
J. Symbolic Computation (1988) 5, 189-212

A Cluster-Based Cylindrieal Algebraic
Decomposition Algorithm*

DENNIS S. ARNON

Xerox PARC, 3333 Coyote Hill Road, Palo Alto, California 94304, U.S.A.

(Received ~ April 1985, and in revised form 15 November i987)

Let A (: Z [z l , . , . , w,r] be a finite set. An A-invariant cylindrical algebraic decompo-
sition (cad) iz a certain partitlon of r.dlmensi~mM euclidean space E r into semi-algebralc
cells such that tile value ,*f each Ai 6 A has constant sign (positive, negative, or zero)
throug|umt each cell. 'l'wt* cells are adjacen~ if their union is connected. Recently a number
of math.de haw: been glw~n fi)r augmenting (3olllns j cad construction algorithm (1975)1
so that in addition to specifying the cell~ that comprise a ead~ it identifies the pairs of
adjacent cells. Assuming the availability of such an ad,iacency algorithm, in this paper we
give a modified cad construction algorithm based on the utillzatloa of clusters of cells in a
cad (a cluster is act, llection of cells whose union is connected). Preliminary observations
indicate that the 11ew algorithm can be significantly more efficient in some cases than the
original, although in other examples it is somewhat less efficient.

1 I n t r o d u c t i o n

Recently a number o f me thods have been given for augment ing the cad cons t ruc t ion
algori thm (Collins, 1975), so t ha t in addi t ion to specifying the cells t ha t comprise a
cad, it identifies the pairs of ad jacen t cells (see e.g. Arnon et al., 1988~ Prill, 1986,
Kozen & Yap 1985, Schwartz & Shar i r 1983). A cluster of cells in a cad is a col lec t ion
of cells whose union is connected. Assuming the availabil i ty of a n adjacency a lgor i thm,
in this paper we give a modif ied cad construct ion algori thm based on the u t i l i za t ion
of clusters. The key idea is tha t , as a cad of E i-~ is extended to a cad of Ei~ ce r t a in
(possibly expensive) c o m p u t a t i o n s are performed only once for each cluster, ra ther t h a n
once for each cell as in the or iginal algori thm. Offsetting this saving is the ex t ra cost of
adjacency compu ta t i on . P re l imina ry observations indicate t ha t the new a lgor i thm can
be significantly more efficient in some cases than the original, a l though in other e x a m -
ples it is somewhat less efficient. In this paper we give both a general f ramework for
cluster-based cad cons t ruc t ion , within which any available ad jacency a lgor i thm can be
used, and a specific c lus te r -based cad a lgor i thm that uses the 2-space and 3-space ad j a -
cency a lgor i thms of Arnon et al. (1984b, 1988). The specific a lgor i thm we give has the
following propert ies: (1) it requires no coordinate changes, and (2) in any cad of E ~, E 2,

*This work was supported by the National Science Foundatlon(Grant MCS-8009357 to the University
of Wisconsln-Madison), the Purdue Researda Foundation, and the Xerox Corporation. This paper was
typeset at Xerox PARC using "I~rX in the Cedar envlronmen~.

0747-1717/88/010189+24 $03,00/0 © 1988 Academic Press Limited

190 D.S. Arnon

or E 3 that it builds, the boundary of each cell is a (disjoint) union of lower-dimensional
cells. The particular clusters that occur in cluster-based cad cons t ruc t ion are of math-
ematical interest in their own right. For example, if A consists of a single element F,
then the (unions of the) v-space clusters are typically the connected componen t s of the
hypersurfaee F = 0 and its complement.

In this Introduction we sketch the broad outlines of the clustering s t ra tegy for cad
construction, give an outline of the paper, and review prior related work.

1.1 C a d g r a p h s a n d c l u s t e r s

Let us begin our discussion of clustering by recalling terminology f rom Arnon e~ al.
(1984a, 1984b, 1988). We say that a connected subset of E" is a region. If A =
(A1,..., A=) is a subset of I, = Z [z l , . . . , z,], if R is an A-invariant region in E" (i.e.
the value of each Ai E A has constant sign (- 1 , 0, or +1) th roughout R), and ifcrl is the
sign of Ai on R, then we say that the ordered n-tuple cr --- (or1, ..., o'n) is the signature of
R with respect to A (and also, the signature of A on R). A cell triple for a cell c of an
A-invariant cad is a triple (I, o', S), where I is the cell index o r e (cell indices are defined
in Section 4 of Arnon et al., 1984a), ~ is the signature of the cell (with respect to the
set A of input polynomials)~ and S is a sample point for c. We t empora r i ly proceed
as though sample points are represented as in Arnon et al. (1984a, 1988); we will have
more to say about their representation later.

Given A C I , , a graph representation for an A-invariant cad D of E ~, or cad graph~
is a quintuple G = (A, B, V, E, G'), defined as follows. B is a basis (as defined in Arn0n
eL al., 1988) for prim(A), such that D is a basis-determined cad with basis B. (Recall
that prim(A) the set of primitive parts of those elements of A which have positive
degree). V is a set of cell triples for the cells that comprise D. E is a set of unordered
pairs of (distinct) elements of V, obeying the following condition: if (el , c2) is an element
of E, then cells cl and e2 of the cad D are adjacent (thus (V, E) is a cer ta in undirected
graph). For any given pair of cells cl and c2 of D, the converse m a y or m a y not hold.
If for every pair of cells cl and c2 o l D the converse does hold, i.e. (c l , c2) E E if and
only if c 1 and c2 are adjacent in D, then we say that G is a full graph for ./9; otherwise,
G is partial. The reader will notice a certain abuse of notation here: we freely identify
a cell c with the triple that represents it. I f v > 1, then G' is a g r aph representation
for the cad D' of E ' - 1 induced by D, and G' = @ when v = 1. Typical ly the cad
graph representations we work with are partial. In case G is full, the undirected graph
(V, E) has been called the connectivity graph of D (Schwartz & Sharir , 1983, p. 320).
We assume the availability of standard graph algorithms, e.g. dep th- f i r s t search for
connected components; see e.g. Aho et al. (1974).

It is appropriate to check that a graph representation for a cad supplies the infor-
mation about that cad called for at the beginning of Section 4 of Arnon eg al. (1984a).
It was stated there that a description of a cad must inform one of the n u m b e r of cells in
the cad, how they are arranged into stacks, and the signature of each cell with respect
to the set of input polynomials. Obviously a cad graph gives one the n u m b e r of cells
and each cell's signature. As detailed in Arnon e~ al. (1984a), the indices of the cells
comprising a cad tell one how those cells are arranged into stacks.

Given A C I~, let G denote a full graph for an A-invariant cad D. It is easy to show
that the vertices of any connected subgraph of G correspond to a collection of cells of
D whose union is a region in E ' . Turning this around, we say t ha t a collection C of

Cluster-based cad Algorithm 191

cells of D is a cluster' (of D) if the subgraph of G induced by (7, is connected. Clearly
C is a chister if and only if the union of C is a region. The dimension of a cluster is
the dimension of the largest cell in it. A partition of (the set of ceils of) a cad D into
clusters is called a clustering of D. Obviously any D can be clustered in many ways.

Assume now that G is either partial or full, and suppose given an equivalence relation
R on the cells of D. Then R induces a clustering of D, which can be made explicit
by computing the connected components of G subject to the constraint that we only
"notice" an edge during the computation if the cells it joins belong to R. In this paper,
we are exclusively interested in one particular equivalence relation, namely the relation
to which a pair of cells belongs if and only if the two cells have the same signature (with
respect to the set A of input polynomials). We call this the sign-invariance relation. (We
will henceforth be using the term "sign-invariant" quite often in place of "A-invariant ' , to
denote the condition that "each input polynomial is sign-invariaut", without mentioning
the particular set A of input polynomials). We call a clustering induced by the sign-
invariance relation in a graph representation for a cad D a sign-invariant clustering of
D, and the clusters which comprise it sign-invariant clusters.

Given two clusterings Ft and F2 of a cad D, we say that P1 is finer than I'2, if each
cluster of P1 is a subset of some cluster of F2. Equivalently, we say that P~ is a refinement
of P2, and that t'2 is coarser than Ft. We say that a sign-invariant clustering of D is
maximal if it is the coarsest possible sign-invariant clustering of D; its elements are then
mazimal sign-invariant clusters. Given A, we call the maximal connected A-invariant
subsets of E T the A-components of E r, or in general the sign-invariant components of
E r (with respect to this A, of course). Note that this last definition is independent of
any particular cad of E r. Clearly a sign-invariant clustering of D is maximal if and only
if the union of each of its clusters is a sign-invariant component of E ' . If G is a full
graph for D, then clearly the sign-invariant connected components of G correspond to
the maximal sign-invariant clusters of D, however if G is partial, this need not be the
c a s e ,

If G is partial, then an equivalence relation on the cells of D still induces a clustering
of D when (just as above) we compute connected components in the cad graph under
the constraint that we only notice edges between equivalent cells. Such a clustering is
in general finer than the clustering we get with the same relation applied to a full G,
since the edges in a partial G are a subset of the edges in a full G. This observation
is important, because in general we will build clusterings using partial graphs, and we
will be interested in how closely these elusterings correspond to the clusterings that the
same equivalence relation induces in a full graph.

