cad o f E  ~-1, 1 e each p. is an  e lement  of Q ( 7 )  for some rea l  a l g e b r m c  n u m b e r  7 I f r  = 1, 
t h e n p  = l b  and  c =  E ° J - -  (J1, . /2,  ,Jk)~ k > 0~ls  a h s t  of o p e n  i s o l a t i n g  in te rva l s  for the 
k real roots  )~1 < < A~ of some nonzero  u m v a r l a t e  real  p o l y n o m i a l  g = g ( x r ) ,  such that  for 
each 3, 1 < 2 _<: k, the  point  (pl,  ,p~_~, l : )  hes  on the  3 tu sec t ion  o f  a B - l n v a r l a n t  (and hence 
also A - m v a n a n t )  s tack  S(c)  over c 

Output E = (~1, , a ~ + l ) ,  such t h a t  a :  = (~rla,  , anna)  is the  ~xgna ture  of  ~he 2 °~ element 
of S(c) with respect  to B 

(1) [Do ~t] F o r ,  = 1, ,m,  do set h ( ~ )  ~- B,(p~,  ,p~_,, z~), set d(~,,) , -  gs /d(h(z , , ) ) ;  set 
d = 0 ff h = O, set p,,2~+~ ~- szgn(d) = s ,gn(leadzngCoef fzczent(d)) ,  set ¢r,,~a~ ~ ~- s~gn(h), 
for j = k , k - 1 ,  . , 1 d o  Let 4 = (u~,v,),  set p,,~j_~ <- szgn(d(u~)), ff p,,z$ ~ / p , ,~ , , ,  then 
o',,~j ~ O, and  tr,,=j_l e- szgn(h(uj)), else ~r,,2:_, , -  ~r,,~j e- o',,2j ~, [] 

F i g u r e  4 A l g o r i t h m  B a s l s S i g n a t u r e s O v e r C e l l  

T ~- I n p u t S i g n a t u r e s O v e r C e l l  (A,  B,p,  J)  

Inputs A = (A1, ,An)  C I~, r > 1, and  the  r e m a l m n g  i n p u t s  a rc  as  for  a lgori thm 

BaszsSzgnaturesOverCell  

Output T = (rl, .,-r~+~), such t h a t  ~'j = (fl,~, ,r,~.~) is the  s~gnature  of  t h e  j th  element  of 

S(c) with  respect  to A 

( l )  [Get bas,s s igna tures  ] ~ ¢- BaszsS~gnaturesOverCel l (B,p ,  J) 

(2) [Infer input  po lynomia l  s i g n a t u r e s ]  Reca l l  t h a t  we follow the  c o n v e n t m n  that  
slgn(content(F)) Is chosen to be  szgn(F), for any  F e Ir  For each  A,  E A, there  exist 

m S~. ' . For  z = 1, ,n, nonnega t lve  integers e,,1, . , e , ,~  such t h a t  A, = content(A,)  1-[~=1 e, ~. 
and  for ? = 1, ,2k + 1 do r,.j *- szgn(content(A,))l-[~=~ . . . . .  ~,,3 [] 

F i g u r e  5 A l g o r i t h m  I n p u t S i g n a t u r e s O v e r C e l l  
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G ~, and for each (i.e. for each sign-invariant cluster of DI), insure that at least one of its 
constituent cells has a primitive sample point. Needing a primitive sample point only 
for one cell in each sign-invariant cluster, rather than for each cell of the cad, is a key 
reason why the cluster-based cad algorithm is faster than the original cad algorithm in 
those cases that it is. For cad's of E a, however, the saving reali~.ed here in the extension 
step are somewhat offset by the fact that our current E 3 adjacency algorithm (given in 
Section 4) needs primitive sample points for certain additional cells of the induced cad 
of E 2. In general we should expect that adjacency algorithms may require us to perform 
certain addition extended-to-primitive conversions of sample point representations. 

Fig. 6 gives the complete algorithm EztendCadClusters. The reader will see that it 
is essentially a formalization of our discussion in Section 1.2. We say that a cad graph 
is initial if the "initial" adjaeencies are present in it, where these are (1) the intrast~ek 
adjacencies of each stack of that  cad, and (2) the induced adjacencies as defined in 
Section 1. Note that even though we use a basis B for pvlm(A) to determine the stacks 
of our cad's, E:~tend(/adClustevs constructs A-invariant clusters prior to extending. In 
general, A-invariant clusters will be coarser than B-invariant clusters, and we want the 
extend over the coarsest l)ossible clusters to minimize the number of primitive sample 
points that we need. 

Suppose v = 2. Since maxima[ sign-invariant clusters in a cad of E ~ each consist of 
a single cell, by Step (2.1) of EztendCadClusters, we see that we get primitive sample 
points for all 1-cells and all 2-cells, and an extended or primitive sample point for each 
0-cell, of the cad of E 9 that we build. 

4 Adjacency step 

For each i, the role of what we call the "a4jacency" subalgorithm of cluster-based cad 
construction is to add non-initial (interstack) adjacencies to the graph for the cad of E i. 
It is not necessary to actually have such an adjacency algorithm for each i. If we wish~ 
we need compute no adjacencies beyond initial adjacencies, for any value(s) of i <_ r. For 
example, since at present we only have implemented adjacency algorithms for i = 1, 2, 3, 
the adjacency step in our implementation of the cluster-based cad algorithm is currently 
null for i >_ 4. As might be expected, if we have a null adjacency algorithm for the cad 
of E i, then our graph for that cad is almost certainly partial, and the sign-invariant 
components of that graph give us a clustering of the cad that is almost certainly not 
maximal. 

