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Let 4 ¢ Z [21,... @] be a finite sel. An A-inveriant eylindrical algebraic decompo-
sition (cad) is o certain partition of r-dimensional cuclidean space BE™ into semi-algebraic
cells such that the value of each 4; ¢ A has constant sign (positive, negative, or zero)
throughout each cell. Twao cells are adjecent iff their union is connected. Recently a number
of methods have heen given for sugmenting Colling' cad construction algorithm (1875),
so that in addition to specifying the cells that comprise a cad, it identifies the pairs of
adjacent cells. Assuming the availability of such an adjacency algorithm, in this paper we
give a modified cad construction algorithm based on the utilization of clusters of cells in &
cad (& clusier is & collection of cells whose union is connected). Preliminary observations
indicate that the new algorithm can be significantly more efficient in some cases than the
original, although in other examples it is somewhat less efficient,

1 Introduction

Recently a number of methods have been given for augmenting the cad construction
algorithm (Collins, 1975), so that in addition to specifying the cells that comprise a
cad, it identifies the pairs of adjacent cells (see e.g. Arnon et al., 1988, Prill, 1986,
Kozen & Yap 1985, Schwartz & Sharir 1983). A cluster of cells in a cad is a collection
of cells whose union is connected. Assuming the availability of an adjacency algorithm,
in this paper we give a modified cad construction algorithm based on the utilization
of clusters. The key idea is that, as a cad of Ei~! is extended to a cad of E', certain
(possibly expensive) computations are performed only once for each cluster, rather than
once for each cell as in the original algorithm. Offsetting this saving is the extra cost of
adjacency computation. Preliminary observations indicate that the new algorithm can
be significantly more efficient in some cases than the original, although in other exam-
ples it is somewhat less efficient. In this paper we give both a general framework for
cluster-based cad construction, within which any available adjacency algorithm can be
used, and a specific cluster-based cad algorithm that uses the 2-space and 3-space adja-
cency algorithms of Armon et al. (1984b, 1988). The specific algorithm we give has the
following properties: (1) it requires no coordinate changes, and (2) in any cad of E!, E?,
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or E3 that it builds, the boundary of each cell is a (disjoint) union of lower-dimensional
cells. The particular clusters that occur in cluster-based cad construction are of math-
ematical interest in their own right. For example, if A consists of a single element F,
then the (unions of the) r-space clusters are typically the connected components of the
hypersurface F = 0 and its complement.

In this Introduction we sketch the broad outlines of the clustering strategy for cad
construction, give an outline of the paper, and review prior related work.

1.1 Cad graphs and clusters

Let us begin our discussion of clustering by recalling terminology from Arnon et al.
(1984a, 1984b, 1988). We say that a connected subset of E™ is a region. If A4 =
(A1,...,Az) is a subset of I, = Z [2y,...,2,], if R is an A-invariant region in E" (i..
the value of each A; € A has constant sign (—1, 0, or +1) throughout R), and if oy is the
sign of A; on R, then we say that the ordered n-tuple o = (041, ...,0,) is the signature of
R with respect to A (and also, the signature of 4 on R). A cell triple for a cell ¢ of an
A-invariant cad is a triple (I, o, S), where I is the cell index of ¢ (cell indices are defined
in Section 4 of Arnon et al., 1984a), o is the signature of the cell (with respect to the
set A of input polynomials), and S is a sample point for c. We temporarily proceed
as though sample points are represented as in Arnon et al. (1984a, 1988); we will have
more to say about their representation later.

Given A C I., a graph representation for an A-invariant cad D of E7, or cad graph,
is a quintuple G = (4, B, V, E, G'), defined as follows. B is a basis (as defined in Arnon
et al., 1988) for prim(4), such that D is a basis-determined cad with basis B. (Recall
that prim(A) the set of primitive parts of those elements of 4 which have positive
degree). V is a set of cell triples for the cells that comprise D. F is a set of unordered
pairs of (distinct) elements of V', obeying the following condition: if (¢1, cz) is an element
of E, then cells ¢; and ¢; of the cad D are adjacent (thus (V, E) is a certain undirected
graph). For any given pair of cells ¢; and ¢3 of D, the converse may or may not hold.
If for every pair of cells ¢; and ¢y of D the converse does hold, i.e. (c1,¢2) € F if and
only if ¢; and c; are adjacent in D, then we say that G is a full graph for D; otherwise,
G is partial The reader will notice a certain abuse of notation here: we freely identify
a cell ¢ with the triple that represents it. If 7 > 1, then G’ is a graph representation
for the cad D' of E™~! induced by D, and G’ = @ when r = 1. Typically the cad
graph representations we work with are partial. In case G is full, the undirected graph
(V, E) has been called the connectivity graph of D (Schwartz & Sharir, 1983, p. 320).
We assume the availability of standard graph algorithms, e.g. depth-first search for
connected components; see e.g. Aho et al. (1974).

It is appropriate to check that a graph representation for a cad supplies the infor-
mation about that cad called for at the beginning of Section 4 of Arnon et al. (1984a).
It was stated there that a description of a cad must inform one of the number of cells in
the cad, how they are arranged into stacks, and the signature of each cell with respect
to the set of input polynomials. Obviously a cad graph gives one the number of cells
and each cell’s signature. As detailed in Arnon et al. (1984a), the indices of the cells
comprising a cad tell one how those cells are arranged into stacks.

Given A C I, let G denote a full graph for an A-invariant cad D. It is easy to show
that the vertices of any connected subgraph of G correspond to a collection of cells of
D whose union is a region in E7. Turning this around, we say that a collection C of
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cells of D is a cluster (of D) if the subgraph of G induced by C is connected. Clearly
C is a cluster if and only if the union of C is a region. The dimension of a cluster is
the dimension of the largest cell in it. A partition of (the set of cells of) a cad D into
clusters is called a clustering of D. Obvicusly any D can be clustered in many ways.

Assume now that G is either partial or full, and suppose given an equivalence relation
R on the cells of D. Then R induces a clustering of D, which can be made explicit
by computing the connected components of G subject to the constraint that we only
“notice” an edge during the computation if the cells it joins belong to R. In this paper,
we are exclusively interested in one particular equivalence relation, namely the relation
to which a pair of cells belongs if and only if the two cells have the same signature (with
respect to the set A of input polynomials). We call this the sign-invariance relation. (We
will henceforth be using the term “sign-invariant” quite often in place of “ A-invariant”, to
denote the condition that “each input polynomial is sign-invariant”, without mentioning
the particular set A of input polynomials). We call a clustering induced by the sign-
invariance relation in a graph representation for a cad D a sign-invariant clustering of
D, and the clusters which comprise it sign-invariant clusters.

Given two clusterings ['y and I'; of a cad D, we say that I'y is finer than I'y, if each
cluster of I'; is a subset of some cluster of I';. Equivalently, we say that I'; is a refinement
of Ty, and that I'; is coarser than I'y., We say that a sign-invariant clustering of D is
mazimal if it is the coarsest possible sign-invariant clustering of D; its elements are then
mazimal sign-invariant clusters. Given A, we call the maximal connected A-invariant
subsets of E™ the A-components of E™, or in general the sign-invariani components of
E™ (with respect to this A, of course). Note that this last definition is independent of
any particular cad of E". Clearly a sign-invariant clustering of D is maximal if and only
if the union of each of its clusters is a sign-invariant component of ™. If G is a full
graph for D, then clearly the sign-invariant connected components of G correspond to
the maximal sign-invariant clusters of D, however if G is partial, this need not be the
case.