Let us now look at some examples of the notions we have introduced. Consider the
sample cad D from Section 5 of Atnon et al. (1984b), which we show in Fig. 1. Fig. 2
shows a full graph for D. The figure uses the convention that 0-cells are indicated as solid
vertices, 1-cells as half-filled vertices, and 2-cells as unfilled vertices. Edges satisfiying
the sign-invariance relation are shown as solid lines, and those not are shown as dotted
lines. We see that there are 15 maximal sign-invariant clusters. Fig. 3 shows a partial
graph for D. Again, edges satisfiying the sign-invariance relation are drawn as solid
lines, and those not satisfiying it are drawn as dotted lines. For this graph, we get 19
sign-invariant clusters, many of which are not maximal.

~
°

°.

O
~

/
~

\
l

\
~

~
\

I
\

I
1

"~
_

_

!
i

i
l

I

k
I

f
I

l
i

i
I

I1

O
~

P

0

Cluster-based cad Algorithm 193

\
\

/
/

C

Figure 3: Partial graph.

1 .2 C l u s t e r - b a s e d c a d c o n s t r u c t i o n

Let us now describe the basic idea of cluster-based cad construction. Essentially what
we do is make the extension of a cad of E I-1 to E i more efficient, by building stacks over
sign-invariant cIusters in E I-I , rather than over individual cells in E I-1. This general
strategy requires the availability of adjacency algorithms, but does not require the use
of any particular adjacency algorithm. We now explain in detail the formal basis for the
strategy.

Assume given A C I, . In Section 3 of Arnon et al. (1984a), a map PRO J, which
takes a subset of Ir to a subset of I~-1, is defined, and it is proved (Theorem 3.4)
that over any PROJ(A)-invariant region in E ~-1, there exists an A-invariant stack. In
applying this Theorem 3.4 to extend a cad of E ' - I to a cad of E T in algorithm CAD
of Arnon et al. (1984a), the PROJ(A)-invariant regions in E ~-1 are the cells of the
induced cad of E "-1. However, given an arbitrary PROJ(A)-invariant decomposition

of E ~-1, Theorem 3.4 tells us that if we have a sample point for each region o f /) ,
then we can extend it to a decomposition D* of E" consisting of the stacks over regions
o f /) , by exactly the steps used in CAD for extension over a single cell. Note that D*
is not necessarily cylindrical in the sense of Arnon et al. (1984a), i.e. it may not be the
case that b consists of stacks over the regions of some decomposition of E "-2. However,
it is the case that i f /) is algebraic, i.e. its regions are semi-algebraic sets, then so is D*.

Suppose now that for some A C I~, we have (a graph for) a PROJ(A)-invariant
cad D' of E ~-1, and a clustering of it into PROJ(A)-invariant clusters. Then forming
the regions we ~et by taking the union of each cluster, we get a PROJ(A)-invariant,
decomposition D of E T--I. As above, let us extend /) to a decomposition D* of E ~ by
building stacks over f)'s regions, and let D denote the (A-invariant) cad of E r that we

194 D.S. Arnon

get by extending D ~. Then it is not hard to see t h a t each element of D* is the union
of certain elements of D. In particular, if C is a c lus te r of D ~, and if 1?. is the union
of C, then for any i _> 1, the i th element of the s t ack over R (this stack is part of D*)
is the union of the i th elements of the stacks over t h e cells o f C (these stacks are each
part of D). Furthermore, if cells cl and c2 of C are adjacent elements of D l, then for
any i > 1, the i th element of the stack over el, and t h e i *h element of the stack over c2,
are adjacent elements of D. We call such clusters and adjacencies in E r induced clusters
and induced adjacencies, because they are "induced" in a cad D of E" by a cluster or
adjacency in the cad D ~ of E ' - I .

Given D ~, a PROJ(A) - invar ian t clustering of D I, and a sample point for (one cell
in) each cluster, our observations above imply that we can build D as follows. For each
cluster, we determine a stack over its union R using i ts sample point, as jus t discussed.
Having determined the number of elements, i.e. sect ions and sectors, of this stack, and
assuming that we have determined the signature of each element of the stack with respect
to A, we next look to see which cells of D ~ comprise (7 (i.e. wha t their cell indices are),
and we know immediately (i.e. we can write down the cell indices and signatures for) the
cells of D which comprise each element of the stack over R. When we have processed
all clusters of D ~ in this way, we will have compiled the indices and signatures of all
cells of D. Furthermore, for each cluster C of D I, each adjacency {c, d} of elements of
C induces an adjacency between the i th elements of the stacks over c and d. Clearly a
graph for D which contains exactly these induced adjacencies gives rise to an induced
clustering of D (into induced clusters).

Clearly the induced adjacencies of D are s ign-invariant adjacencies. They are likely
to be only a proper subset of the set of all of D's s ign- invar iant adjacencies, however.
In particular, if we do a sign-invariant components c o m p u t a t i o n in the graph for D in
the form that it has after the steps we have described, the s ign-invariant clusters we
construct are likely not maximal. To get the most benef i t f rom the use of clusters, we
would like to have the largest possible sign-invariant clusters. Hence, the next step of our
general strategy is to build larger sign-invariant clusters than those given to us by the
induced adjacencies. As one might guess, we do this b y comput ing fllrther adjacencies
in E r using the adjacency algorithms that we assume are available to us.

Let us consider a simple example of these ideas. L e t A = {u 2 + z 2 -t- y2 _~_ z2 _ 1},
i.e. A consists of the polynomial which defines the (three-d imensional) unit sphere in
4-space. We have P R O J (A) = {z 2 + y 2 + ~ 2 - 1 } , P R O J 2 (A) = {y2 + z ~ _ l } , and
P R O J a (A) = {:~2 _ 1}. The cad of].-space clearly h a s five cells; recall f rom Section 4
of Arnon a at. (1984a) that we write the indices for these cells as (t) , (2), (3), (4), (5).
The maximal sign-invariant clusters for this cad of E 1 are jus t the five singleton sets.
In 2-space, we have 13 cells, which can be parti t ioned in to three max ima l sign-invariant
clusters: the unit circle (consisting of four cells, wi th indices (2,2), (3,2), (3,4), and
(4,2)), its interior (consisting of one cell, with index (3,3)), and its exter ior (consisting
of eight cells, with indices (1,1), (2,1), (2,3), (3,1), (3,5), (4,1), (4,3), and (5,1)). The
discussion of the previous paragraphs tells us that to de te rmine the cad of 3-space, it
suffices to have a sample point for each of these three 2-space clusters. When we extend
over the unit circle, for example, we get a stack in E a consisting of three elements (i.e.
two sectors and one sections), that corresponds to four s tacks in the cad of 3-space that
each have three elements. The adjacencies among the cells in E 9" that comprise the unit
circle induce certain adjaeencies (and three clusters) a m o n g the cells of these four stacks
in 3-space. Similarly, extending into E z over the interior of the unit circle in E 2, we get

Cluster-based cad Algorithm 195

a stack with tive elements, and extending over the exterior of the circle, a stack in E a
with one element. The latter stack corresponds to eight one-element stacks, with the
obvious induced adjacencies and a single induced cluster, of the cad of 3-space. Clearly,
the induced clusters in 3-space that we have described are not maximal sign-inwriant
clusters. Using a 3-space adjacency algorithm, we can compute additional adjaeeneies
among the 3-space cells that enable us to obtain the three maximal sign-invariant clusters
that there clearly are in 3-space (which correspond to the unit sphere, its interior, and
its exterior). We can then build stacks in 4-space over these three 3-space clusters to
determine a sign-invariant cad of 4-space.

Altogether the three steps of the cluster-based cad algorithm are: (1) If r > 1, call
the algorithm recursively to build a graph for the induced cad of r - 1 space, (2) If r > I,
extend, over the maximal sign-invariant clusters of the induced cad, to a graph for the
cad of r-space, or if r = 1, build a graph directly, (3) Construct additional adjacencies
in r-space. The simplest, trivial, case of cluster-based cad construction is the "original"
cad algorithm, i.e. no adjacency computation at all, which means that we generally have
just singleton clusters in the cad's of E l, E 2, ... that we build.