In Fig. 7 we give our 2-space adjacency algorithm, which is an adaptation of algorithm 
CADA2 of Arnon et al. (1984b). Note that when r = 2, the maximal sign-invariant 
clusters in the induced cad (of 1-space) are just singleton clusters, i.e. the individual 
cells. Hence when r = 2 we construct all adjacencies of the cad of E ~ that we build, 
and so clearly the sign-invariant components of the graph for this cad correspond to 
maximal sign-invariant clusters of D. 

As for cells, we say that two (distinct) clusters (of a given clustering of a given cad) 
are adjacent if their union is connected. It is not hard to show that clusters CI and C2 
are adjacent if and only if there is a cell cl of C1, and a cell c2 of C2, such that el and c2 
are adjacent. We call an adjacency of cells belonging to different clusters an interclustev 
adjacency, whereas an adjacency of cells in the same cluster is an intracluster adjacency. 

One possible adjacency algorithm for E a would be to simply build (all interstack) 
adjacencies in E a over all intercluster adjacencies of the induced cad of the plane, using 
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G +- E x t e n d C a d C l u s t e r s  (A, B, G s, E z t e n d C e l l T o S t a c k )  

Inputs: A C IT. B C IT is a basis for przm(A).  G' = ( A ' , B ' , V ' , E ' , G " )  is a 
graph for a cad D'  of E ~-1 such that an A-invariant stack exists over each cell c of D I, 
EztendCel lToStaek(c~B' ,B;g ,  J , I , L )  is a procedure with the following specifications. For 
inputs: c is a cell in a basis-determined cad D'  of E ~- ' ,  r > 2. B '  C I~-1 is a basis for D'. 
B C I~ is a basis, such that each element of B is either delineable or nullified on c. For outputs: 
Let p be the sample point for c, and suppose the real algebraic n u m b e r  7 is a primitive element 
for p (see Amen et al., 1984a, for this terminology), g is a nonzero squarefree univariate poly- 
nomial g(z,) with coefficients in the field Q(7) whose real roots are in one-one correspondence 
with the sections of a B-invariant stack S over c. J is a list of isolating intervals  for the real 
roots of g. I is a list of cell indices for the elements of S (since we know the cell index of c, we 
know the radices of elements of S). L is a list of the intrastack adjaeeneies of S. 

Output: G = (A, B,  1~, E, G') is an initial graph for an A-invariant cad of E ~, 

(1) [Get sign-invariant clusters.] Do a sign-invariant connected components  computat ion in G', 
to get a certain sign-invariant clustering of D', 

(2) [Process each cluster.] Initialize V and E to the empty set. For each sign-invarlant cluster 
C of D', do the following steps (2.1) - (2.3). 

(2.1) [Build a stack over the representative cell of the cluster.] b'ind a primllAve sample point 
p for an (arbitrary) "representative" cell c of C; if none current ly exists, construct  one (by 
extended-to-primitive conversion) for some cell c of C, of highest possible dimensiom Call 
EztendCellToStack(c,  ' " +-- B , B , g , J , I , L ) .  Se tT  I n p u t S i g n a t u r e s O v e r C c l l ( A , B , p , , I ) .  Using 
I ,  T, p, g, and J, we make a cell triple for each cell of the stack, as follows. We know tlle indices 
of all cells in the stack (from I), and their signatures (frorn T). Make a primitlw, sample point 
for each sector of the stack, and an extended sample point for each section (using p, g, and 
J) .  However, if the primitive element for p is of degree one, i.e. a rat ional  number ,  dmn g has 
rational number coefficients, and so make a primitive rather dmn at, extended sample point for 
each section of the stack. Add all cell triples to V. Add the in t ras tack adjacencies of L to E. 

(2.2) [Infer stacks over the remaining cells of the cluster.] For all cells of C other than the one 
just  used, do the following three steps: (1) make up cell triples for a stack over it, each triple 
consisting of an index inferred from the triple for the corresponding cell of the stack over c, a 
signature copied from the triple for the corresponding cell of the stack over c, and a null sample 
point; (2) add the triples for this stack to V; and (3) add the in t ras tack adjacencies for this 
stack to E. 

(2.3) [Induced adjacencies of each induced cluster.] Let 2k + 1 be the number  of elements of 
the stack over the representative cell of C (thus each stack over an element of C also has 2k + 1 
elements). For each intracluster adjacency {d,e} of C, and for i = ] , . . . ,2k  + 1, record in E 
that the i th element of the stack over d is adjacent to the i th element of the stack over e [] 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 6: Algor i thm E x t e n d C a d C l u s t e r s  
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A d j a e e n e l e s T w o S p a e e  (G) 

Input~ G ( 1, B, t ,  E, G')  l~ a graph for a basl~-determmcd t-mvariant cad D of E 2 (with 
ba~Is B). 