If G is partial, then an equivalence relation on the cells of D still induces a clustering
of D when (just as above) we compute connected components in the cad graph under
the constraint that we only notice edges between equivalent cells. Such a clustering is
in general finer than the clustering we get with the same relation applied to a full G,
since the edges in a partial G are a subset of the edges in a full @. This observation
is important, because in general we will build clusterings using partial graphs, and we
will be interested in how closely these clusterings correspond to the clusterings that the
same equivalence relation induces in a full graph.

Let us now look at some examples of the notions we have introduced. Consider the
sample cad D from Section 5 of Arnon et al. (1984b), which we show in Fig. 1. Fig. 2
shows a full graph for D. The figure uses the convention that (-cells are indicated as solid
vertices, 1-cells as half-filled vertices, and 2-cells as unfilled vertices. Edges satisfiying
the sign-invariance relation are shown as solid lines, and those not are shown as dotted
lines. We see that there are 15 maximal sign-invariant clusters. Fig. 3 shows a partial
graph for D. Again, edges satisfiying the sign-invariance relation are drawn as solid
lines, and those not satisfiying it are drawn as dotted lines. For this graph, we get 19
sign-invariant clusters, many of which are not maximal.
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Figure 1: Sample Cad.

Figure 2: Full graph.
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Figure 3: Partial graph.

1.2 Cluster-based cad construction

Let us now describe the basic idea of cluster-based cad construction. Essentially what
we do is make the extension of a cad of E*~! to I more efficient, by building stacks over
sign-invariant clusters in E*~!, rather than over individual cells in E*~!. This general
strategy requires the availability of adjacency algorithms, bul does not require the use
of any particular adjacency algorithm. We now explain in detail the formal basis for the
strategy.

Assume given 4 C I,. In Section 3 of Arnon et al. (1984a), a map PR(OJ, which
takes a subset of I, to a subset of I._y, is defined, and it is proved (Theorem 3.4)
that over any PROJ(A)-invariant region in E™~!, there exists an A-invariant stack. In
applying this Theorem 3.4 to extend a cad of E™~! to a cad of E" in algorithm CAD
of Arnon et al. (1984a), the PROJ(A)-invariant regions in E”~! are the cells of the
induced cad of E"~. However, given an arbitrary PROJ(A)-invariant decomposition
D of E*-1, Theorem 3.4 tells us that if we have a sample point for each region of D,
then we can extend it to a decomposition D* of E™ consisting of the stacks over regions
of D, by exactly the steps used in CAD for extension over a single cell. Note that D*
is not necessarily cylindrical in the sense of Arnon et al. (1984a), i.e. it may not be the
case that D consists of stacks over the regions of some decomposition of E* =2, However,
it is the case that if D is algebraic, i.e. its regions are semi-algebraic sets, then so is D*.

Suppose now that for some A C I,, we have (a graph for) a PROJ(A)-invariant
cad D' of E""!, and a clustering of it into PROJ(A)-invariant clusters. Then forming
the regions we get by taking the union of each cluster, we get a PROJ(A)-invariant,
decomposition D of E"~!, As above, let us extend D to a decomposition D* of E™ by
building stacks over 0’s regions, and let D denote the (A-invariant) cad of ET that we
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get by extending D', Then it is not hard to see that each element of D* is the union
of certain elements of D. In particular, if C is a cluster of D', and if R is the union
of C, then for any 7 > 1, the i** element of the stack over R (this stack is part of D*)
is the union of the i** elements of the stacks over the cells of C (these stacks are each
part of D). Furthermore, if cells ¢; and ¢, of C are adjacent elements of D', then for
any i > 1, the i** element of the stack over ¢, and the i** element of the stack over e,
are adjacent elements of D. We call such clusters and adjacencies in E™ induced clusters
and induced adjacencies, because they are “induced” in a cad D of E™ by a cluster or
adjacency in the cad D’ of E" 1.

Given D', a PROJ(A)-invariant clustering of I}, and a sample point for (one cell
in) each cluster, our observations above imply that we can build D as follows. For each
cluster, we determine a stack over its union R using its sample point, as just discussed,
Having determined the number of elements, i.e. sections and sectors, of this stack, and
assuming that we have determined the signature of each element of the stack with respect
to A, we next look to see which cells of D' comprise C' (i.e. what their cell indices are),
and we know immediately (i.e. we can write down the cell indices and signatures for) the
cells of D which comprise each element of the stack over . When we have processed
all clusters of D' in this way, we will have compiled the indices and signatures of all
cells of D. Furthermore, for each cluster C of D', each adjacency {e,d} of elemenis of
C induces an adjacency between the it? elements of the stacks over ¢ and d. Clearly a
graph for D which contains exactly these induced adjacencies gives rise to an induced
clustering of D (into induced clusters).

Clearly the induced adjacencies of D are sign-invariant adjacencies. They are likely
to be only a proper subset of the set of all of D’s sign-invariant adjacencies, however.
In particular, if we do a sign-invariant components computation in the graph for D in
the form that it has after the steps we have described, the sign-invariant clusters we
construct are likely not maximal. To get the most benefit from the use of clusters, we
would like to have the largest possible sign-invariant clusters. Hence, the next step of our
general strategy is to build larger sign-invariant clusters than those given to us by the
induced adjacencies. As one might guess, we do this by computing further adjacencies
in E™ using the adjacency algorithms that we assume are available to us.

Let us consider a simple example of these ideas, Let A = {u? + 22 + y? + 2% — 1},
i.e. A consists of the polynomial which defines the (three-dimensional) unit sphere in
4-space. We have PROJ(A) = {z* + y* + 2® — 1}, PROJ*(A) = {y? + =® - 1}, and
PROJ3(A) = {2? — 1}. The cad of 1-space clearly has five cells; recall from Section 4
of Arnon et al. (1984a) that we write the indices for these cells as (1), (2), (3), (4), (5).
The maximal sign-invariant clusters for this cad of E' are just the five singleton sets.
In 2-space, we have 13 cells, which can be partitioned into three maximal sign-invariant
clusters: the unit circle (consisting of four cells, with indices (2,2), (3,2), (3,4), and
(4,2)), its interior (consisting of one cell, with index (3,3)), and its exterior (consisting
of eight cells, with indices (1,1), (2,1), (2,3), (3,1), (3,5), (4,1), (4,3), and (5,1)). The
discussion of the previous paragraphs tells us that to determine the cad of 3-space, it
suffices to have a sample point for each of these three 2-space clusters. When we extend
over the unit circle, for example, we get a stack in E3 consisting of three elements (i.e.
two sectors and one sections), that corresponds to four stacks in the cad of 3-space that
each have three elements. The adjacencies among the cells in £2 that comprise the unit
circle induce certain adjacencies (and three clusters) among the cells of these four stacks
in 3-space. Similarly, extending into E® over the interior of the unit circle in E?, we get
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a stack with five elements, and extending over the exterior of the circle, a stack in E®
with one element. The latter stack corresponds to eight one-element stacks, with the
obvious induced adjacencies and a single induced cluster, of the cad of 3-space. Clearly,
the induced clusters in 3-space that we have described are not maximal sign-invariant
clusters. Using a 3-space adjacency algorithm, we can compute additional adjacencies
among the 3-space cells that enable us to obtain the three maximal sign-invariant clusters
that there clearly are in 3-space (which correspond to the unit sphere, its interior, and
its exterior). We can then build stacks in 4-space over these three 3-space clusters to
determine a sign-invariant ead of 4-space.