1.3 O u t l i n e o f t h e p a p e r a n d p r i o r w o r k

Sections 2-4 fill in the details of the cluster-based cad construction strategy, by partition-
ing it into algorithms of four kinds: basis (Section 2), projection (Section 2), extension
(Section 3), and adjacency (Section 4). Section 3 begins by defining several possible
representations for sample points in cad graphs. This is fundamental material for this
paper: careful management of sample point representations is an important reason why
cluster-based cad construction is more efficient than previous cad algorithms in those
cases that it is. Section 4 presents the particular adjacency algorithms for E 2 and E a
that we currently use; these rely on certain adjacency subalgorithms from Arnon et al.
(1984b) and Arnon el al. (1988). Section 5 presents a main algorithm CLCAD for
cluster-based cad construction, which has procedure parameters for the four key subal-
gorithms. Also in Section 5 we specify the values of these procedure parameters that
we use in our current implementation of CLCAD. Section 6 reports the comparative
performance of algorithms CLCAD and CAD on a number of examples.

The work we report in this paper was done between 1979 and 1981. The use of
adjacencies and clusters in cad construction was presaged by Arnon (1979), where it was
shown that incidence of cells is decidable. A first version of CLCAD was presented, and
some examples of its use and comparative performance with CAD given, in Arnon (1981).
Applications of cluster-based cad construction can be found in Arnon & McCallum
(1988), and Arnon (1988).

Defining formula construction is an important part of the cad algorithm, especially for
applications to quantifier elimination (see e.g. Arnon & Mignotte, 1988). Constructing
a defining formula for each cell of a cad is easily accomplished in cluster-based cad
construction, by constructing such formulas for certain cells, and then inferring formulas
for the remaining cells by much the same inference process as used for induced clusters
and adjacencies in Section 1.2. See Arnon (1981) or Collins (]975) for details of Collins'
original algorithm for cell defining formula construction.

As mentioned above, in the present paper we only make use of one equivalence
relation of cells, namely the sign-invariance relation. The order-invariance relation of
McCallum (1988) is another equivalence relation of cells in a cad whose use for duster-

196 D.S. Arnon

based cad construction is attractive.

2 Basis, Project ion, and Base steps

In this Section we discuss the first few steps of the cluster-based cad construction algo-
rithm. We have relatively little to say about them. The reader may wish either to look
ahead to algorithm CLCAD in Section 5, or skip this Section for the moment .

In general, it doesn't matter what type of basis (e.g. coarsest or finest squarefree
basis) our basis procedure computes (see Arnon et. al., 1988, and Collins, 1975, for
basis-related definitions). The actual projection operator we current ly use is determined
by the adjacency algorithms of Arnon e~ hi. (1984b, 1988) t h a t we use (cf. Section
4). We want to build the same cad's as these algorithms do. Hence ra ther than use
PROJ(A) as a projection operator, as we did in Section 1, we henceforth assume that
we have computed a basis B for p~im(A), and that we use PROJ(B) U con~(A) as our
projection operator (eon~(A) is the set of non-zero non-unit contents of elements of A;
see Arnon et hi., 1988, for futher discussion). For r _< 3, we could use MeCallum (1988)
projection instead; it would then be necessary that our basis procedure compute a finest
squarefree basis. The projection operator would then be the P opera tor as defined in
McCallum (1988). The resulting cad's of E r, 1 < r < 3, would still have the boundary
property, i.e. the boundary of each cell would be a (disjoint) union of lower-dimensional
cells, and i f r > 1, then the induced cad o f E ~-1 would also have the bounda ry property.

The base step of our cad algorithm, i.e. the algorithm for cons t ruct ion of cad's of
E t, is essentially that of Arnon e~ al. (1984a). It is easy to make the graph for the cad
of E t full, since we trivially know what its adjacencies are. Th e reader may consult
algorithm CLCAD in Section 5 for details of the base step.

3 Extension step

Our task in this section is to develop the method (algorithm Ex~endCadClusters of
Fig. 6) that we use for the extension step of cluster-based cad construct ion. We begin
by considering the issue of sample point representation. Assume th roughout this section
that our cad input polynomials have r _> 1 variables.

So far we have assumed that cell sample points are represented as in Arnon e~ al.
(1984a, 1984b, 1988). In fact, cell sample points in the cluster-based cad algorithm may
have one of three representations: (a) uull (no information), or (b) ez~ended, consisting
of a real algebraic number c~, an r - 1 tuple of elements of Q(c~), a nonzero squarefree
polynomial g(z) e Q(a)[~], and an isolating interval for a (real) root of g(~) (this root
is the r tu coordinate of the sample point), or (c) primitive, consisting of a real algebraic
number a (the primitive element) and an r-tuple of elements of Q(a).

In fact~ this extended representation is present in passing in the extension step of
the cad algorithms in Arnon e~ al. (1984a, 1984b, 1988), a l though ul t imately all cell
sample points become primitive in these algorithms. To be specific, when we have
a sample point for the base of a stack, and we isolate the real roots of a squarefree
univariate algebraic polynomial to determine the sections of the stack, the base sample
point, the algebraic polynomial, and each isolating interval for one of its roots give us an
extended sample point representation for a section of the stack. As described in Section

Cluster-based cad Algorithm I97

5 of Arnon el al. (1984a), we can use the NORMAL and SIMPLE algorithms of Loos
(1982) to convert an extended representation to a primitive one. This conversion process
has been observed to often be expensive, and avoiding it whenever possible is a major
goal of the cluster-based cad algorithm. Working with extended rather than primitive
representations whenever possible is one step towards that goal; another such step is to
make do with null sample points, whenever possible, which we also will do.

As we have noted, however, it is a required of a cad algorithm to construct input
polynomial signatures for each of its cells. Previous cad algorithms (such as those in
Arnon ei al., 1984a, 1984b, 1988) have done so by evaluating the input polynomials at
primitive cell sample points. We now show that it is possible to compute the signature
(with respect to the input polynomials) of a cell in a basis-determined cad of E r given
an extended representation for the cell's sample point. In fact, the method we give could
be used in the original as well as the cluster-based cad algorithm, to avoid extended-to-
primitive conversions of section sample points in dimension r, i.e. the highest dimension.

We proceed in two steps. First, we show how to get the signatures of cells in E '
with respect to the basis polynomials from extended representations for their sample
points. Second, we infer input polynomial signatures from these basis signatures plus
signatures for the contents of the input polynomials. Here is a sketch of the first step.
Suppose that r > 2, that s is a cell o f a cad D o r E ~, and thai; c is the unique cell of the
induced cad D ~ of E " l for which s C Z(e). Suppose that we have already determined
(i.e. found thc numl)cr of sections of) the stack S(c) C D, by isolating the real roots of
some suitable g(m~) C Q(~)[;~]. Thus, about each real root of g(zr), we have an open
isolating interval with rational number endpoints. For each basis polynomial Bi, we
compute the greatest squarefree divisor d(z,) of Bi(a, z,) , d(~,) has the same roots as
B~(a, z,), but only simple roots; see Kaltofen (1982) for more information on gleatest
squarefree divisors. Since we are assuming S(c) to be B-invariant, any root of B~(o~, z,)
is a root of g(,~r), tIence for any section s of S(e), Bi vanishes on s if and only if d has
opposite signs at the endpoints of the isolating interval for the unique root o fg(z r) that
corresponds to s. If B; doesn't vanish on s, then it has the same sign on s, on the sector
immediately above s, and on the sector immediately below s. We can determine the
sign of Bi on sectors of S(c) as follows. The endpoints of the isolating intervals for the
roots of g(a~r) give us sample points of the form < a,b >, b rational, for the sectors of
S(c) (much as we got sample points for the sectors of stacks in Section 5 ofArnon e~ at.,
1984a). By evaluating each Bi(a, b), we determine the sign of B; on each sector of S(c).
Fig. 4 gives the algorithm BasisSignatuvesOverCell that embodies this strategy. The
map gsfd in the algorithm is "greatest squarefree divisor".

To infer input polynomial signatures from basis signatures, we need only a few more
observations. Suppose C(z) = conient(Ai). If C(a) = 0 then A; vanishes on every
element of S(c), and we are done. If not, we use the sign of content(Ai), and the
factorization of pp(Ai) (pp(Ai) denotes the primitive part of Ai) as a power product of
basis polynomials, to "infer" the sign of Ai on each element of the stack. Algorithm
InputSignatuvesOvevCell in Fig. 5 has the details.