Output G Is modltled so that tt contains ad&tmnal adjucencws among cells of D, m particular, 
ff G is mtml at input, then it is a full graph fi)r D at output 

(1) [Interstack adjaeencIe, ] Set B* ,-  IIB Let al < a2 < < a ~  < a=~+l, k _> 0, be the 
sample point~ for the cells of D ~ (Each a~,~ 1 is a rational sample point for a 1-cell, each a=, as 
an algebrmc sample point for a 0-cell) For z := 1, , k, call algorithm SSADJ2 of Arnon et al 
(1984b) with inputs B*, a2,~ a=, -1, and a=~+~, add the content~ of its outputs LI and L= to G, 

e to E Note that the sectmn numhers which occur in the adjaeenc~es returned by SSADJ2 
must first be ¢onverted into the reduces of the corresponding cells of  D, for example, if the 11st 
L~ returned by the z °~ call to SSADJ2 eontauis the adjacency {3, 2}, it must be converted to 
{(2~, 6), (2~- l, 4)} b~,fore being added to L, Infer the remaining mterstack adjacencaes between 
S(e~,) and B(e~. ,), and between S[c~,) and B(c~, I~), as deserabed at the end of Sectmn 2 of 
Arnon el al (1984b), and add them to G ~_1 

Flgmc 7' Algorithm AdjacenclesTwoSpaee, 

the algonthm~ oi Arnon el al (1988) Asbummg that  we s tar ted with an mltlal graph 
for the cad of  E a, we clearly would end lap with a full g raph  for this cad A sign- 
mvanant  components  computa t ion  m tht.~ graph would then obviously yield maximal  
s ign-mvanant  clusters of  the cad D of  E 3, We now show that  there is a proper subset 
A of the set of  all intercluster adjacencies of  the reduced cad o f  E2, such tha t  given an 
mltml graph for D, if we then budd (all interstack) adjaceneies over each element of  A, 
Lhen a sign-mvarmnt conne~ ted components  computa t ion in the resulting graph yields 
maximal s ign-mvariant  clusters of D Besides the obwous reductmn in the amoun t  of 
adjacency de te rmina tmn we have to do in E 3, it turns out tha t  the particular A tha t  we 
show is sufficient allows us to often avoid the most costly extended-to-pnmltzve sample 
point conversmn~ m E 2 

Let us first determine what kinds of antercluster adjacencms can occur among mam-  
mal mgn-mvarmnt clusters of  a cad of  the plane. We assume tha t  this cad has the bound-  
ary property Clearly there can be no mtercluster adjacency between 0-clusters I t  is 
also clear tha t  there can be no mtercluster adjaceneles between two mammal  2-clusters, 
since by the In te rmedia te  Value Theorem, all 2-clusters have the same signature wath 
respect to the input  polynommls  So that leaves us with the posmbfllty of adlacencles 
between 0- and I-clusters, 0- and 2-clusters, 1- and 1-clusters, and 1- and 2-clusters 
For the first of  these cases, clearly all mte rchs te r  adjacenmes are {0, 1}, 1 e involving a 
0-cell of the 0-cluster and a 1-cell of the 1-cluster. In the second case, there can be both  
{0, 1} and {0,2} intercluster ad3acencles In the th,rd case, there can only be {0,1} 
mtercluster addacenmes, since (by the boundary property)  adjacent  cells m the cad of 
the plane have different dlmensmns In the fourth case, by the boundary  property,  there 
can be {0, 1}, {0, 2}, and {i, 2} mtercluster ad3acencms 

In point ot fact, addacenmes of  two 1-clusters seem to occur rarely, for cer tmn "pecu- 
har" sorts of  inputs For example, lct F(m,y) = y +  z, G(m,y) = y-- ~, and H ( ~ , y )  = y, 
and let A = { F G H ,  FG, F H }  h g  8 shows an A-mvarmnt  cad of  the plane t h a t  il- 
lustrates both intercluster addacenmes of a 1-cluster and a 1-cluster, and an adjacent  
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F 

//  
~ G  H 

Figure 8: Sample cylindrical algebraic decomposit ion of  the plane,  

1-cluster and 2-cluste~ for which their only intercluster adjacency is a {0, 2} adjacency 
of cells. 

As for cells, the boundary of a cluster C is the set of all limit points  (~f/~ ...... UC which 
are not contained in R. It  is not hard to see tha~ clusters "do not  have the boundary 
property",  i.e. if two clusters are adjacent, then it is not necessarily the case that one 
is contained in the boundary of the other. For example, the tacnode  curve is defined by 
the equation: 

F ( e , y ) = y 4  _ 2y3 + yZ _ 3~2y + 2 ~ a =  0. 

Fig. 9 shows an F-invariant cad of the plane. The curve itself is a max ima l  sign-invariant 
1-cluster of this cad, and clearly, for any sign-invariant 2-cluster C, nei ther  C nor the 
curve is contained in the boundary of the other. 

We now prove a theorem that  points the way to our ac tual  3-space adjacencies 
algorithm. The basic idea, given that  clusters in the plane may fail to have the  boundary 
property, is that for a pair of adjacent clusters of a cad of the plane, we find subclusters 
of each that are as large as possible while still having the p roper ty  that  one is contained 
in the boundary of the other. I t  then follows that  it is sufficient to build adjacencies in 
E a over just one of the intercluster adjacencies between each such pair of  subclusters. 

We now define the central notion for our theorem. Given adjacent  clusters C1 and C2 
of some cad, we say that  subclusters Q1 C C1 and Q2 c C2 are cobounding subclusters 
for C1 and C2 if 

1. Each cell of Q1 is in the boundary  of one or more cells of Q~, and 

2. For each cell of Q2, there are one or more cells of Q t contaitted in i ts  boundary, 
and 
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i 
Figure 9: Cylindrical algebraic decomposition of tacnode carve. 