Altogether the three steps of the cluster-based cad algorithm are: (1) If » > 1, call
the algorithm recursively to build a graph for the induced cad of r— 1 space, (2) I{r > 1,
extend, over the maximal sign-invariant clusters of the induced cad, to a graph for the
cad of 7-space, or if 7 = 1, build a graph directly, (3) Construct additional adjacencies
in r-space. The simplest, trivial, case of cluster-based cad construction is the “original”
cad algorithm, i.e. no adjacency computation at all, which means that we generally have
just singleton clusters in the cad’s of E', E2, ... that we build.

1.3 Outline of the paper and prior work

Sections 2-4 fill in the details of the cluster-based cad construction strategy, by partition-
ing it into algorithms of four kinds: basis (Section 2), projection (Section 2), extension
(Section 3), and adjacency (Section 4). Section 3 begins by defining several possible
representations for sample points in cad graphs. This is fundamental material for this
paper: careful management of sample point representations is an important reason why
cluster-based cad construction is more efficient than previous cad algorithms in those
cases that it is. Section 4 presents the particular adjacency algorithms for E* and E?
that we currently use; these rely on certain adjacency subalgorithms from Arnon et al.
(1984b) and Arnon et al. (1988). Section 5 presents a main algorithm CLCAD for
cluster-based cad construction, which has procedure parameters for the four key subal-
gorithms. Also in Section 5 we specify the values of these procedure parameters that
we use in our current implementation of CLCAD. Section 6 reports the comparative
performance of algorithms CLCAD and CAD on a number of examples.

The work we report in this paper was done between 1979 and 1981. The use of
adjacencies and clusters in cad construction was presaged by Arnon (1979), where it was
shown that incidence of cells is decidable. A first version of CLCAD was presented, and
some examples of its use and comparative performance with CAD given, in Arnon (1981).
Applications of cluster-based cad construction can be found in Arnon & McCallum
(1988), and Arnon (1988).

Defining formula construction is an important part of the cad algorithm, especially for
applications to quantifier elimination (see e.g. Arnon & Mignotte, 1988). Constructing
a defining formula for each cell of a cad is easily accomplished in cluster-based cad
construction, by constructing such formulas for certain cells, and then inferring formulas
for the remaining cells by much the sarme inference process as used for induced clusters
and adjacencies in Section 1.2. See Arnon (1981) or Collins (1975) for details of Collins’
original algorithm for cell defining formula construction.

As mentioned above, in the present paper we only make use of one equivalence
relation of cells, namely the sign-invariance relation. The order-invariance relation of
McCallum (1988) is another equivalence relation of cells in a cad whose use for cluster-
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based cad construction is attractive.

2 Basis, Projection, and Base steps

In this Section we discuss the first few steps of the cluster-based cad construction algo-
rithm. We have relatively little to say about them. The reader may wish either to look
ahead to algorithm CLCAD in Section 5, or skip this Section for the moment.

In general, it doesn’t matter what type of basis (e.g. coarsest or finest squarefree
basis) our basis procedure computes (see Arnon et. al, 1988, and Collins, 1975, for
basis-related definitions). The actual projection operator we currently use is determined
by the adjacency algorithms of Arnon et al. (1984b, 1988) that we use (cf. Section
4). We want to build the same cad’s as these algorithms do. Hence rather than use
PROJ(A) as a projection operator, as we did in Section 1, we henceforth assume that
we have computed a basis B for prim(4), and that we use PROJ(B) U cont(A) as our
projection operator (cont(A) is the set of non-zero non-unit contents of elements of 4;
see Arnon et al., 1988, for futher discussion). For r < 3, we could use McCallum (1988)
projection instead; it would then be necessary that our basis procedure compute a finest
squarefree basis. The projection operator would then be the P operator as defined in
MecCallum (1988). The resulting cad’s of E7, 1 < » < 3, would still have the houndary
property, i.e. the boundary of each cell would be a (disjoint) union of lower-dimensional
cells, and if » > 1, then the induced cad of E™~! would also have the boundary property.

The base step of our cad algorithm, i.e. the algorithm for construction of cad’s of
E', is essentially that of Arnon et al. (1984a). It is easy to make the graph for the cad
of E' full, since we trivially know what its adjacencies are. The reader may consult
algorithm CLCAD in Section 5 for details of the base step.

3 Extension step

Our task in this section is to develop the method (algorithm EwtendCadClusters of
Fig. 6) that we use for the extension step of cluster-based cad construction. We begin
by considering the issue of sample point representation. Assume throughout this section
that our cad input polynomials have r > 1 variables.

So far we have assumed that cell sample points are represented as in Arnon el al.
(1984a, 1984b, 1988). In fact, cell sample points in the cluster-based cad algorithm may
have one of three representations: (a) null (no information), or (b) eztended, consisting
of a real algebraic number a, an 7 — 1 tuple of elements of Q(a), a nonzero squarefree
polynomial g(z) € Q(e)[z], and an isolating interval for a (real) root of g(z) (this root
is the »'* coordinate of the sample point), or (c) primitive, consisting of a real algebraic
number a (the primitive element) and an r-tuple of elements of Q(a).

In fact, this extended representation is present in passing in the extension step of
the cad algorithms in Arnon et al. (1984a, 1984b, 1988), although ultimately all cell
sample points become primitive in these algorithms. To be specific, when we have
a sample point for the base of a stack, and we isolate the real roots of a squarefree
univariate algebraic polynomial to determine the sections of the stack, the base sample
point, the algebraic polynomial, and each isolating interval for one of its roots give us an
extended sample point representation for a section of the stack. As described in Section
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5 of Arnon et al, (1984a), we can use the NORMAL and SIMPLE algorithms of Loos
(1982) to convert an extended representation to a primitive one. This conversion process
has been observed to often be expensive, and avoiding it whenever possible is a major
goal of the cluster-based cad algorithm. Working with extended rather than primifive
representations whenever possible is one step towards that goal; another such step is to
make do with null sample points, whenever possible, which we also will do.

As we have noted, however, it is a required of a cad algorithm to construct input
polynomial signatures for each of its cells. Previous cad algorithms (such as those in
Arnon et al., 1984a, 1984b, 1988) have done so by evaluating the input polynomials at
primitive cell sample points. We now show that it is possible to compute the signature
(with respect to the input polynomials) of a cell in a basis-determined cad of E™ given
an extended representation for the cell’s sample point. In fact, the method we give could
be used in the original as well as the cluster-based cad algorithm, to avoid extended-to-
primitive conversions of section sample points in dimension », i.e. the highest dimension.

We proceed in two steps. First, we show how to get the signatures of cells in E”
with respect to the basis polynomials from extended representations for their sample
points. Second, we infer input polynomial signatures from these basis signatures plus
signatures for the contents of the input polynomials. Here is a sketch of the first step.
Suppose that » > 2, that s is a cell of a cad D) of E7, and that ¢ is the unique cell of the
induced cad D' of E™! for which # ¢ Z(c). Suppose that we have already determined
(ie. found the number of sections of) the stack S(¢) C D, by isolating the real roots of
some suitable g(z,) ¢ Q(a)[z,]. Thus, about each real root of g(,), we have an open
isolating interval with rational number endpoints. For each basis polynomial B;, we
compute the greatest squarelree divisor d(#,) of Bi(a, 2,). d(z,) has the same roots as
Bi(a,,), but only simple roots; see Kaltofen (1982) for more information on greatest
squarefree divisors. Since we are assuming S(c) to be B-invariant, any root of B;(a, ,)
is a root of g(@,). Hence for any scction s of S(c), B; vanishes on s if and only if  has
opposite signs at the endpoints of the isolating interval for the unique root of g(z,) that
corresponds to s. If B; doesn’t vanish on &, then it has the same sign on 8, on the sector
immediately above s, and on the sector immediately below 8, We can determine the
sign of B; on sectors of S(c) as follows. The endpoints of the isolating intervals for the
roots of g(z,) give us sample points of the form < a,b >, b rational, for the sectors of
S(c) (much as we got sample points for the sectors of stacks in Section 5 of Arnon et al,,
1984a). By evaluating each B;(a,b), we determine the sign of B; on each sector of S(c).
Fig. 4 gives the algorithm BasisSignaturesQuerCell that embodies this strategy. The
map g3fd in the algorithm is “greatest squarefree divisor”.