With algorithm InputSignatuvesOverCell available to us, we have the following
situation. We have no need to convert any extended sample point representations to
primitive form in the cad of r-space. In dimensions less than v, we need primitive
sample points for any cell or cluster that we are going to "extend over", i.e. build a
stack over, as we extend our cad to the next higher-dimensional space. Thus the first
step of E~tendCadClustevs is to compute the sign-invariant connected components of

198 D S Arnon

*- B a s i s S i g n a t u r e s O v e r C e l l (B , p , J)

Inputs G,ven A = (Al , ,A,~) C I~, r > 1, B = (B , , ,B ,~) ,s a b a s i s for p r z m (A) , p =
(p~, ~p~_l) ~s a pr imi t ive sample po in t for a P R O J (B) - m v a n a n t a n d cont(A)-mvariant cell c
m a cad o f E ~-1, 1 e each p. is an e lement of Q (7) for some rea l a l g e b r m c n u m b e r 7 I f r = 1,
t h e n p = l b and c = E ° J - - (J1, . /2, ,Jk)~ k > 0~ls a h s t of o p e n i s o l a t i n g in te rva l s for the
k real roots)~1 < < A~ of some nonzero u m v a r l a t e real p o l y n o m i a l g = g (x r) , such that for
each 3, 1 < 2 _<: k, the point (pl, ,p~_~, l :) hes on the 3 tu sec t ion o f a B - l n v a r l a n t (and hence
also A - m v a n a n t) s tack S(c) over c

Output E = (~1, , a ~ + l) , such t h a t a : = (~rla, , anna) is the ~xgna ture of ~he 2 °~ element
of S(c) with respect to B

(1) [Do ~t] F o r , = 1, ,m, do set h (~) ~- B,(p~, ,p~_,, z~), set d(~,,) , - gs /d(h(z , ,)) ; set
d = 0 ff h = O, set p,,2~+~ ~- szgn(d) = s ,gn(leadzngCoef fzczent(d)) , set ¢r,,~a~ ~ ~- s~gn(h),
for j = k , k - 1 , . , 1 d o Let 4 = (u~,v,), set p,,~j_~ <- szgn(d(u~)), ff p,,z$ ~ / p , ,~ , , , then
o',,~j ~ O, and tr,,=j_l e- szgn(h(uj)), else ~r,,2:_, , - ~r,,~j e- o',,2j ~, []

F i g u r e 4 A l g o r i t h m B a s l s S i g n a t u r e s O v e r C e l l

T ~- I n p u t S i g n a t u r e s O v e r C e l l (A, B,p, J)

Inputs A = (A1, ,An) C I~, r > 1, and the r e m a l m n g i n p u t s a rc as for a lgori thm

BaszsSzgnaturesOverCell

Output T = (rl, .,-r~+~), such t h a t ~'j = (fl,~, ,r,~.~) is the s~gnature of t h e j th element of

S(c) with respect to A

(l) [Get bas,s s igna tures] ~ ¢- BaszsS~gnaturesOverCel l (B,p , J)

(2) [Infer input po lynomia l s i g n a t u r e s] Reca l l t h a t we follow the c o n v e n t m n that
slgn(content(F)) Is chosen to be szgn(F), for any F e Ir For each A, E A, there exist

m S~. ' . For z = 1, ,n, nonnega t lve integers e,,1, . , e , ,~ such t h a t A, = content(A,) 1-[~=1 e, ~.
and for ? = 1, ,2k + 1 do r,.j *- szgn(content(A,))l-[~=~ ~,,3 []

F i g u r e 5 A l g o r i t h m I n p u t S i g n a t u r e s O v e r C e l l

Cluster-based cad Algorithm 199

G ~, and for each (i.e. for each sign-invariant cluster of DI), insure that at least one of its
constituent cells has a primitive sample point. Needing a primitive sample point only
for one cell in each sign-invariant cluster, rather than for each cell of the cad, is a key
reason why the cluster-based cad algorithm is faster than the original cad algorithm in
those cases that it is. For cad's of E a, however, the saving reali~.ed here in the extension
step are somewhat offset by the fact that our current E 3 adjacency algorithm (given in
Section 4) needs primitive sample points for certain additional cells of the induced cad
of E 2. In general we should expect that adjacency algorithms may require us to perform
certain addition extended-to-primitive conversions of sample point representations.

Fig. 6 gives the complete algorithm EztendCadClusters. The reader will see that it
is essentially a formalization of our discussion in Section 1.2. We say that a cad graph
is initial if the "initial" adjaeencies are present in it, where these are (1) the intrast~ek
adjacencies of each stack of that cad, and (2) the induced adjacencies as defined in
Section 1. Note that even though we use a basis B for pvlm(A) to determine the stacks
of our cad's, E:~tend(/adClustevs constructs A-invariant clusters prior to extending. In
general, A-invariant clusters will be coarser than B-invariant clusters, and we want the
extend over the coarsest l)ossible clusters to minimize the number of primitive sample
points that we need.

Suppose v = 2. Since maxima[sign-invariant clusters in a cad of E ~ each consist of
a single cell, by Step (2.1) of EztendCadClusters, we see that we get primitive sample
points for all 1-cells and all 2-cells, and an extended or primitive sample point for each
0-cell, of the cad of E 9 that we build.

4 Adjacency step

For each i, the role of what we call the "a4jacency" subalgorithm of cluster-based cad
construction is to add non-initial (interstack) adjacencies to the graph for the cad of E i.
It is not necessary to actually have such an adjacency algorithm for each i. If we wish~
we need compute no adjacencies beyond initial adjacencies, for any value(s) of i <_ r. For
example, since at present we only have implemented adjacency algorithms for i = 1, 2, 3,
the adjacency step in our implementation of the cluster-based cad algorithm is currently
null for i >_ 4. As might be expected, if we have a null adjacency algorithm for the cad
of E i, then our graph for that cad is almost certainly partial, and the sign-invariant
components of that graph give us a clustering of the cad that is almost certainly not
maximal.

In Fig. 7 we give our 2-space adjacency algorithm, which is an adaptation of algorithm
CADA2 of Arnon et al. (1984b). Note that when r = 2, the maximal sign-invariant
clusters in the induced cad (of 1-space) are just singleton clusters, i.e. the individual
cells. Hence when r = 2 we construct all adjacencies of the cad of E ~ that we build,
and so clearly the sign-invariant components of the graph for this cad correspond to
maximal sign-invariant clusters of D.

As for cells, we say that two (distinct) clusters (of a given clustering of a given cad)
are adjacent if their union is connected. It is not hard to show that clusters CI and C2
are adjacent if and only if there is a cell cl of C1, and a cell c2 of C2, such that el and c2
are adjacent. We call an adjacency of cells belonging to different clusters an interclustev
adjacency, whereas an adjacency of cells in the same cluster is an intracluster adjacency.

One possible adjacency algorithm for E a would be to simply build (all interstack)
adjacencies in E a over all intercluster adjacencies of the induced cad of the plane, using

2 0 0 D . S . A r n o n

G +- E x t e n d C a d C l u s t e r s (A, B, G s, E z t e n d C e l l T o S t a c k)

Inputs: A C IT. B C IT is a basis for przm(A). G' = (A ' , B ' , V ' , E ' , G ") is a
graph for a cad D' of E ~-1 such that an A-invariant stack exists over each cell c of D I,
EztendCel lToStaek(c~B' ,B;g , J , I , L) is a procedure with the following specifications. For
inputs: c is a cell in a basis-determined cad D' of E ~- ' , r > 2. B ' C I~-1 is a basis for D'.
B C I~ is a basis, such that each element of B is either delineable or nullified on c. For outputs:
Let p be the sample point for c, and suppose the real algebraic n u m b e r 7 is a primitive element
for p (see Amen et al., 1984a, for this terminology), g is a nonzero squarefree univariate poly-
nomial g(z,) with coefficients in the field Q(7) whose real roots are in one-one correspondence
with the sections of a B-invariant stack S over c. J is a list of isolating intervals for the real
roots of g. I is a list of cell indices for the elements of S (since we know the cell index of c, we
know the radices of elements of S). L is a list of the intrastack adjaeeneies of S.

Output: G = (A, B, 1~, E, G') is an initial graph for an A-invariant cad of E ~,

(1) [Get sign-invariant clusters.] Do a sign-invariant connected components computat ion in G',
to get a certain sign-invariant clustering of D',

(2) [Process each cluster.] Initialize V and E to the empty set. For each sign-invarlant cluster
C of D', do the following steps (2.1) - (2.3).

(2.1) [Build a stack over the representative cell of the cluster.] b'ind a primllAve sample point
p for an (arbitrary) "representative" cell c of C; if none current ly exists, construct one (by
extended-to-primitive conversion) for some cell c of C, of highest possible dimensiom Call
EztendCellToStack(c, ' " +-- B , B , g , J , I , L) . Se tT I n p u t S i g n a t u r e s O v e r C c l l (A , B , p , , I) . Using
I , T, p, g, and J, we make a cell triple for each cell of the stack, as follows. We know tlle indices
of all cells in the stack (from I), and their signatures (frorn T). Make a primitlw, sample point
for each sector of the stack, and an extended sample point for each section (using p, g, and
J) . However, if the primitive element for p is of degree one, i.e. a rat ional number , dmn g has
rational number coefficients, and so make a primitive rather dmn at, extended sample point for
each section of the stack. Add all cell triples to V. Add the in t ras tack adjacencies of L to E.

(2.2) [Infer stacks over the remaining cells of the cluster.] For all cells of C other than the one
just used, do the following three steps: (1) make up cell triples for a stack over it, each triple
consisting of an index inferred from the triple for the corresponding cell of the stack over c, a
signature copied from the triple for the corresponding cell of the stack over c, and a null sample
point; (2) add the triples for this stack to V; and (3) add the in t ras tack adjacencies for this
stack to E.