3. If cells cl and c9. of Q2 are adjacent, then there are ceils d 1 and d2 of Q1 such that  
dl C Oel, d2 C Oc2, and either dl :: d2, or dl and dz are adjacertt. 

Clearly if Q1 and Q2 are cobounding subclusters for C1 and C2, if R1 = UQ1, and 
if R2 = t3Q2, then R1 C bR2. If  Q1 and Q~ are cobounding subclusters for C1 and C2, 
and if for any othcr cobounding subclusters O1 of C1 and O2 of C2, it is the case that  
either O1 f3 Q1 = 0, or 02 fq Q~. = 0, or O1 c Q1 and O2 C Qg., then we say that Q1 and 
Q2 are maximal cobounding subelusters for C1 and C2. 

Let C1 and C2 be adjacent sign-invariant clusters of D' such that R1 C OR2, where 
R~ = UC~ and R~. = UC2. Let S(R~) be a stack over R1 and S(R2) a stack over R2. We 
say that S(R1) and S(R2) are adjacent. If  for any section s of  S(R2), Os fq Z*(R1) is a 
section t of S*(Rt), then we say that  S*(R2) has the unique section boundary property 
(USBP) in S*(R1). 

THEOREM 4.1 Let D be a basis-determined cad of E r, such that the induced cad D' 
of E r-1 has the boundary property. Let C1 and C2 be adjacent sign-invariant clusters 
of D', and suppose that Q1 C C1 and Q2 c C2 are cobounding subelusters for C1 and 
C2. Let R1 and R2 be ihe respective unions of Q1 and Q2, and suppose that for any 
cells e, d of Q~ u Q2, if d C Oc, then S~(e) has the unique section boundary property in 
S*(d). Let S(R~) and S(R~) denote the unique stacks over R1 and R~ with which D is 
compatible, in the sense that each element of one of these stacks is a union of elements 
of D. Then S~(R2) has the unique section boundary property in S*(R1). 

PROOF. Suppose the assertion to be false, and let s be some section of S*(R2) whose 
boundary points in Z*(R~) are not a section of S*(R~). Then there exist ceils t~ and tt 
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of D such that: tk and tl are contained in s, tk C S(ck) and tt (: S(ct) tbr cells ck and 
et of Q2, there are cells d~ and dt of Qt such that  dk C Och a n d  dl ~ dh:z, and where 
uk C S(d~) and ut C S(dt) are the respective boundary sections o f  tk and tt, uk is section 
nk of its stack~ ul is section nt of its stack, and nk ¢ nt. There  is a sequence (chain) of 
adjacent cells in s joining tk and tt. Each ti in this chain is a sect ion of  S(ci) for some 
ci E Q2, and for each such ci~ there is a dl E Qt such that  dl C O c i ,  and either d~ = di+l  

or d~ and d~+l are adjacent. Since S*(c~) has the USBP in 5*(all) ,  tl has a boundary 
section ul in S*(di). Then there exists a j for which uj is sec t ion  nj of its stack, ui+l 
is section nj+l  of its stack, and nj ¢ n j+l .  Suppose wi thout  loss of generality that 
cj C Oej+l, hence tj C Otj+l, hence uj C Otj+l. Since di a n d  di~t are identical or 
adjacent, clearly section nj+l of S*(dj)  is also contained in 0 t j + t ,  hence both sections 
n i and nj+~ of S*(dj) are contained in Otj+~, contradicting t h e  USBP of S*(Cj+l) in 

[] 

By the results ofArnon et. al. (1988), the hypotheses of Thcc~rem 4.1 are satisfied 
for each pair of cobounding subclusters for each pair of adjacent  maximal  slgn-invariant 
clusters of the induced cad of E ~. Hence, for each such pair of c lus ters  in the plane, it is 
sufficient to build adjacencies in E 3 over just  one of {;he in te rc lns te r  adjacencies between 
each of their pairs of maximal cobounding subclusters, o.nd this is what we will do. 

Let us now consider the task of finding the pairs of maximal  c~Amunding subclusters 
for a pair of adjacent clusters of the induced cad D' of E 2. Lilk ~. is made easier with 
the following concept. Suppose for adjacent clusters Cl and C2 of 1) I, that whenever 
cells C 1 G C1 and c2 G C2 are adjacent, cl C Oc~ C OC2. ~l'hen we say thai. C1 and C2 
have one-way boundary inclusions. The next theorem tells us th~tt clusters in E 2 have 
one-way boundary inclusions. 

THEOREM 4.2 Suppose given a rnazimal sign.invariant clustering of a cad with the 
boundary property, such that some cell of a cluster C1 is contairzcd in the boundary of 
(one or more cells of) a cluster C2. Then for any cells cl C Ct and  (:~ (: C~, /f cl and 
c2 are adjacent, then el C Oc~ C 0C2. 