To infer input polynomial signatures from basis signatures, we need only a few more
observations. Suppose C(2) = content(4;). If C(a) = 0 then A; vanishes on every
element of S(c), and we are done. If not, we use the sign of content(4;), and the
factorization of pp(A;) (pp(A;) denotes the primitive part of A;) as a power product of
basis polynomials, to “infer” the sign of A; on each element of the stack. Algorithm
InputSignaturesOverCell in Fig. b has the details.

With algorithm InputSignaturesQuerCell available to us, we have the following
situation. We have no need to convert any extended sample point representations to
primitive form in the cad of r-space. In dimensions less than r, we need primitive
sample points for any cell or cluster that we are going to “extend over”, i.e. build a
stack over, as we extend our cad to the next higher-dimensional space. Thus the first
step of EatendCadClusters is to compute the sign-invariant connected components of
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3 + BasisSignaturesOverCell (B,p,J)

Inputs Grven A = (A, ,4n) C I, v > 1, B = (B1, ,Bm)1s a basis for prim(4). p =
(p1, ,Pr-1)1s a prumtive sample pomnt for a PROJ(B )-invanant and cont(A4)-invariant cell ¢
macad of E"7',1e each p, is an element of Q(v) for some real algebraic number v Ifr = 1,
thenp=0and ¢ = E° J=(J1,J2, ,J&), k >0, 15 a list of open 1solating intervals for the
k real roots Ay < < Ag of some nonzero univanate real polynomial g = g(z,), such that for
each 3, 1 < g <k, the pomnt (p1, ,pr—1,};) lies on the 3'* section of a B-invariant (and hence
also A-mnvanant) stack S(c) over ¢

Output T = (61, ,02k41), such that o, = (01, ,0m,;)1s the signature of the 3** element
of 5(c) with respect to B

(1) [Doat] Forz =1, ,m,do set h(z,) — B.(p1, ,Pr—1,%s), set d(zn) <- gafd(h(z,)); set
d=01f h =0, set p,2k41 — stgn(d) = sign(leadingCoc f frcrent(d)), set o ki1 ~ sign(h),
for g = k,k—1, .,1do Let J; = (u,,v,), set py 251 « sgn(d(wy)), \f po,2; 1+ £ paay)1, then
@iy — 0, and 0,2, 1 « sign(h(u,)), else 0,2, -1 — a2; — 042,41 O

Figure 4 Algonthm BasisSignaturesOverCell

T InputéignaturesOverCell (A, B,p, J)

Inputs A = (41, ,4,) C I,, r > 1, and the remamung mputs are as for algonthm
BasisSwgnatureaOverCell

R
Output T = (71, . Taks1), such that 7, = (T1,;, ,Tn,) 1s the signature of the 2" element of
S(c) with respect to A

(1) [Get basis signatures | £ «— BaswsSignaturesOverCell(B,p, J)

(2) [Infer nput polynomal signatures] Recall that we follow the convention that

sign(content(F)) 1s chosen to be sgn({F), for any F € I, FO:L each 4, € A, there exist

nonnegative ntegers €,,1, . ,€:,m such that 4, = content(4,) Hu:l B,®=». For 2z =1, ,n,
eu

and for y =1, ,2k+1do =, « sign(content(4,)) H:;l o0

Figure 5 Algornithm InputSignaturesOverCell
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G', and for each (i.e. for cach sign-invariant cluster of D'}, insure that at least one of its
constituent cells has a primitive sample point, Needing a primitive sample point only
for one cell in each sign-invariant cluster, rather than for each cell of the cad, is a key
reason why the cluster-based cad algorithm is faster than the original cad algerithm in
those cases that it is. For cad’s of E®, however, the saving realized here in the extension
step are somewhat offset by the fact that our current E3 adjacency algorithm (given in
Section 4) needs primitive sample points for certain additional cells of the induced cad
of E%. In general we should expect that adjacency algorithms may require us to perform
certain addition extended-to-primitive conversions of sample point representations.

Fig. 6 gives the complete algorithm EztendCadClusters. The reader will see that it
is essentially a formalization of our discussion in Section 1.2, We say that a cad graph
is initial if the “initial” adjacencies are present in it, where these are (1) the intrastack
adjacencies of each stack of that cad, and (2) the induced adjacencies as defined in
Section 1. Note that even though we use a basis B for prim(A) to determine the stacks
of our cad’s, FatendCadClusters constructs A-invariant clusters prior to extending. In
general, A-invarant clusters will be coarser than B-invariant clusters, and we want the
extend over the coarsest possible clusters (o minimize the number of primitive sample
points that we need.

a single cell, by Step (2.1) of FuxlendCadClusters, we see that we get primitive sample
points for all 1-cells and all 2-cells, and an extended or primitive sample point for each
0-cell, of the cad of E? that we build.

4 Adjacency step

For each ¢, the role of whal we call the “adjacency” subalgorithm of cluster-based cad
construction is to add non-initial (interstack) adjacencies to the graph for the cad of E.
It is not necessary to actually have such an adjacency algorithm for each 4. If we wish,
we need compute no adjacencies beyond initial adjacencies, for any value(s) of ¢ < ». For
example, since at present we only have implemented adjacency algorithms for i = 1, 2, 3,
the adjacency step in our implementation of the cluster-based cad algorithm is currently
null for z > 4. As might be expected, if we have a null adjacency algorithm for the cad
of E!, then our graph for that cad is almost certainly partial, and the sign-invariant
components of that graph give us a clustering of the cad that is almost certainly not
maximal. :

In Fig. 7 we give our 2-space adjacency algorithm, which is an adaptation of algorithm
CADA2 of Arnon et al. (1984b). Note that when r = 2, the maximal sign-invariant
clusters in the induced cad (of l-space) are just singleton clusters, i.e. the individual
cells. Hence when » = 2 we comstruct all adjacencies of the cad of E? that we build,
and so clearly the sign-invariant components of the graph for this cad correspond to
maximal sign-invariant clusters of D.

As for cells, we say that two (distinct) clusters (of a given clustering of a given cad)
are adjacent if their union is connected. It is not hard to show that clusters C), and C;
are adjacent if and only if there is a cell ¢; of C1, and a cell ¢; of (', such that ¢y and ¢y
are adjacent. We call an adjacency of cells belonging to different clusters an intercluster
adjacency, whereas an adjacency of cells in the same cluster is an intracluster adjacency.

One possible adjacency algorithm for E® would be to simply build (all interstack)
adjacencies in E® over all intercluster adjacencies of the induced cad of the plane, using
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G « ExtendCadClusters (A, B, G', EztendGellToStack)

Inputs: A C I,. B C I is a basis for pram(4). G' = (4B, V' E G")is a
graph for a cad D' of E™"! such that an A-invariant stack exists over each cell ¢ of D',
EztendCellToStack(c,B',B;g,J,I,L) 1s a procedure with the following specifications, For
inputs: c is a cell in a basis-determined cad D’ of E""!, r > 2, B' C L._y is a basis for D'.
B C I. is a basis, such that each element of B is either delineable or nullified on c. For outputs:
Let p be the sample point for ¢, and suppose the real algebraic number v is a primitive element
for p (see Arnon et al., 1984a, for this terminology). g is a nonzero squarefree univariate poly-
nomial g(z,) with coefficients in the field @() whose real roots are in one-one correspondence
with the sections of a B-invariant stack S over ¢. J is a list of isolating intervals for the real
roots of g. I is a list of cell indices for the elements of S (since we know the cell index of ¢, we
know the ndices of elements of §). L is a list of the intrastack adjacencies of 5.