(2.3) [Induced adjacencies of each induced cluster.] Let 2k + 1 be the number of elements of
the stack over the representative cell of C (thus each stack over an element of C also has 2k + 1
elements). For each intracluster adjacency {d,e} of C, and for i =] , . . . ,2k + 1, record in E
that the i th element of the stack over d is adjacent to the i th element of the stack over e []

.

Figure 6: Algor i thm E x t e n d C a d C l u s t e r s

Cluster-based cad Algonthna 201

A d j a e e n e l e s T w o S p a e e (G)

Input~ G (1, B, t , E, G') l~ a graph for a basl~-determmcd t-mvariant cad D of E 2 (with
ba~Is B).

Output G Is modltled so that tt contains ad&tmnal adjucencws among cells of D, m particular,
ff G is mtml at input, then it is a full graph fi)r D at output

(1) [Interstack adjaeencIe,] Set B* ,- IIB Let al < a2 < < a ~ < a=~+l, k _> 0, be the
sample point~ for the cells of D ~ (Each a~,~ 1 is a rational sample point for a 1-cell, each a=, as
an algebrmc sample point for a 0-cell) For z := 1, , k, call algorithm SSADJ2 of Arnon et al
(1984b) with inputs B*, a2,~ a=, -1, and a=~+~, add the content~ of its outputs LI and L= to G,

e to E Note that the sectmn numhers which occur in the adjaeenc~es returned by SSADJ2
must first be ¢onverted into the reduces of the corresponding cells of D, for example, if the 11st
L~ returned by the z °~ call to SSADJ2 eontauis the adjacency {3, 2}, it must be converted to
{(2~, 6), (2~- l, 4)} b~,fore being added to L, Infer the remaining mterstack adjacencaes between
S(e~,) and B(e~. ,), and between S[c~,) and B(c~, I~), as deserabed at the end of Sectmn 2 of
Arnon el al (1984b), and add them to G ~_1

Flgmc 7' Algorithm AdjacenclesTwoSpaee,

the algonthm~ oi Arnon el al (1988) Asbummg that we s tar ted with an mltlal graph
for the cad of E a, we clearly would end lap with a full g raph for this cad A sign-
mvanant components computa t ion m tht.~ graph would then obviously yield maximal
s ign-mvanant clusters of the cad D of E 3, We now show that there is a proper subset
A of the set of all intercluster adjacencies of the reduced cad o f E2, such tha t given an
mltml graph for D, if we then budd (all interstack) adjaceneies over each element of A,
Lhen a sign-mvarmnt conne~ ted components computa t ion in the resulting graph yields
maximal s ign-mvariant clusters of D Besides the obwous reductmn in the amoun t of
adjacency de te rmina tmn we have to do in E 3, it turns out tha t the particular A tha t we
show is sufficient allows us to often avoid the most costly extended-to-pnmltzve sample
point conversmn~ m E 2

Let us first determine what kinds of antercluster adjacencms can occur among mam-
mal mgn-mvarmnt clusters of a cad of the plane. We assume tha t this cad has the bound-
ary property Clearly there can be no mtercluster adjacency between 0-clusters I t is
also clear tha t there can be no mtercluster adjaceneles between two mammal 2-clusters,
since by the In te rmedia te Value Theorem, all 2-clusters have the same signature wath
respect to the input polynommls So that leaves us with the posmbfllty of adlacencles
between 0- and I-clusters, 0- and 2-clusters, 1- and 1-clusters, and 1- and 2-clusters
For the first of these cases, clearly all mte rchs te r adjacenmes are {0, 1}, 1 e involving a
0-cell of the 0-cluster and a 1-cell of the 1-cluster. In the second case, there can be both
{0, 1} and {0,2} intercluster ad3acencles In the th,rd case, there can only be {0,1}
mtercluster addacenmes, since (by the boundary property) adjacent cells m the cad of
the plane have different dlmensmns In the fourth case, by the boundary property, there
can be {0, 1}, {0, 2}, and {i, 2} mtercluster ad3acencms

In point ot fact, addacenmes of two 1-clusters seem to occur rarely, for cer tmn "pecu-
har" sorts of inputs For example, lct F(m,y) = y + z, G(m,y) = y-- ~, and H (~ , y) = y,
and let A = { F G H , FG, F H } h g 8 shows an A-mvarmnt cad of the plane t h a t il-
lustrates both intercluster addacenmes of a 1-cluster and a 1-cluster, and an adjacent

202 D.S. Arnon

F

//
~ G H

Figure 8: Sample cylindrical algebraic decomposit ion of the plane,

1-cluster and 2-cluste~ for which their only intercluster adjacency is a {0, 2} adjacency
of cells.

As for cells, the boundary of a cluster C is the set of all limit points (~f/~ UC which
are not contained in R. It is not hard to see tha~ clusters "do not have the boundary
property", i.e. if two clusters are adjacent, then it is not necessarily the case that one
is contained in the boundary of the other. For example, the tacnode curve is defined by
the equation:

F (e , y) = y 4 _ 2y3 + yZ _ 3~2y + 2 ~ a = 0.

Fig. 9 shows an F-invariant cad of the plane. The curve itself is a max ima l sign-invariant
1-cluster of this cad, and clearly, for any sign-invariant 2-cluster C, nei ther C nor the
curve is contained in the boundary of the other.

We now prove a theorem that points the way to our ac tual 3-space adjacencies
algorithm. The basic idea, given that clusters in the plane may fail to have the boundary
property, is that for a pair of adjacent clusters of a cad of the plane, we find subclusters
of each that are as large as possible while still having the p roper ty that one is contained
in the boundary of the other. I t then follows that it is sufficient to build adjacencies in
E a over just one of the intercluster adjacencies between each such pair of subclusters.

We now define the central notion for our theorem. Given adjacent clusters C1 and C2
of some cad, we say that subclusters Q1 C C1 and Q2 c C2 are cobounding subclusters
for C1 and C2 if

1. Each cell of Q1 is in the boundary of one or more cells of Q~, and

2. For each cell of Q2, there are one or more cells of Q t contaitted in i ts boundary,
and

Cluster-based cad Algorithm 203

i
Figure 9: Cylindrical algebraic decomposition of tacnode carve.

3. If cells cl and c9. of Q2 are adjacent, then there are ceils d 1 and d2 of Q1 such that
dl C Oel, d2 C Oc2, and either dl :: d2, or dl and dz are adjacertt.

Clearly if Q1 and Q2 are cobounding subclusters for C1 and C2, if R1 = UQ1, and
if R2 = t3Q2, then R1 C bR2. If Q1 and Q~ are cobounding subclusters for C1 and C2,
and if for any othcr cobounding subclusters O1 of C1 and O2 of C2, it is the case that
either O1 f3 Q1 = 0, or 02 fq Q~. = 0, or O1 c Q1 and O2 C Qg., then we say that Q1 and
Q2 are maximal cobounding subelusters for C1 and C2.

Let C1 and C2 be adjacent sign-invariant clusters of D' such that R1 C OR2, where
R~ = UC~ and R~. = UC2. Let S(R~) be a stack over R1 and S(R2) a stack over R2. We
say that S(R1) and S(R2) are adjacent. If for any section s of S(R2), Os fq Z*(R1) is a
section t of S*(Rt), then we say that S*(R2) has the unique section boundary property
(USBP) in S*(R1).

THEOREM 4.1 Let D be a basis-determined cad of E r, such that the induced cad D'
of E r-1 has the boundary property. Let C1 and C2 be adjacent sign-invariant clusters
of D', and suppose that Q1 C C1 and Q2 c C2 are cobounding subelusters for C1 and
C2. Let R1 and R2 be ihe respective unions of Q1 and Q2, and suppose that for any
cells e, d of Q~ u Q2, if d C Oc, then S~(e) has the unique section boundary property in
S*(d). Let S(R~) and S(R~) denote the unique stacks over R1 and R~ with which D is
compatible, in the sense that each element of one of these stacks is a union of elements
of D. Then S~(R2) has the unique section boundary property in S*(R1).