PROOF. Suppose cell dl of cluster C1 is contained in boundary  o f  C~; then clearly dl 
is in the boundary of some cell d2 of C2. Since C1 and C2 are different  maximal sign- 
invariant clusters, there is some input polynomial F which vanishes on one but not the 
other. Since real varieties are closed, F must vanish on dl, i.e. on C1, but  not on d2~ i.e. 
not on C2. Suppose now that  cells Cl E CI and e2 E C2 are ad jacen t .  Then  one contains 
a limit (boundetry) point of other, hence by the boundary p rope r ty ,  one is contained in 
boundary of the other. But then el C 0C2, since c2 C c9C1 would imply  that  F vanishes 
on c2, a contradiction C3 

Fig. 10 gives an algorithm to find all pairs of maximal cobound ing  subclusters for 
a given pair of  adjacent clusters. In Fig. 11 we give our 3-space adjacency algorithm 
AdjacenciesThreeSpace. It assumes that the particular value of  the  procedure param- 
eter EztendCel lToStack  of algorithm CLCAD that  is called for in  Section 5, i.e. algo- 
rithm EztendCel lToStack  of Arnon ei al. (1988), has been used to  determine the stacks 
of the cad D of E 3. The various adjacency subalgorithms (e.g. AdjacenciesOverO1) 
that AdjacenciesThreeSpace calls are from Arnon et al. (1.988). E~ch  such subalgorithm 
takes the two cells of an adjacency as inputs, and we are required t o  have primitive sam- 
ple points for both. We assume that extended-to-primitive conversion is done as needed 
for these calls. A nullifyir~g 0-cluster is a 0-cluster on whose un ique  constituent 0-cell 
some element of B is nullified. 
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K , MaximalCob(mndingSubclusters (C1,C~) 

lnpuls' C1 and C,~ are (hsjomt clusters of a cad of E ~ whtch has the boundary property, such 
that C,j and C2 have one-way boundary mclusmns if they are adjacent 

Output If Cl and C~ are not adjacent, then K is the empty hst Otherwise K is 
a hst ( ( (Q, , , ,Q, ,2) ,L1) , ( (Q2, , ,Q,~a) ,L2) ,  ,((Q.~,I,Q.~,~),L,~) ), such that (Qt,~,Q.,~), 
(Q~,~, Q2 ,~ ) , . ,  (Q~,~,Q~,~) are the maximal cobounding subclusters for Ca and C:, and for 
each (Q.,~, Q~,~), L~ is a hst of all lntercluster adjacenc~es between Q.,~ and Q.,~ 

(l) [Do it]  For each mtercluster adlacency {c~,c~} between Ct and Cz, create an xmtml 
clement( ({c~},{c2}, {{ct,c~}}) of K "]'he,, until no more coalescing is poss,ble, attempt to 
"paste together" pairs (Q,,I,Q,,~),L~) and (Q~,,,Qa,~),L#) of eleraeats of K We at tempt to 
paste such a pmr by first checking whether Q~,a ~- Q,,~ ~Q~,~ ~s a subeluster of C~ and whether 
Q ~  +- Q,,:t3Q~,~ is a subeluster of C~, If so, then we set L~ to be L, UL~ plus any other 
mtercluster adjaeencxes of Q~,~ and Q~,~, and check whether Q~:,~ and Q~ z are coboundmg 
subclusters of G~ and (7~ t_] 

Figure 10, A l g o n t h m  MaxmialCoboundmgSubclusters ,  

The reader should now be eonwnced of the following proposition 

TIIEOREM 4.3  Let D be a basis-determzned s:gn-mvamaut cad of E ~, and let D ~ denote 
the reduced s~gn.mvar~ant cad of E ~ Suppose we have a graph representation for D 
wMch contains D's ~nztzal adjacenczes, and the other ad3acenc~es of ~ ~hat are added 
by Adjacenc~esThveeSpace Then the cluslers of D thal we obtain by a szgn-mvarzang 
connected eoTnponenls computatwn zn the graph for D are mazzmal (szgn-mvamant) 
clusters 

From algor i thm AdjacenciesThreeSpaee we see that  we do not avoid all extended- 
to-primitive conversmns of 0-cell sample points in the reduced cad of  the plane we are 
reqmred to have a primitive sample point for each 0-dimensional maximal slgn-mvarlant 
cluster m E 2, and posmbly also for certain 0-cells in 1-clusters We now indicate how 
it m that  the part icular  such conversions that  actually are done are typically no t  as 
expenmve as the ones that  are not done Conmder for example the sample points  of 
0-clusters Such 0-clusters are usually "topologmally significant", e g they are typically 
the intersection points of two curves m E 2 It has been our empmcal  observation that  
the sample points of  such "topologically slgmficant" 0-cells often do not require field 
extenmon (1 e nontnv la l  primitive element computat ion)  m the conversion of  their 
extended representat ions  to pnmatlve In other words, the Mgebrmc polynomial  which 
is part  of their extended representataon m typically hnear Some explanation of this 
phenomenon is prowded by Muller's observatmn (Muller, 1978), that  probably at most  
one intersection of  two (random) algebraic plane curves lies on any particular line m 
the plane~ and so for any F, G E I2, the curve defined by F and  the curve defined by G 
probably only have one intersection on a hne z -- a, where a is the sample point  of a 
0-cell m the reduced cad of E ~ If so, then gcd(F(~nd), G(a, y)) is hnear, since each of 
its roots corresponds to an intersection point of the two curves Hence the y-coordinates  
/~ of  intersection points are likely to have the property tha t  Q(a,fl) :- Q(a), a e the 
primitive element algorithm xs trxvlal 

The tacnode provides an illustrative example of how we are often able to avoid 
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A d j a c e n c l e s T h r e e S p a c e  (G)  