QOutput: G = (4, B,V, E, @) is an initial graph for an A-invariant cad of I7.

(1) [Get sign-invariant clusters.] Do a sign-invariant connected components computation in G,
to get a certain sign-invariant clustering of D’

(2) [Process each cluster.] Initialize V" and E Lo the empty set. For each sign-invariant cluster
C of D', do the following steps (2.1) - (2.3).

(2.1) [Build a stack over the representative cell of the cluster.] Ifind a primitive sample point
p for an (arbitrary) “representative” cell ¢ of C; if none currenily exists, construct one (by
extended-to-primitive conversion) for some cell ¢ of C, of highest possible dimension. Call
EztendCellToStack(c, B', B;g,J,I,L). Set T « InputSignaturesOverCell(A, B,p,J). Using
I, T, p, g,and J, we make a cell triple for each cell of the stack, as follows. We know the indices
of all cells in the stack (from I), and their signatures (from 7'). Make a primitive sample point
for each sector of the stack, and an extended sample point for cach section (using p, g, and
J). However, if the primitive element for p is of degree one, i.e. a rational number, then g has
rational number coefficients, and so make a primitive rather than an extended sample point for
each section of the stack. Add all cell triples to V. Add the intrastack adjacencies of L to E,

(2.2) [Infer stacks over the remaining cells of the cluster.] For all cells of C other than the one
just used, do the following three steps: (1) make up cell triples for a stack over it, each triple
consisting of an index inferred from the triple for the corresponding cell of the stack over ¢, a
signature copied from the triple for the corresponding cell of the stack over ¢, and a null sample
point; (2) add the triples for this stack to V; and (3) add the intrastack adjacencies for this
stack to E.

(2.3) [Induced adjacencies of each induced cluster.] Let 2k + 1 be the number of elements of
the stack over the representative cell of C (thus each stack over an element of C also has 2k 1
elements). For each intracluster adjacency {d,e} of C, and for ¢ = 1,...,2k + 1, record in E
that the ¢*" element of the stack over d is adjacent to the :** element of the stack over e O

Figure 6: Algorithm ExtendCadClusters
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AdjacenciesTwoSpace (G)

Inputs G (1, B,V,1,G") w a graph for a basts-determined {-invariant cad D of E* (with
basis B).

Qutput G 15 modified vo that 1t contamns additional adjacencies among cells of D, m particular,
if G 1s mibial at input, then it 15 a full graph for 1 at oulput

(1) [Interstack adjacencies | Set B* « [[B Let ) < a2 < < az < azks1, k > 0, be the
sample points for the cells of D' (Each as:41 19 a rational sample pomt for a 1-cell, each az, 1s
an algebraic sample point for a 0-cell) Forz =1, 4, call algonthm SSADJ2 of Arnon et al
(1984b) with inputs B*, a,,, as, .1, and az.41, add the contents of 1ts outputs L, and L2 to G,
1e to E Note that the section numbers which occur in the adjacencies returned by SSADJ2
must first be converted mto the indices of the corresponding cells of D, for example, if the hst
L, returned by the 2'* call to $SADJ2 contas the adjacency {3,2}, 1t must be converted to
{(22,6),(2:— 1,4)} before being added to L. Infer the remaming interstack adjacencies between
S(ez.) and S{c;z 1), and between S(ez) and S{cai 1), as described at the end of Section 2 of
Arnon ef al (1984b), and add them to G [

Ihguie 7+ Algorithm AdjacenaiesTwoSpace.

the algonthms of Arnon ef al (1988) Assuming that we started with an imital graph
for the cad of E®, we clearly would end up with a full graph for this cad A sign-
mvartant components computation m this graph would then obviously yield maximal
sign-invanant clusters of the cad D of £® We now show that there 1s a proper subset
A of the set of all intercluster adjacencies of the induced cad of E?, such that given an
uutial graph for D, if we then bulld (all interstack) adjacencies over each element of A,
then a sign-invariant connected components computation in the resulting graph yields
maximal sign-invariant clusters of ) Besides the obvious reduction in the amount of
adjacency determination we have to dom E2, 1t turns out thati the particular A that we
show 1s sufficient allows us to often avoid the most costly extended-to-primitive sample
point conversions in 52

Let us first determine what kinds of intercluster adjacencies can occur among max-
mal sign-invanant clusters of a cad of the plane. We assume that this cad has the bound-
ary property Clearly there can be no intercluster adjacency between 0-clusters It 1s
also clear that there can be no intercluster adjacencies between two maximal 2-clusters,
since by the Intermediate Value Theorem, all 2-clusters have the same signature with
respect to the input polynomials So that leaves us with the possibility of adjacencies
between 0- and l-clusters, 0- and 2-clusters, 1- and 1-clusters, and 1- and 2-clusters
For the first of these cases, clearly all intercluster adjacencies are {0,1},1e involving a
0O-cell of the O-cluster and a 1-cell of the 1-cluster. In the second case, there can be both
{0,1} and {0,2} intercluster adjacencies In the third case, there can only be {0,1}
intercluster adjacencies, since (by the boundary property) adjacent cells in the cad of
the plane have different dimensions In the fourth case, by the boundary property, there
can be {0,1}, {0,2}, and {1, 2} intercluster adjacencies

In pont of faci, adjacencies of two 1-clusters seem Lo occur rarely, for certain “pecu-
har” sorts of inputs For example, let F(z,y) = y-+ 2, G(z,y) = y—=, and H(z,y) = y,
and let A = {FGH,FG,FH} Fig 8 shows an A-invanant cad of the plane that il-
lustrates both intercluster adjacencies of a 1-cluster and a 1-cluster, and an adjacent
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oy

Figure 8: Sample cylindrical algebraic decomposition of the plane.

1-cluster and 2-cluster for which their only intercluster adjacency is a {0, 2} adjacency
of cells.

As for cells, the boundary of a cluster C is the set of all limit points of 2 = UG which
are not contained in R. It is not hard to see that clusiers “do not have the boundary
property”, i.e. if two clusters are adjacent, then it is not necessarily the case that one
is contained in the boundary of the other. For example, the tacnode curve is defined by
the equation:

Flz,y)=v* — 20° + ¥* - 32%y + 22* = 0.
Fig. 9 shows an F-invariant cad of the plane. The curve itself is a maximal sign-invariant
1-cluster of this cad, and clearly, for any sign-invariant 2-cluster ', neither C nor the
curve is contained in the boundary of the other.

We now prove a theorem that points the way to our actual 3-space adjacencies
algorithm. The basic idea, given that clusters in the plane may fail to have the boundary
propetrty, is that for a pair of adjacent clusters of a cad of the plane, we find subclusters
of each that are as large as possible while still having the property that one is contained
in the boundary of the other. It then follows that it is sufficient to build adjacencies in
E3 over just one of the intercluster adjacencies between each such pair of subclusters.