PROOF. Suppose the assertion to be false, and let s be some section of S*(R2) whose
boundary points in Z*(R~) are not a section of S*(R~). Then there exist ceils t~ and tt

204 D.S . Arnon

of D such that: tk and tl are contained in s, tk C S(ck) and tt (: S(ct) tbr cells ck and
et of Q2, there are cells d~ and dt of Qt such that dk C Och a n d dl ~ dh:z, and where
uk C S(d~) and ut C S(dt) are the respective boundary sections o f tk and tt, uk is section
nk of its stack~ ul is section nt of its stack, and nk ¢ nt. There is a sequence (chain) of
adjacent cells in s joining tk and tt. Each ti in this chain is a sect ion of S(ci) for some
ci E Q2, and for each such ci~ there is a dl E Qt such that dl C O c i , and either d~ = di+l

or d~ and d~+l are adjacent. Since S*(c~) has the USBP in 5*(all) , tl has a boundary
section ul in S*(di). Then there exists a j for which uj is sec t ion nj of its stack, ui+l
is section nj+l of its stack, and nj ¢ n j+l . Suppose wi thout loss of generality that
cj C Oej+l, hence tj C Otj+l, hence uj C Otj+l. Since di a n d di~t are identical or
adjacent, clearly section nj+l of S*(dj) is also contained in 0 t j + t , hence both sections
n i and nj+~ of S*(dj) are contained in Otj+~, contradicting t h e USBP of S*(Cj+l) in

[]

By the results ofArnon et. al. (1988), the hypotheses of Thcc~rem 4.1 are satisfied
for each pair of cobounding subclusters for each pair of adjacent maximal slgn-invariant
clusters of the induced cad of E ~. Hence, for each such pair of c lus ters in the plane, it is
sufficient to build adjacencies in E 3 over just one of {;he in te rc lns te r adjacencies between
each of their pairs of maximal cobounding subclusters, o.nd this is what we will do.

Let us now consider the task of finding the pairs of maximal c~Amunding subclusters
for a pair of adjacent clusters of the induced cad D' of E 2. Lilk ~. is made easier with
the following concept. Suppose for adjacent clusters Cl and C2 of 1) I, that whenever
cells C 1 G C1 and c2 G C2 are adjacent, cl C Oc~ C OC2. ~l'hen we say thai. C1 and C2
have one-way boundary inclusions. The next theorem tells us th~tt clusters in E 2 have
one-way boundary inclusions.

THEOREM 4.2 Suppose given a rnazimal sign.invariant clustering of a cad with the
boundary property, such that some cell of a cluster C1 is contairzcd in the boundary of
(one or more cells of) a cluster C2. Then for any cells cl C Ct and (:~ (: C~, /f cl and
c2 are adjacent, then el C Oc~ C 0C2.

PROOF. Suppose cell dl of cluster C1 is contained in boundary o f C~; then clearly dl
is in the boundary of some cell d2 of C2. Since C1 and C2 are different maximal sign-
invariant clusters, there is some input polynomial F which vanishes on one but not the
other. Since real varieties are closed, F must vanish on dl, i.e. on C1, but not on d2~ i.e.
not on C2. Suppose now that cells Cl E CI and e2 E C2 are ad jacen t . Then one contains
a limit (boundetry) point of other, hence by the boundary p rope r ty , one is contained in
boundary of the other. But then el C 0C2, since c2 C c9C1 would imply that F vanishes
on c2, a contradiction C3

Fig. 10 gives an algorithm to find all pairs of maximal cobound ing subclusters for
a given pair of adjacent clusters. In Fig. 11 we give our 3-space adjacency algorithm
AdjacenciesThreeSpace. It assumes that the particular value of the procedure param-
eter EztendCel lToStack of algorithm CLCAD that is called for in Section 5, i.e. algo-
rithm EztendCel lToStack of Arnon ei al. (1988), has been used to determine the stacks
of the cad D of E 3. The various adjacency subalgorithms (e.g. AdjacenciesOverO1)
that AdjacenciesThreeSpace calls are from Arnon et al. (1.988). E~ch such subalgorithm
takes the two cells of an adjacency as inputs, and we are required t o have primitive sam-
ple points for both. We assume that extended-to-primitive conversion is done as needed
for these calls. A nullifyir~g 0-cluster is a 0-cluster on whose un ique constituent 0-cell
some element of B is nullified.

Clustei-based cad Algorithm 205

K , MaximalCob(mndingSubclusters (C1,C~)

lnpuls' C1 and C,~ are (hsjomt clusters of a cad of E ~ whtch has the boundary property, such
that C,j and C2 have one-way boundary mclusmns if they are adjacent

Output If Cl and C~ are not adjacent, then K is the empty hst Otherwise K is
a hst (((Q, , , ,Q, ,2) ,L1) , ((Q2, , ,Q,~a) ,L2) , ,((Q.~,I,Q.~,~),L,~)), such that (Qt,~,Q.,~),
(Q~,~, Q2 ,~) , . , (Q~,~,Q~,~) are the maximal cobounding subclusters for Ca and C:, and for
each (Q.,~, Q~,~), L~ is a hst of all lntercluster adjacenc~es between Q.,~ and Q.,~

(l) [Do it] For each mtercluster adlacency {c~,c~} between Ct and Cz, create an xmtml
clement(({c~},{c2}, {{ct,c~}}) of K "]'he,, until no more coalescing is poss,ble, attempt to
"paste together" pairs (Q,,I,Q,,~),L~) and (Q~,,,Qa,~),L#) of eleraeats of K We at tempt to
paste such a pmr by first checking whether Q~,a ~- Q,,~ ~Q~,~ ~s a subeluster of C~ and whether
Q ~ +- Q,,:t3Q~,~ is a subeluster of C~, If so, then we set L~ to be L, UL~ plus any other
mtercluster adjaeencxes of Q~,~ and Q~,~, and check whether Q~:,~ and Q~ z are coboundmg
subclusters of G~ and (7~ t_]

Figure 10, A l g o n t h m MaxmialCoboundmgSubclusters ,

The reader should now be eonwnced of the following proposition

TIIEOREM 4.3 Let D be a basis-determzned s:gn-mvamaut cad of E ~, and let D ~ denote
the reduced s~gn.mvar~ant cad of E ~ Suppose we have a graph representation for D
wMch contains D's ~nztzal adjacenczes, and the other ad3acenc~es of ~ ~hat are added
by Adjacenc~esThveeSpace Then the cluslers of D thal we obtain by a szgn-mvarzang
connected eoTnponenls computatwn zn the graph for D are mazzmal (szgn-mvamant)
clusters

From algor i thm AdjacenciesThreeSpaee we see that we do not avoid all extended-
to-primitive conversmns of 0-cell sample points in the reduced cad of the plane we are
reqmred to have a primitive sample point for each 0-dimensional maximal slgn-mvarlant
cluster m E 2, and posmbly also for certain 0-cells in 1-clusters We now indicate how
it m that the part icular such conversions that actually are done are typically no t as
expenmve as the ones that are not done Conmder for example the sample points of
0-clusters Such 0-clusters are usually "topologmally significant", e g they are typically
the intersection points of two curves m E 2 It has been our empmcal observation that
the sample points of such "topologically slgmficant" 0-cells often do not require field
extenmon (1 e nontnv la l primitive element computat ion) m the conversion of their
extended representat ions to pnmatlve In other words, the Mgebrmc polynomial which
is part of their extended representataon m typically hnear Some explanation of this
phenomenon is prowded by Muller's observatmn (Muller, 1978), that probably at most
one intersection of two (random) algebraic plane curves lies on any particular line m
the plane~ and so for any F, G E I2, the curve defined by F and the curve defined by G
probably only have one intersection on a hne z -- a, where a is the sample point of a
0-cell m the reduced cad of E ~ If so, then gcd(F(~nd), G(a, y)) is hnear, since each of
its roots corresponds to an intersection point of the two curves Hence the y-coordinates
/~ of intersection points are likely to have the property tha t Q(a,fl) :- Q(a), a e the
primitive element algorithm xs trxvlal

The tacnode provides an illustrative example of how we are often able to avoid

206 D S A r n o n

A d j a c e n c l e s T h r e e S p a c e (G)

Inputs G = (A, B, V,E, G') is a graph for a bas is-determined A-mvar ian t cad D of E ~ (with
basis B), such that D has the boundary property, and such tha t if cell d of D ' is contained in
0c for a cell c of D ' on which no element of B is nullified, then S*(c) has the unique section
boundary property m S*(d), and such that G I contains all adjacencms of D I, and has a pr~mltlve
or extended sample point for each of its cells

Output G is modified so that it contains addit ional adjacencles alnong cells of D, in particular, if
G is lmtlal at input, then the s~gn-mvarlant connected components of (I ¢orrespond to maximal
slgn-mvarlant clusters of D

(1) [Construct maxlmal slgn-mvarlant clusters of reduced cad] I)o a sign-mw, rmnt connected
components computation in the G' graph, to get (maximal) s lgn-mvamant t luster~ of D s

(2) [Process (1-cluster, 1-cluster) adjacenctes]]"or ea, h parr (7~, C,~ of a,bacent 1-
clusters of D' , and for each of their (0,1) mter¢luster ad,la, en¢ies { 0, ,}, set L , -
AdjacenczesOverOl(c°,cl,B ', B) and add the adjacencles of L to /¢