Inputs G = (A, B, V,E, G') is a graph for a bas is-determined A-mvar ian t  cad D of E ~ (with 
basis B), such that  D has the boundary property,  and such tha t  if cell d of D '  is contained in 
0c for a cell c of D '  on which no element of B is nullified, then S*(c)  has the unique section 
boundary property m S*(d), and such that  G I contains all adjacencms of D I, and has a pr~mltlve 
or extended sample point for each of its cells 

Output G is modified so that it contains addit ional  adjacencles alnong cells of D, in particular, if 
G is lmtlal  at input,  then the s~gn-mvarlant connected components  of  (I ¢orrespond to maximal 
slgn-mvarlant clusters of D 

(1) [Construct maxlmal slgn-mvarlant clusters of reduced cad ] I)o a sign-mw, rmnt connected 
components computation in the G' graph, to get (maximal)  s lgn-mvamant  t luster~ of D s 

(2) [Process (1-cluster, 1-cluster) adjacenctes] ]"or ea, h parr (7~, C,~ of a,bacent 1- 
clusters of D' ,  and for each of their (0,1) mter¢luster ad,la, en¢ies { 0, ,}, set L , -  
AdjacenczesOverOl(c°,cl,B ', B) and add the adjacencles of L to /¢ 

(3) [Process (1-cluster, 2-cluster) adjacencles] For each pa i r  Ct, (:2 ,,f adjacent 1-cluster 
and 2-cluster of D' ,  do K ~ Maz~malCoboundzrtqSubclusters(C:t,(:2). For each L, of 
K,  do the fono,v,ng loop. If L, contains (1,2) ad~acencles, th,'II h't {,':,c,~} be one of 
them, set L ~ Ad2acenczesOverl2(cl,c~,B), add the adjacenctes  of L to E, and exit 
this loop iteration Otherwise, if L, contains (0,1) adjacenctes, then let {ct,',c~} be one 
of them, set L ~ Adjaeenc~esOverOl(c°,,e,,B~ ' ,B) ,  add the adjacen¢ies, of L I,o E, and 
exit th, s loop l teratmn Otherwise, let {c°,c, 2} be a (0,2) adjacency of L,, set L , -  
AdjacenczesOver NonNuU* f yzng02(c °, c2, , B', B ), and add the ad]acen(ie~ ,,f L to I'; 

(4) [Process adjacene~es of non-nulhfymg O-clusters I I,'or each nt, n-nulhfymg O-cluster C, 
with unique constituent cell c °, do the following two steps Fi rs t ,  fi~r ea(h l-cluster Ct 
which is adjacent to C, and for each of their (0,1) mtercluser adjacencles {e°,ct}, set 
L ~ AdjacencsesOverOl(c°,cl,B',B) and add the adjaeencres of L to E Second, for eadl 
2-cluster C2 which is adjacent to C, do K ~ MazzmalCoboundmgSubclusters(C,  C2), and 
for each L, of K, do the following loop If L, contains (0,1) adjacencws,  then let {c,°,c,}l 
he one of them, set L *-- AdjacenczesOverOl(c°,c~,,B',B), add the adjacenmes of L to 
E, and exlt this loop l teratmn Otherwise, let {e°,,c2,} be a (0,2) adjacency of L,, set 
L *-- AdjacenezesOverNonNulhfyzng02(c °, c2,, B',  B), and add the adlacencles o£ L to t3 

(5) [Process adjacenmes of nullifying 0-clusters ] For each nulhfymg 0-cluster C, with unique 
constituent cell c °, do the following steps For each (0,1) adjacency {c°,c ~} of D',  set L 
AdjaeenczesOverOl(c °, c ~, B'I B) and add the adjacencles of L to E For each (0,2) adjacency 
{c °, c 2} of D', set L ~ Adjacenc~esOverNullzfyzng02(c°,c 2, B ' ,  B),  and add the adjaeencles 
of L to E c3 

Figure 11 A lgo r i t hm A d j a c e n c l e s T h r e e S p a c e  
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G ~ C L C A D  (A, Basis, Projection, EztendCellToStack, Adjacencies) 

Inputs: A is a finite subset of I~, for some r >_ I. Basis is a procedure which, for any i > 1, 
given a subset U of Ii, computes a basis for prim(U). Projection is a procedure which, for any 
i > 2, maps a subset of Ii to a subset of Ii-1 having the expected properties (cf. Theorem 2.4 
of Arnon el al., 1988). EztendCellToStack(c, B ~, B;g, J, I ,L) is a procedure with the same 
specifications as the input parameter of the same name to algorithm EztendCadClusters of 
Section 3. Adjacencies is a procedure which, for any i > 2, given a graph for a cad of E; ,  finds 
certain of its interstack adjacencies and adds them (i.e. adds the corresponding edges) to the 
graph. 

Output: G -: (A, B, V, E, G I) is a graph representation for an A-invariant cad D of E ~. 

(1) [r = 1 (base case).] Set B ~-- Basis(A). If r > 1, then go to step (2). Construct a list J 
of open isolating intervals for the real roots of the elements of B, thus determining the cells 
of a cad D of E 1. Set T ~- InputSignaturesOverCell( A, B, @, J). Construct art index and a 
primitive sample point for each cell. From these and from T, create a triple for each cell, and 
set V to a list of all these triples. The adjacencies of D are obvious; collect them as the set E. 
Set G I to 0, to complete the construction of a graph G for D. lleturn. 