We now define the central notion for our theorem. Given adjacent clusters C; and C,
of some cad, we say that subclusters @y C C; and Q3 C (3 are cobounding subclusters
for ¢ and Cy if

1. Each cell of (1 is in the boundary of one or more cells of ()2, and

2. For each cell of @, there are one or more cells of )y contained in its boundary,
and
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Figure 9: Cylindrical algebraic decomposition of tacnode curve.

3. If cells ¢; and ¢g of @3 are adjacent, then there are cells d; and dy of @; such that
dy C Bcy, dy C Oes, and either dy = dy, or dy and dy are adjacent.

Clearly if @1 and (), are cobounding subclusters for C; and Cs, if By = UQ1, and
if Ry = UQ3, then Ry C JR,. If ()1 and Q3 are cobounding subclusters for €y and Cy,
and if for any other cobounding subclusters Oy of C; and O3 of C», it is the case that
either O;NQ1 =0, 0r 02N Qy =0, 0or 07 C @ and O3 C @32, then we say that @1 and
@), are mazimal cobounding subclusters for C; and (.

Let C; and C, be adjacent sign-invariant clusters of D’ such that B, C Rs, where
Ry = UC and R, = UC,. Let S(R;) be a stack over Ry and S(R;) a stack over Ry. We
say that S(R1) and S(Rj) are adjacent. If for any section s of S(R,), 85N Z*(R1) is a
section ¢ of S*(R;), then we say that S*(R,) has the unique section boundary property
(USBP) in S*(R).

THEOREM 4.1 Let D be a basis-determined cad of E™, such that the induced cad D'
of E""1 has the boundary property. Let C; and Cy be adjacent sign-invariant clusters
of D', and suppose that @, C C; and Q3 C C, are cobounding subclusters for Cy and
Cy. Let Ry and Ry be the respective unions of @1 and @, and suppose that for any
cells ¢, d of Q1 UQ3, ifd C Oc, then S¥*(c) has the unique section boundary property in
S*(d). Let S(Ry) and S(R3) denote the unique stacks over Ry and Ry with which D is
compatible, in the sense that each element of one of these stacks is a union of elements
of D. Then S*(Rz) has the unique section boundary property in S*(Ry).

PROOF. Suppose the assertion to be false, and let s be some section of S*(Rs) whose
boundary poinis in Z*(R1) are not a section of S*(R;). Then there exist cells 4 and ¢
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of D such that: #, and #; are contained in s, ¢, € S(cx) and {; ¢ S(¢y) for cells ¢, and
¢ of Q, there are cells di and d; of @) such that dp C 8¢, and d; ¢ O¢, and where
ug € S(di) and u; € S(d;) are the respective boundary sections of ¢ and 1, uy is section
ng of its stack, u is section n; of its stack, and ny # n;. There is a sequence (chain) of
adjacent cells in s joining 1, and #;. Each #; in this chain is a section of S(¢;) for some
¢; € @2, and for each such ¢;, there is a d; € @, such that d; C &cy, and either d; = diyy
or d; and d; 4, are adjacent. Since S*(c;) has the USBP in S*(d;), {; has a boundary
section u; in S*(d;). Then there exists a j for which u; is section n; of its stack, u;4
is section nj4y of its stack, and n; # nj41. Suppose without loss of generality that
¢; C cjy1, hence t; C Jtj4, hence u; C 84y, Since d; and diy, are identical or
adjacent, clearly section nj,; of $*(d;) is also contained in 8%;..1, hence both sections
n; and nj41 of S*(d;) are contained in 8%;4,, contradicting the USBP of §*(c;j41) in
5*(c;) O

By the results of Arnon et. al. (1988), the hypotheses of Theorem 4.1 are satisfied
for each pair of cobounding subclusters for each pair of adjacent maximal sign-invariant
clusters of the induced cad of E2. Hence, for each such pair of clusters in the plane, it is
sufficient to build adjacencies in E? over just one of the intercluster adjacencies between
each of their pairs of maximal cobounding subclusters, and this is what we will do.

Let us now consider the task of finding the pairs of maximal cobounding subclusters
for a pair of adjacent clusters of the induced cad D' of F2. Life is made casier with
the following concept. Suppose for adjacent clusters ¢ and Cy of 1), thal whenever
cells ; € Cp and ¢ca € Cy are adjacent, ¢y C 8cy C 8C3. Then we say that € and G
have one-way boundary inclusions, The next theorem tells us that clusters in 5?2 have
one-way boundary inclusions.

THEOREM 4.2 Suppose given a mazimal sign-tnvariant clusiering of a cad with the
boundary property, such that some cell of a cluster C; is contained in the boundary of
(one or more cells of) a cluster Cy. Then for any cells ¢y € €y and ¢y ¢ Cy, if ¢y and
cy are adjacent, then ¢, C Jcy C 8C.

PROOF. Suppose cell d; of cluster C; is contained in boundary of (y; then clearly d
is in the boundary of some cell dy of C3. Since C; and C3 are differeni maximal sign-
invariant clusters, there is some input polynomial F' which vanishes on one but not the
other. Since real varieties are closed, ¥ must vanish on d, i.e. on ', but not on dy, i,
not on C,. Suppose now that cells ¢; € C; and ey € C; are adjacent. Then one contains
a limit (boundary) point of other, hence by the boundary property, one is contained in
boundary of the other. But then ¢; C 8C,, since ¢a C §C; would imply that F vanishes
on ¢z, a contradiction O

Fig. 10 gives an algorithm to find all pairs of maximal cobounding subclusters for
a given pair of adjacent clusters. In Fig. 11 we give our 3-space adjacency algorithm
AdjacenciesT hreeSpace. It assumes that the particular value of the procedure param-
eter ExtendCellToStack of algorithm CLCAD that is called for in Section 5, i.e. algo-
rithm ExiendCellT'oStack of Arnon et al. (1988), has been used to determine the stacks
of the cad D of E® The various adjacency subalgorithms (e.g. AdjacenciesOver01)
that AdjacenciesThreeSpace calls are from Arnon et al. (1988). Each such subalgorithm
takes the two cells of an adjacency as inputs, and we are required to have primitive sam-
ple points for both. We assume that extended-to-primitive conversion is done as needed
for these calls. A nullifying O-cluster is a 0-cluster on whose unique constituent 0-cell
some element of B is nullified.
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K « MaximalCoboundingSubclusters (Cy, Cy)

Inpuls: C, and Cy are disjoint clusters of a cad of L7 which has the boundary property, such
that C; and Cy have one-way boundary mnclusions \f they are adjacent

Output If C, and C, arc nol adjacent, then K 1s the empty hst Otherwise K is
a hst ( ((Q1,0@12), L1), ((Q2,1,Q22), L)y, ,{((Qny1sQui2)y L) ), such that (Qy1, Qu,2),
(Q2.1,Q22), - (Qk,1,Qx,z2) are the maximal cobounding subclusters for C; and C3, and for
each (Qi,1,Q:2), Ly 18 a hst of all interclusier adjacencies between Q.1 and Q.

(1) [Do 1t ] TFor each mntercluster adjacency {ei,ca} between Cy and Cp, create an imtial
element { ({c:1},{c2}, {{c1,¢2}}) of K Then uniil no more coalescing is possible, attempt to
“paste together” pairs (Q.,1,@Q:2), L.) and (@,.1,@;2), L) of elements of K We attempt to
paste such a pair by first checking whether Q1 + @1 U@, 1 18 a subcluster of €, and whether
Qra2 «— Q2 UQ,2 is a subclusier of C7. If so, then we set Ly to be L, U L, plus any other
intercluster adjacencies of Qi1 and Qg2, and check whether Qi,, and Qg2 are cobounding
subclusters of ¢7; and (7, U

Figure 10. Algonthm MaximalCoboundingSubclusters.