(3) [Process (1-cluster, 2-cluster) adjacencles] For each pa i r Ct, (:2 ,,f adjacent 1-cluster
and 2-cluster of D' , do K ~ Maz~malCoboundzrtqSubclusters(C:t,(:2). For each L, of
K, do the fono,v,ng loop. If L, contains (1,2) ad~acencles, th,'II h't {,':,c,~} be one of
them, set L ~ Ad2acenczesOverl2(cl,c~,B), add the adjacenctes of L to E, and exit
this loop iteration Otherwise, if L, contains (0,1) adjacenctes, then let {ct,',c~} be one
of them, set L ~ Adjaeenc~esOverOl(c°,,e,,B~ ' ,B) , add the adjacen¢ies, of L I,o E, and
exit th, s loop l teratmn Otherwise, let {c°,c, 2} be a (0,2) adjacency of L,, set L , -
AdjacenczesOver NonNuU* f yzng02(c °, c2, , B', B), and add the ad]acen(ie~ ,,f L to I';

(4) [Process adjacene~es of non-nulhfymg O-clusters I I,'or each nt, n-nulhfymg O-cluster C,
with unique constituent cell c °, do the following two steps Fi rs t , fi~r ea(h l-cluster Ct
which is adjacent to C, and for each of their (0,1) mtercluser adjacencles {e°,ct}, set
L ~ AdjacencsesOverOl(c°,cl,B',B) and add the adjaeencres of L to E Second, for eadl
2-cluster C2 which is adjacent to C, do K ~ MazzmalCoboundmgSubclusters(C, C2), and
for each L, of K, do the following loop If L, contains (0,1) adjacencws, then let {c,°,c,}l
he one of them, set L *-- AdjacenczesOverOl(c°,c~,,B',B), add the adjacenmes of L to
E, and exlt this loop l teratmn Otherwise, let {e°,,c2,} be a (0,2) adjacency of L,, set
L *-- AdjacenezesOverNonNulhfyzng02(c °, c2,, B', B), and add the adlacencles o£ L to t3

(5) [Process adjacenmes of nullifying 0-clusters] For each nulhfymg 0-cluster C, with unique
constituent cell c °, do the following steps For each (0,1) adjacency {c°,c ~} of D', set L
AdjaeenczesOverOl(c °, c ~, B'I B) and add the adjacencles of L to E For each (0,2) adjacency
{c °, c 2} of D', set L ~ Adjacenc~esOverNullzfyzng02(c°,c 2, B ' , B), and add the adjaeencles
of L to E c3

Figure 11 A lgo r i t hm A d j a c e n c l e s T h r e e S p a c e

Cluster-based cad Algorithm 207

G ~ C L C A D (A, Basis, Projection, EztendCellToStack, Adjacencies)

Inputs: A is a finite subset of I~, for some r >_ I. Basis is a procedure which, for any i > 1,
given a subset U of Ii, computes a basis for prim(U). Projection is a procedure which, for any
i > 2, maps a subset of Ii to a subset of Ii-1 having the expected properties (cf. Theorem 2.4
of Arnon el al., 1988). EztendCellToStack(c, B ~, B;g, J, I ,L) is a procedure with the same
specifications as the input parameter of the same name to algorithm EztendCadClusters of
Section 3. Adjacencies is a procedure which, for any i > 2, given a graph for a cad of E; , finds
certain of its interstack adjacencies and adds them (i.e. adds the corresponding edges) to the
graph.

Output: G -: (A, B, V, E, G I) is a graph representation for an A-invariant cad D of E ~.

(1) [r = 1 (base case).] Set B ~-- Basis(A). If r > 1, then go to step (2). Construct a list J
of open isolating intervals for the real roots of the elements of B, thus determining the cells
of a cad D of E 1. Set T ~- InputSignaturesOverCell(A, B, @, J). Construct art index and a
primitive sample point for each cell. From these and from T, create a triple for each cell, and
set V to a list of all these triples. The adjacencies of D are obvious; collect them as the set E.
Set G I to 0, to complete the construction of a graph G for D. lleturn.

(2) [r > 1. Initial graph.] Set P ~-~. Projection(A), and call CLCAD with inputs P, Basis,
Projection, E'x.tendCellToStack, and Adjaeencics, to obtain output G t, Call algorithm
EztendCadClusters of Section 3 with iuputs A, B, G ~, and E~lendCeUToStack to obtain
an initial graph G for an A-invariant cad of E ~.

(3) [r > 1. Non-initial adjacencies among r-space cells.] Apply Adjacencies to G D

Figure 12: Algorithm CLCAD.

extended-to-primit ive conversions of the sample points of 0-cells in 1-clusters. A sign-
invariant cad of E 2 for the tacnode is shown in Fig. 9. Using an implementat ion of
algorithm CAD (cf. Section 6), construction of this cad took 29 minutes, with 27
minutes of tha t spent in converting the extended representations of four 0-cell sample
points to primitive: cells (4,2), (4,6), (8,2), and (8,6). Using CLCAD, we were able to
construct the same cad of 2-space in 1 minutes; primitive sample points for cells (4,2),
(4,6), (8,2), and (8,6) were not required, because they belong to a 1-dimensional sign-
invariant dus te r (the collection of all cells contained in the curve), which is adjacent only
to 2-dimensional sign-invariant clusters, and for each such adjacent 2-cluster, each pair
of maximal cobounding subelusters for the curve and the 2-cluster has an intereluster
adjacency between a 2-cell of the 2-cluster and a 1-cell of the curve.

5 Main algori thm

In Fig. 12 we give our main a lgor i thm CLCAD in a form which has various procedure
parameters. Thus the exact version of the general cluster-based cad s t ra tegy tha t a user
desires can be obtained by passing appropriate concrete procedures for these pa rame-
ters, for example, one might use MeCallum projection (MeCallum, 1988) instead of the
projection map assumed in Section 2, or one might use other adjacency a lgor i thms than
those we have given in Section 4.

Let us now list the part icular concrete procedures that we pass for C L C A D ' s pro-

208 D.S. Arnon

Adjaeencies (G)

(]) If r =- 1 or r > 4 then return. If r -: 2 then AdjacenciesT~oSpucc(G). If r := 3 then
AdjacenclesThreeSpace(G)

Figure 13: Algorithm Adjacencies.

cedure parameters in our current implementation; this informat ion in effect summa-
rizes Section 2-6. The default for calls to CLCAD is: we don ' t care what basis B for
prim(A) the procedure Basis computes. We set Project ion(A) ~- P ROJ(B)Ucont(A),
2 < i < r. We pass procedure EzgendCellToStack of A r n o n et al. (1988) as argument
EztendCellToStack. Finally, as one may expect from Sect ions 4, wc pass the algorithm
shown in Fig. 13 as argument Adjacencies of CLCAD.

Given the these concrete procedures as values for C L C A D ' s procedure parameters,
and given input polynomials A C I , with 1 < r < 3, the sign-invariant connected
components of the undirected graph (V, E) built by a lgor i thm CLCAD correspond to
maximal sign-invariant clusters of the cad D of E ' , and the boundary of each cell of D
is a (disjoint) union of lower-dimensional cells, i.e. D has the bounclary property.

6 Examples

6 . 1 G e n e r a l r e m a r k s .

We have not so far performed a detailed study of our implemen ted cluster-based cad
algorithm's behavior, but preliminary experiments indica te that its performance is some-
times better, sometimes worse, than the "original" cad a lgor i thm (i.e. algorithm CAD
of Arnon et al., 1984a). Of course, the results of the comparisons we have carried
out reflect the use of the particular adjacency algor i thms given in Section 4. In any
particular such comparison, the outcome seems to d e p e n d on the relative time of the
extended-to-primitive sample point conversions that the original algorithm must do but
which the cluster-based algorithm avoids, compared to the adjacency computations that
the cluster-based algorithm must do but which do not o c c u r in the original algorithm.
Thus the Quartic and Ellipse examples below, for which the original algorithm was
faster, most likely had easy sample point conversions re la t ive to the cost of adjacency
computations.

Fig. 14 contains a summary of the results of our comparisons. The times 'in it were
obtained from algorithms CAD of Aruon et al. (1984a), a n d algori thm CLCAD of this
paper, with both algorithms computing finest squarefree bases. Both algorithms were
implemented in the SAC-2 computer algebra system (Collins, 1980), on a Vax 11/785
running Unix. The times given in the table are in minutes. To, iain~t is the time spent by
the original cad algorithm, and T~z~,t~red the t ime spent b y the cluster-based algorithm,
for each example. A time of zero minutes means less than half a minute. The notation
"> n minutes" means that an algorithm ran for at least n minutes before either it was
terminated or our computer went down. The column "Cel ls" gives the number of cells
in the cad's built by both the original and cluster-based algorithms, and "Clusters"
gives the number of maximal sign-invariant clusters in the cad built by the cluster-based

Cluster-based cad Algorithm 209

Figure 14:

N a m e

T a c n o d e

SIAM
Toptyp
Pair 1
Pair2
Pair3
Pair4
Pair5
Quartiel
Quartic2
Quartie3
Quartie4
Quarries

•origlnal T • clu~ teT, ed

29 1
1 1
> 120 4
> 90 7
> 83 9
19 4
1 1
7 7
2 2
> 115 > 115
> 270 25
46 47
0 0

CADIII 0 1
Quartie 2 10
Implicit > 30(l 89
SphercCatas > 827 282
Ellipse 9 74

CelZs" CluSi~
55 5
41 15
37 9
103 15
127 27
85 21
63 15
57 15
21 5
? ?