(2) [r > 1. Initial graph.] Set P ~-~. Projection(A), and call CLCAD with inputs P, Basis, 
Projection, E'x.tendCellToStack, and Adjaeencics, to obtain output G t, Call algorithm 
EztendCadClusters of Section 3 with iuputs A, B, G ~, and E~lendCeUToStack to obtain 
an initial graph G for an A-invariant cad of E ~. 

(3) [r > 1. Non-initial adjacencies among r-space cells.] Apply Adjacencies to G D 

Figure 12: Algorithm CLCAD.  

extended-to-primit ive conversions of the sample points of 0-cells in 1-clusters. A sign- 
invariant cad of  E 2 for the tacnode is shown in Fig. 9. Using an implementat ion of  
algorithm CAD (cf. Section 6), construction of this cad took 29 minutes, with 27 
minutes of tha t  spent  in converting the extended representations of four 0-cell sample 
points to primitive: cells (4,2), (4,6), (8,2), and (8,6). Using CLCAD,  we were able to 
construct the same cad of  2-space in 1 minutes; primitive sample points for cells (4,2), 
(4,6), (8,2), and (8,6) were not  required, because they belong to a 1-dimensional sign- 
invariant dus te r  (the collection of  all cells contained in the curve), which is adjacent only 
to 2-dimensional sign-invariant clusters, and for each such adjacent 2-cluster, each pair 
of maximal  cobounding  subelusters for the curve and the 2-cluster has an intereluster 
adjacency between a 2-cell of  the 2-cluster and a 1-cell of the curve. 

5 Main algori thm 

In Fig. 12 we give our main a lgor i thm CLCAD in a form which has various procedure  
parameters.  Thus  the exact version of  the general cluster-based cad s t ra tegy tha t  a user 
desires can be obtained by passing appropriate concrete procedures for these pa rame-  
ters, for example, one might use MeCallum projection (MeCallum, 1988) instead of  the 
projection map  assumed in Section 2, or one might use other adjacency a lgor i thms than 
those we have given in Section 4. 

Let us now list the part icular  concrete procedures that we pass for C L C A D ' s  pro- 
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Adjaeencies (G) 

(]) If r =- 1 or r > 4 then return. If r -: 2 then AdjacenciesT~oSpucc(G). If r := 3 then 
AdjacenclesThreeSpace( G) 

Figure 13: Algorithm Adjacencies.  

cedure parameters in our current implementation; this  informat ion in effect summa- 
rizes Section 2-6. The default for calls to CLCAD is: we don ' t  care what basis B for 
prim(A) the procedure Basis computes. We set Project ion(A)  ~- P ROJ( B)Ucont(A), 
2 < i < r. We pass procedure EzgendCellToStack of A r n o n  et al. (1988) as argument 
EztendCellToStack. Finally, as one may expect from Sect ions  4, wc pass the algorithm 
shown in Fig. 13 as argument Adjacencies of CLCAD. 

Given the these concrete procedures as values for C L C A D ' s  procedure parameters, 
and given input polynomials A C I ,  with 1 < r < 3, the sign-invariant connected 
components of the undirected graph (V, E) built by a lgor i thm CLCAD correspond to 
maximal sign-invariant clusters of the cad D of E ' ,  and the boundary  of each cell of D 
is a (disjoint) union of lower-dimensional cells, i.e. D has  the bounclary property. 

6 Examples  

6 . 1  G e n e r a l  r e m a r k s .  

We have not so far performed a detailed study of our implemen ted  cluster-based cad 
algorithm's behavior, but preliminary experiments indica te  that  its performance is some- 
times better, sometimes worse, than the "original" cad a lgor i thm (i.e. algorithm CAD 
of Arnon et al., 1984a). Of course, the results of the comparisons we have carried 
out reflect the use of the particular adjacency algor i thms given in Section 4. In any 
particular such comparison, the outcome seems to d e p e n d  on the relative time of the 
extended-to-primitive sample point conversions that  the original  algorithm must do but 
which the cluster-based algorithm avoids, compared to the  adjacency computations that 
the cluster-based algorithm must do but  which do not o c c u r  in the original algorithm. 
Thus the Quartic and Ellipse examples below, for which the original algorithm was 
faster, most likely had easy sample point conversions re la t ive  to the cost of adjacency 
computations. 

Fig. 14 contains a summary of the results of our comparisons.  The  times 'in it were 
obtained from algorithms CAD of Aruon et al. (1984a), a n d  algori thm CLCAD of this 
paper, with both algorithms computing finest squarefree bases. Both algorithms were 
implemented in the SAC-2 computer algebra system (Collins, 1980), on a Vax 11/785 
running Unix. The times given in the table are in minutes. To, iain~t is the time spent by 
the original cad algorithm, and T~z~,t~red the t ime spent b y  the cluster-based algorithm, 
for each example. A time of zero minutes means less than  half  a minute.  The notation 
"> n minutes" means that an algorithm ran for at least n minutes before either it was 
terminated or our computer went down. The column "Cel ls"  gives the number of cells 
in the cad's built by both the original and cluster-based algorithms, and "Clusters" 
gives the number of maximal sign-invariant clusters in the cad  built by the cluster-based 
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Figure 14: 

N a m e  

T a  c n o d e 

SIAM 
Toptyp 
Pair 1 
Pair2 
Pair3 
Pair4 
Pair5 
Quartiel 
Quartic2 
Quartie3 
Quartie4 
Quarries 

•origlnal T • clu~ teT, ed 

29 1 
1 1 
> 120 4 
> 90 7 
> 83 9 
19 4 
1 1 
7 7 
2 2 
> 115 > 115 
> 270 25 
46 47 
0 0 

CADIII 0 1 
Quartie 2 10 
Implicit > 30(l 89 
SphercCatas > 827 282 
Ellipse 9 74 

CelZs" CluSi~ 
55 5 
41 15 
37 9 
103 15 
127 27 
85 21 
63 15 
57 15 
21 5 
? ? 