The reader should now be convineed of the following proposition

THEOREM 4.3 Lct D be a basis-determined sign-mmuvarmant cad of B, and let D' denote
the wnduced sign-invariant cad of E* Supposc we have a graph representation for D
whach contains D’s tnitial adjacencies, and the other adjacencies of 1 that are added
by AdjacenciesThreeSpace Then the cluslers of D thal we obiawn by o sign-invariant
connecled components computation in the graph for D are mazymal (sign-invariant)
clusters

From algorithm AdjacenciesT hreeSpace we see that we do not avoid all extended-
to-primitive conversions of (-cell sample points in the imnduced cad of the plane we are
required to have a pnimitive sample pont for each 0-dimensional maximal sign-invariant
cluster in E?, and possibly also for certain 0-cells in 1-clusters We now mdicate how
1t 1s that the particular such conversions that actually are done are typically not as
expensive as the ones that are not done Consider for example the sample points of
O-clusters Such O-clusters are usunally “topologically significant”, e g they are typically
the intersection points of two curves in E? It has been our empirical observation that
the sample points of such “topologically significant” -cells often do not require field
extension (1e nontnivial primitive element computation) in the conversion of their
extended representations to primitive In other words, the algebraic polynomial which
1s part of their extended representation 1s typically linear Some explanation of this
phenomenon 1s provided by Muller’s observation (Muller, 1§78), that probably at most
one intersection of two (random) algebraic plane curves lies on any particular line n
the plane, and so for any F,G € I, the curve defined by ¥ and the curve defined by G
probably only have one intersection on a hine # = «, where a 15 the sample pomni of a
0-cell 1n the induced cad of E' I so, then ged(F(asy), G(e, y)) 1s hnear, since each of
1ts roots corresponds Lo an intersection poiwnt of the two curves Hence the y-coordinates
B of intersection points are hkely to have the property that Q(a,8) = Q(a), 1e the
primitive element algorithm 1s trivial

The tacnode provides an illustrative example of how we are often able to avoid
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AdjacenciesThreeSpace (&)

Inputs G = (4,B,V,E,G') 15 a graph for a basis-determined A-invariant cad D of E® (with
basis B), such that D has the boundary property, and such that if cell d of D' 1s contained in
dc for a cell ¢ of D' on which no element of B 1s nullified, then 5*(c) has the umque section
boundary property in $*(d), and such that G' contains all adjacencies of [, and has a primitive
or extended sample point for each of 1ts cells

Output G 1s modified so that 1t contains additional adjacencies among cells of I, in particular, if
G 1s 1mtial at input, then the sign-invariant connected components of (7 correspond to maximal
sign-invariant clusters of D

(1) [Construct maximal sign-mvariant clusters of induced cad | Do a sign-invariani connected
compenents computation m the G' graph, to get (maximal) sign-mvarmant clusters of D'

(2) [Process (1-cluster, Il-cluster) adjacencies] For cach par €/, Cy of adjacent 1-
clusters of D', and for each of thewr (0,1) intercluster adyacencies {",c'}, set I
AdjacenciesOver01(c®,c', B', B) and add the adjacencies of I, to F¥

(3) [Process (1-cluster, 2-cluster) adjacencies | For each pair y, €7 of adjacent 1-cluster
and 2-cluster of D', do K « MazvmalCobounding Subclusters(Cy,C2). Vor cach L, of
K, do the following loop. If L, contams (1,2) adjacencies, then let {c!,c?} be one of
them, set L « AdjacenciesOuver12(ci,c},B), add the adjacencies of L to £, and exit
this loop 1iteration  Otherwise, if L. contams (0,1) adjacencies, then let {c?,c!} be one
of them, set L « AdyacenciesOver01(c;,c}, B’, B), add the adjacencies of L to F, and
exit this loop iteration  Otherwise, let {c},c?} be a (0,2) adjacency of L, sel L «
AdjacenciesOver NonNulli fying02(c!, c?, B', B), and add the adjacencies of L to I

(4) [Process adjacencies of non-nullifying O-clusters | For each non-nullifying O-cluster C,
with unique constituent cell ¢°, do the following two steps  [I'rst, for cach l-cluster Gy
which 15 adjacent to C, and for each of their (0,1) ntercluser adjacencies {c’, ¢}, set
L « AdgacencteaOuerOl(co,cl,B’,B) and add the adjacencies of L to B Second, for each
2-cluster Cy which 1s adjacent to C, do K « MazimalCoboundingSubclusters(C,C,), and
for each L, of K, do the following loop If L, contans (0,1) adjacencies, then let {c}, c!}
be one of them, set L « AdjacenciesOverdi(c?,cl,B',B), add the adjacencies of L to
E, and exit this loop iteration  Otherwise, let {c?,c?} be a (0,2) adjacency of L,, set
L « AdyacenciesOver NonNull: fying02(c),c?, B, B), and add the adjacencies of L to B

(5) [Process adjacencies of nullifying 0-clusters | For each nullifying O-cluster C, with umque
constituent cell ¢®, do the following steps For each (0,1) adjacency {c°,c'} of D, set I «~
AdjacenciesOver01(c’,c', B', B) and add the adjacencies of L to E For each (0,2) adjacency
{c°, *} of D', set L Ad]acenczesOverNullzfyzngOZ(co,cz, B’ B), and add the adjacencies
of Lto B O

Figure 11 Algortithm AdjacenciesThreeSpace
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G« CLCAD (4, Baais, Projection, BatendCellloStack, Adjacencies)

Inputs: A is a finite subset of Iy, for some r > 1. Baais is a procedure which, for any i > 1,
given a subset U of I;, computes a basis for prim(U). Projection is a procedure which, for any
1> 2, maps a subset of I; to a subset of I;_; having the expected properties (cf. Theorem 2.4
of Arnon et al., 1988). EztendCellToStack(c, B', B;g,J,I,L) is a procedure with the same
specifications as the input parameter of the same name to algorithm EztendCadClusters of
Section 3, Adjacencies is a procedure which, for any ¢ > 2, given a graph for a cad of E", finds
certain of its interstack adjacencies and adds them (i.e. adds the corresponding edges) to the
graph.

Output: G = (A4, B, V, E,G') is a graph representation for an A-invariant cad D of E”.

(1) [r = 1 (base case).] Set B «— Basis(4). Il v > 1, then go to step (2). Construct a list J
of open isolating intervals for the real roots of the clements of B, thus determining the cells
of a cad D of E'. Set T « InputSignaturesOverCell(4,B,0,J). Construct an index and a
primitive sample point for each cell. Irom these and from 7', create a triple for each cell, and
set V' to a list of all these triples, The adjacencics of I} are obvious; collect them as the set E.
Set G' Lo #, to complete the construction of a graph ¢ for D. Return,

(2) [r > 1. Initial graph.] Set P « Projection{A), and call CLCAD with inputs P, Basis,
Projection, ExtendCellToStack, and Adjacencies, Lo obtain output G'. Call algorithm
EsxtendCadClusters of Seclion 3 with inputs A, B, ¢/, and EztendCellToStack to obtain
an initial graph G for an A-invariant cad of E7.