37 3
55 5
21 4
51 3
123 35
855 9
1393 9
2291 715

Sample comparisons of original ~nd cluster-based cad algorithms.

algorithm, Sections 6.2 - 6.5 give the input polynomials for each example, and where
applicable, cite a source for the example.

6.2

6.2.1

M i s c e l l a n e o u s b i v a r i a t e e x a m p l e s .

T a c n o d e (A r n o n e t al,~ 1 9 8 4 a)

y4 _ 2y3 .}. y2 _ 3~2y + 2~4

6.2.2

6.2.3

SIAM papers pair of polynomials (Arnon et al.~ 1984a~ 1984b)

144y 2 + 96~2y + 9~ 4 + 105~ 2 + 70~ -- 98

~y2 + 6~y + ~a + 9x

Toptyp a lgor i thm example (Arnon ~ MeCaUum, 1988)

y4 _ 2~ya _ ~2y2 + y2 + 2~3y + ~2 _ 1

6.3 F i v e r a n d o m l y g e n e r a t e d p a i r s o f b i v a r i a t e p o l y n o m i a l s .

Each consisted of a quadra t ic and a cubic: polynomlal) with two-dlgit integer base coefficients,

6.3.1 first pair.

3y 2 - 2zy + 28~ -~- 31

- 8 y 3 + 6z2y - 15,~y - 7y - 7z 3 -b 11~ + 6.

210 D . S . A r n o n

6.3.2 second pair.

6.3.3 third pair.

6.3.4 fourth pair.

6.3.5 fifth pair.

- 9 y 2 .k3Omy ' 22~ ~ .~'21

2y 3 - 1 2 ~ 2 y - 1 2 ~ y 8 y - [l l a 2.- 2~ 2.

- 2 y ~ 13~ f 22

- 1 3 y 3 + 5~y 2 + 1 2 y ~ ~ 1 4 ~ 2 y + l l y - 10~ 2 -t [1.

- 1 2 ~ y - 1 5 y - 30~2-1 4~ I 21

- m y ~ -p 15y 2 -~ -8 ~y - i2y ~-12m ~] 9.

27~.y t 9:~, 2 , 3 t~ I 4

5y 3 - 14~92 -~" 15y 2 "J 13~r.2y I 2~y t Idy 7ut :s 3;r,.

6.4
Each had two-dlgit integcr base coefficients.

Five r a n d o m l y g e n e r a t e d b i v a r i a t e q u a r t i c s .

6.4.1 first quartic.

6.4.2

6.4.3

44ml1 ~ -~- 57~y 2 t 25~1 ~ °37~r, a 31~r,.

6.5

6.5.1

6.4.5

6.4.4 fourth quartic.

60my 3 + 59y 3 -- 41y 2 - ~5=3y + 47my + 45y-k 22m 4 - 38m 3 + 3z 2 - 24.

fifth quartic.

52¢2y 2 + 3 0 ~ y 2 + 49y 2 - 4 ~ 2 y - ~ 6 2 ~ y + 9 ~ 4 %33~ 3.

T r i v a r i a t e e x a m p l e s .

CADIII example surface (Arnon et al.~ 1988)
y3 z ~ ~y2 ._ ~3

second quartlc.

-6294 - 29x~y ~ - 459~.~-45~3~ 5 ~ y ~ 26:~ 4 ~ 27~ 58.

third quartic.

--50y 4 ~ 48y 3 - 8y 2 - 34~2~ - llm ~ - 5m.

Cluster-based cad Algorithm 21l

6 . 5 . 2

6 . 5 . 3

6 . 5 . 4

6,5.5

P o s i t i v e d e f i n i t e c a n o n i c a l f i) r m q u a r t i c (A r n o n & M i g n o t t e ~ 1 9 8 8)

p

8p7,- 9q ~ - 2 p 3

256r a - 128p2~ 2 -I- 144pq ~r + 16p 4~" - 27q "j - 4p3q 2

C u r v e I m p l i c i t i z a t i o n (A r n o n ~ 1 0 8 8)

505t '~ - 864t ~ + 570t + x - 343

211t 3 - 276t 2 - 90t .~ y + 345

U n i t s p h e r e a i l d c a t a s t r o p h e s u r f a c e s (M c C a l l u m ~ 1 9 8 8)

z 2 + y2 + ~2 _ 1

z 3 + ~:z + y

E l l i p s e e x a m p l e (A r n o n & M i g n o t t e ~ 1 9 8 8)

b

b - 1

e

c - 1

c + 1

c-l-a + 1

e + a - 1

c .~-a+ 1

e - - a - 1
b2c 2 l" b 4 -a2b 2 - b 2 } a 2

7 R e f e r e n c e s

Aho, A. V., Hopcroft, J., Ullman, J. (1974). The Deaign and Analy•iJ o] Computer Algorithm~.
Reading, Massachusetts: Addison-Wesley.

Arnon, D. S. (1979). A cellular decomposition algorithm for semi-algebraic sets. Proceedings of an
Internat ional Symposium on Symbolic and Algebraic Manipulation (EUROSAM '79). Springer
Lee. No~en Camp. Sci. 72, 301-315.

Arnon, D. S. (1981). Algor i~hma/or the Geometry o] Semi-Algebralc Seth. PhD thesis, Tech. Rept.
#436, Comp. Scl. Dept., Univ. Wisconsln-Madison.

Arnon, D. S., Collins, G. E., McCallum, S. (1984a). Cylindrical algebraic decomposition I: the basic
algorithm, S I A M J. Comp. 13/4 , 865-877.

Arnon, D. S., Collins, G. E., McCallum~ S. (1984b). Cylindrical algebraic decomposition II: an adja-
cency algorltbm for the plane, S I A M J. Comp. 13/4, 878-889.

Arnon, D. S. (1988). Geometric reasoning with logic and algebra. Artificial Intelligence (special issue
on Geometric Reasoning and Artificial Intelligence; to appear).

Arnon, D. S., McCallum~ S. (1988). A polynomial-time algorithru for the topological type of a real
o.lgebralc curve. J. Symb. Comp. 5, (this issue).

212 D.S. Arnon

Arnon, D. S., Mignotte, M. (1988). On mechanical quantifier ctknlnatiem fl,r e[emel~tary algebra and
geometry. J. Symb. Camp. 5, (this issue).

Arnon, D. S., Collins, G. E., McCallum, S. (1988). An adjacency algorlt lml f-r cylhzdrical algebraic
decompositions o£ thrce-dimensional space, J. Symb. Camp. ,5, (thi~ issue).

Collins, G. E. (1975). Quantifier elimination for real closed fields by cylindrical algebraic decompo-
sition. Proceedings o£ the Second GI Conference on Automata Theory and Formal Languages.
Springer Zee. Notea Camp. Sol. 33, 515-532.

Collins, G. E. (1980). SAC-2 and ALDES now available. A C M $1GSAM Bull. 14, 19.

Kaltofen, E. (1982). Polynomial factorlzatlon. In (Buchberger, B., L~os, R., Collins, G. E., eds,)
Computer Algebra - Symbollc and Algebraic Computation (Colnput ing Supplemergum 4), pp.
83-94. Vienna and New York: Springer-Verlag.

Ko~en, D., Yap., C. K. (1985). Algebraic cell decomposition in NC. Pray. I E E E Con]. on Foundation8
of Camp. Sei. (FOGS), 515-521.

Loos, R. (1982). Computing in algebraic extensions.][n (Buc}tberger, B., L,os, R., Collins, G. E.,
eds.) Computer Algebra - Symbolic and Algebraic Computation ((~onq~uting Supplcmentum 4),
pp. 173-187. Vienna and New York: Sprlnger-Verlag.

McCallum, S. (1988). An improved projection operation for cyilndrical algebraic dec~m~posltion of
three-dlmenslonal space. J. 5ymb. Comp. 5, (this issue).

M~ller, F. (1978). Ein e~:akter Algorlthmus 2ur nlch~llnearen Opflvnierung f~r belieblgc Polynome roll
mehreren Verandcr|~ehen, Melsenheim am Glen: Verlag Anton Hain.

Prill, D. (1986). On approximation and incidence in cylindrical algebraic decompositions. SIAM J.
Camp. l-g, 972-993.

Schwartz, J. T., Sharir, M. (1983). On the 'piano movers' problem II. General tectmiques 5~r computing
topologlcal properties of real algebraic manifolds. Adv. Applied Math. 4~ 298.351.