37 3 
55 5 
21 4 
51 3 
123 35 
855 9 
1393 9 
2291 715 

Sample comparisons of original ~nd cluster-based cad algorithms. 

algorithm, Sections 6.2 - 6.5 give the input polynomials for each example, and where 
applicable, cite a source for the example. 

6.2 

6.2.1 

M i s c e l l a n e o u s  b i v a r i a t e  e x a m p l e s .  

T a c n o d e  ( A r n o n  e t  al,~ 1 9 8 4 a )  

y4 _ 2y3 .}. y2 _ 3~2y + 2~4 

6.2.2 

6.2.3 

SIAM papers  pair of  polynomials (Arnon  et al.~ 1984a~ 1984b) 

144y 2 + 96~2y + 9~ 4 + 105~ 2 + 70~ -- 98 

~y2 + 6~y + ~a + 9x 

Toptyp a lgor i thm example  (Arnon ~ MeCaUum, 1988) 

y4 _ 2~ya _ ~2y2 + y2 + 2~3y + ~2 _ 1 

6.3 F i v e  r a n d o m l y  g e n e r a t e d  p a i r s  o f  b i v a r i a t e  p o l y n o m i a l s .  

Each consisted of a quadra t ic  and a cubic: polynomlal) with two-dlgit integer base coefficients, 

6.3.1 first pair.  

3y 2 - 2zy + 28~ -~- 31 

- 8 y  3 + 6z2y - 15,~y - 7y - 7z 3 -b 11~ + 6. 
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6.3.2 second pair. 

6.3.3 third pair. 

6.3.4 fourth pair. 

6.3.5 fifth pair. 

- 9 y 2  .k3Omy '  22~ ~ .~'21 

2y 3 - 1 2 ~ 2 y -  1 2 ~ y 8 y - [  l l a  2.-  2~ 2. 

- 2 y ~  13~ f 22 

- 1 3 y  3 + 5~y 2 + 1 2 y  ~ ~ 1 4 ~ 2 y +  l l y -  10~ 2 -t [1. 

- 1 2 ~ y -  1 5 y -  30~2-1 4~ I 21 

- m y  ~ -p 15y 2 -~ -8 ~y  - i2y ~-12m ~ ] 9. 

27~.y t 9:~, 2 , 3 t~  I 4 

5y 3 - 14~92 -~" 15y 2 "J 13~r.2y I 2~y t Idy 7ut :s 3;r,. 

6.4 
Each had two-dlgit integcr base coefficients. 

Five  r a n d o m l y  g e n e r a t e d  b i v a r i a t e  q u a r t i c s .  

6.4.1 first quartic. 

6.4.2 

6.4.3 

44ml1 ~ -~- 57~y 2 t 25~1 ~ °37~r, a 31~r,. 

6.5 

6.5.1 

6.4.5 

6.4.4 fourth quartic. 

60my 3 + 59y 3 -- 41y 2 - ~5=3y + 47my + 45y-k 22m 4 - 38m 3 + 3z 2 - 24. 

fifth quartic. 

52¢2y 2 + 3 0 ~ y  2 + 49y 2 - 4 ~ 2 y - ~ 6 2 ~ y + 9 ~  4 %33~ 3. 

T r i v a r i a t e  e x a m p l e s .  

CADIII  example surface (Arnon et al.~ 1988) 
y3 z ~ ~y2 ._ ~3 

second quartlc. 

-6294  - 29x~y ~ - 459~.~-45~3~ 5 ~ y  ~ 26:~ 4 ~ 27~ 58. 

third quartic. 

--50y 4 ~ 48y 3 - 8y 2 - 34~2~ - llm ~ - 5m. 
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6 . 5 . 2  

6 . 5 . 3  

6 . 5 . 4  

6,5.5 

P o s i t i v e  d e f i n i t e  c a n o n i c a l  f i ) r m  q u a r t i c  ( A r n o n  & M i g n o t t e ~  1 9 8 8 )  

p 

8p7,- 9q ~ - 2 p  3 

256r a - 128p2~ 2 -I- 144pq ~r + 16p 4~" - 27q "j - 4p3q 2 

C u r v e  I m p l i c i t i z a t i o n  ( A r n o n ~  1 0 8 8 )  

505t '~ - 864t ~ + 570t + x - 343 

211t 3 - 276t 2 - 90t .~ y + 345 

U n i t  s p h e r e  a i l d  c a t a s t r o p h e  s u r f a c e s  ( M c C a l l u m ~  1 9 8 8 )  

z 2 + y2 + ~2 _ 1 

z 3 + ~:z + y 

E l l i p s e  e x a m p l e  ( A r n o n  & M i g n o t t e ~  1 9 8 8 )  

b 

b - 1 

e 

c - 1  

c +  1 

c-l-a + 1 

e + a - 1  

c .~-a+ 1 

e - - a - 1  
b2c 2 l" b 4 -a2b  2 - b  2 } a 2 
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