(3) [r > 1. Non-initial adjacencies among r-space cells.] Apply Adjacencies to G O

Figure 12: Algorithm CLCAD.

extended-to-primitive conversions of the sample points of O-cells in 1-clusters. A sign-
invariant cad of E? for the tacnode is shown in Fig. 9. Using an implementation of
algorithm CAD (cf. Section 6), construction of this cad took 29 minutes, with 27
minutes of that spent in converting the extended representations of four 0-cell sample
points to primitive: cells (4,2), (4,6), (8,2), and (8,6). Using CLCAD, we were able to
construct the same cad of 2-space in 1 minutes; primitive sample points for cells {4,2),
(4,8), (8,2), and (8,6) were not required, because they belong to a 1-dimensional sign-
invariant cluster (the collection of all cells contained in the curve), which is adjacent only
to 2-dimensional sign-invariant clusters, and for each such adjacent 2-cluster, each pair
of maximal cobounding subclusters for the curve and the 2-cluster has an intercluster
adjacency between a 2-cell of the 2-cluster and a 1-cell of the curve.

5 Main algorithm

In Fig. 12 we give our main algorithm CLCAD in a form which has various procedure
parameters. Thus the exact version of the general cluster-based cad strategy that a user
desires can be obtained by passing appropriate concrete procedures for these parame-
ters, for example, one might use McCallum projection (McCallum, 1988) instead of the
projection map assumed in Section 2, or one might use other adjacency algorithms than
those we have given in Section 4.

Let us now list the particular concrete procedures that we pass for CLCAD’s pro-
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Adjacencies (G)

(1) If # = 1 or v > 4 then return. If r = 2 then AdjacenciesTwoSpuce(F). If r = 3 then
AdjacenciesThreeSpace(G) O

Figure 13: Algorithm Adjacencies.

cedure parameters in our current implementation; this Information in effect summa-
rizes Section 2-6. The defaunlt for calls to CLCAD is: we don’t care what basis B for
prim(A) the procedure Basis computes. We set Projection(A) = PROJ(B)Ucont(4),
2 < i < r. We pass procedure EziendCellToStack of Arnon et al. (1988) as argument
EztendCellToStack. Finally, as one may expect from Sections 4, we pass the algorithm
shown in Fig. 13 as argument Adjacencies of CLCAD.

Given the these concrete procedures as values for CLCAD’s procedure parameters,
and given input polynomials 4 C I, with 1 < » < 3, the sign-invariant connected
components of the undirected graph (V, E) built by algorithm CLCAD correspond to
maximal sign-invariant clusters of the cad D of E", and the boundary of each cell of D
is a (disjoint) union of lower-dimensional cells, i.e. D has the boundary property.

6 Examples

6.1 General remarks.

We have not so far performed a detailed study of our implemented cluster-based cad
algorithm’s behavior, but preliminary experiments indicate that its performance is some-
times better, sometimes worse, than the “original” cad algorithm (i.e. algorithm CAD
of Arnon et al., 1984a). Of course, the results of the comparisons we have carried
out reflect the use of the particular adjacency algorithms given in Section 4. In any
particular such comparison, the outcome seems to depend on the relative time of the
extended-to-primitive sample point conversions that the original algorithm must do but
which the cluster-based algorithm avoids, compared to the adjacency computations that
the cluster-based algorithm must do but which do not occur in the original algorithm,
Thus the Quartic and Ellipse examples below, for which the original algorithm was
faster, most likely had easy sample point conversions relative to the cost of adjacency
computations.

Fig. 14 contains a summary of the results of our comparisons. The times in it were
obtained from algorithms CAD of Arnon et al. (1984a), and algorithm CLCAD of this
paper, with both algorithms computing finest squarefree bases. Both algorithms were
implemented in the SAC-2 computer algebra system (Collins, 1980), on a Vax 11/785
running Unix. The times given in the table are in minutes. Tppipinas is the time spent by
the original cad algorithm, and Tirystereq the time spent by the cluster-based algorithm,
for each example. A time of zero minutes means less than half a minute. The notation
“> n minutes” means that an algorithm ran for at least n minutes before either it was
terminated or our computer went down. The column “Cells” gives the number of cells
in the cad’s built by both the original and cluster-based algorithms, and “Clusters”
gives the number of maximal sign-invariant clusters in the cad built by the cluster-based
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Name Toriginal ’11cluaterecl‘ C‘ella I Clustera
Tacnode 29 I 5 |5
SIAM 1 1 41 15
Toptyp > 120 4 37 9

Pairl > 90 7 103 15
Pair2 > 83 9 127 27
Pair3 19 4 85 21
Paird 1 1 63 15
Pairb 7 7 57 15
Quarticl 2 2 21 )
Quartic? > 115 > 115 ? ?
Quartic3 > 270 25 37 3
Quartic4 46 47 55 b
Quartich 0 0 21 4
Cabii” Lo v TE 5 ]
Quartic 2 10 123 35
[mplicit > 300 89 855 9
SphereCatas | > 827 282 1393 | 9
Ellipse 9 v 2291 | 715

Figure 14: Sample comparisons of original and cluster-based cad algorithms.

algorithm. Sections 6.2 - 6.5 give the input polynomials for each example, and where

applicable, cite a source for the example.

6.2 Miscellaneous bivariate examples.
8.2.1 Tacnode (Arnon et al., 1984a)

4 3

Yy - 2y + y2 - 3m2y + 22t
6.2.2 SIAM papers pair of polynomials (Arnon et al., 1984a, 1984b)
144y% + 96z y + 92* + 105z + 70w — 98
a:y2 + 6xy + z° + 9z

6.2.3 Toptyp algorithm example (Arnon & McCallum, 1988)

vt - 2z - 2t o+ 2ty 42t -1

6.3 Five randomly generated pairs of bivariate polynomials.

Each consisted of a quadratic and a cubi¢ polynomial, with two-digit integer base coefficients,
6.3.1 first pair.

3y2 — 2zy + 28z + 31
-8y° + 62’y ~ 162y ~ Ty - Tz’ + 112 + 6.



210

D. S. Arnon

6.3.2

6.3.3

6.3.4

6.3.5

second pair,

—9y? 4 30my - 220* 4 21

2% - 1227y - 122y ~ 8y | 112? - 22 - 2.
third pair.

2y~ 13z + 22

~13y® + 5ay” + 12 + 1422y 4 11y - 1027 + 11,
fourth pair.

~12zy — 156y - 302% 4 4z | 21
~my2 + 153,02 + Bmzy - 12y + 120% + 9,

fifth pair,

27wy -+ 9w? - 3l {4

5y® — 14wy® + 15y% 4 13xy | 2wy | 14y Ta® B

6.4 Five randomly generated bivariate quartics.

Fach had two-digit integer base coefficients.

6.4.1

6.4.2

6.4.3

6.4.4

6.4.5

first quartic.
44my® + 672y? 4 25y 4 87w® B,
second quartic.
—62y? — 292%y% — 46y* + 480y - Be’y 4 262" | 27w - BY,
third quartic.
—~50y* + 48y® - 8y? — 34x?y - 112% - 5o,
fourth quartic.
80zy” + 59y° — 41y” — 56ty + 47wy + 45y -+ 222 — 3827 + 32? - 24,

fifth quartic.

522%y? + 30zy° + 49y — 42%y + 62zy + 9zt + 3320,

6.5 Trivariate examples.

6.5.1

CADIII example surface (Arnon el al., 1988)

Pzt oyt — o
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6.5.2 Positive definite canonical form quartic (Arnon & Mignotte, 1988)

P
8pr — 9q2 - 2p3
2667 - 128p%9? + 144pg°r 4 16pTr —~ 27g" — 4p°4?

6.5.3 Curve Implicitization (Arnon, 1988)
506t — 8647 + 570t + @ ~ 343
2116 — 276t — 90t - y + 345
6.5.4 Unit sphere and catastrophe surfaces (McCallum, 1988)
JE I B S

2 tzzty

6.5.5 Ellipse example (Arnon & Mignotte, 1988)
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