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The fundamentals of information theory and also their applications to testing
statistical hypotheses have been known and available for some time. There is
currently a new and heterogeneous development of statistical procedures, based on
information measures, scattered through the literature. In this paper a unification
is attained by consistent application of the concepts and properties of information
theory. Our aim is to examine a wide range of divergence type measures and their
applications to statistical inferences, with special emphasis on multinomial and
multivariate normal distributions, The “maximum likelihood” and the “minimum
discrepancy” principles are combined here in order to derive new approaches to the
discrimination between two groups or populations. To study the asymptotic
properties of divergence statistics, we propose a unified expression, called (4, ¢)-
divergence, which includes as particular cases most divergences. Under different
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assumptions it is shown that the asymptotic distributions of the (4, ¢)-divergences
are either normal or chi square. From the previous results a wide range of statistical
hypotheses about the parameters of one or two populations can be tested. To help
clarify the discussion and provide a simple illustration examples are given. 1994

Academic Press, Inc.

1. INTRODUCTION

Divergence measures play an important role in statistical theory, espe-
cially in large sample theories of estimation and testing. The underlying
reason is that they are indices of statistical distance between probability
distributions P and Q; the smaller these indices are the harder it is to
discriminate between P and Q. Many divergence measures have been
proposed since the publication of the paper of Kullback and Leibler (1951).
Renyi (1961) gave the first generalization of Kullback-Leibler divergence,
Jeffreys (1946) defined the J-divergences, Burbea and Rao (1982a, b) intro-
duced the R-divergences, Sharma and Mittal (1977) the (r, s)-divergences,
Csiszar (1967) the ¢-divergences, Taneja (1989) the generalized J-divergen-
ces and the generalized R-divergences, and so on. In order to conduct a
unified study of their statistical properties, here we propose a generalized
divergence, called (4, ¢)-divergence, which includes as particular cases the
above mentioned divergence measures.

Let (X, B4, Py)oco be a probability space, where @ is an open subset of
RM. We shall assume that there exists a generalized probability density
function (p.d.f} fy(x) for the distribution P, with respect to a o-finite
measure g In this context, one obtains

H(0,)< H(6, ]| ), (1.1)

where

H(8) = =] fo(x) log fo, (x) du(x) (1.2)

is the Shannon entropy (Shannon, 1948), and

HO,110:) =~ [ fo,(x) 108 fu(x) du(x)

is the Kerridge inaccuracy (Kerridge, 1961). Inequality (1.1) is known as
the Shannon-Gibbs inequality. The difference

Jo(¥)

13
() du(x)  (1.3)

D(6y, 02) = H(6, || 02) ~ H(0,) = [ fa, (x)log 7
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is known as the Kullback-Leibler divergence (Kullback and Leibler, 1951).
While Shannon entropy either quantifies the information that a random
variable, X with p.d.f. f,(x), gives or measures the variability of X among
the individual within the population, the Kullback—Leibler divergence is
used in order to express in a quantitative way analogies and differences
between two populations by means of their respective p.d.f f, (x) and

f 02(3‘)-
Csiszar (1967) generalized the Kullback-Leibler divergence as

fa,(x)

Dy (0,,02)= | fu(x)o ( AT

) du(x),

where ¢ is a real valued convex function on (0, oc) being strictly convex in
some pointx, 0<x<oo. Important ¢-divergences are: Kullback and
Leibler with ¢(x)= xlog x, variational or statistical with ¢(x)=|x— 1|,
y>-divergence or Kagan with ¢(x)=(1—x)?, Matusita with @(x)=
(1 —x“)"* 0<a< 1, Balakrishman and Sanghvi with ¢(x)=(x—1)%
(x+1), Havrda and Charvat with @(x)=(x—x")/(1—s). Further
examples can be found in Vajda (1989).

Of course many other divergence measures not enumerated above can be
found in the literature of information theory and sometimes one feels like
asking for the following questions: Is there any reason for such a variety?
Have all these measures been introduced having in mind a real problem?
Due to historical type arguments, it is understandable to find works on dif-
ferent divergence measures where similar results are obtained and/or the
same tools are employed. For these reasons, we have tried to give a very
general functional, which can be used to conduct global studies instead of
measure-to-measure individualized studies. The final purpose is to save
time and work. So in this paper we propose a unified expression, called
(h, ¢)-divergence, as follows

D501, 02)= [ [ 1) 8.0 (00 (0) i) (1)

where A= (h,),c 4,  =(d,)uc 4> ¢, and A, are real valued C? functions with
h,(0)=0, and # is o-finite measure on the measurable space (A, B). It is
assumed that, for every x € A, either ¢, is convex and A, increasing or ¢,
is concave and 4, decreasing. Furthermore, we suppose that lim _ _ . é,(x)
and lim__,. (¢,(x)/x) exist, in the extended sense, for all o, and 4 is a
family of functions in order that the integral makes sense; i.e.,

L hadn=JA b dn—L hy dn,
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provided at least one of the integrals is not oo, where 4} = max{h,, 0} and
h, =max{—h,,0}. In Morales et al. (1994) a table is given with the func-

tions 4, and ¢, corresponding to many well known divergence measures.
In what follows, the following regularity assumptions hold:

(i) The set A= {xeX/f(x, 0)>0} does not depend on & and for all
xeAd, 0e@

Uf(x,0) 0*f(x,6) &f(x,0)
26, 260,00, * 26,00,00,’

k=1, M

exist and are finite.
(ii) There exist real valued functions F(x) and H{x) such that

(x, 0) > (x, 0)
R 20,30, a0,

< F(x), < F(x), < H(x),

a6, 00,
where F is finitely integrable and E[ H(X)] < M, with M independent of 6.

dlog f(X,0)0logf(X, 0)
(i) (E { 26, 26, }>M

is finite and positive definite.

Kupperman (1957) established that the statistic based on the Kullback-
Leibler measure of information

Ja(x)
Jo(x)

where 6=(0,,..,0,) is the maximum likelihood estimator of
0= (6,, .., 0,), is asymptotically chi-square distributed with M degrees of
freedom (y3,). Based on this result, the null hypothesis H,: 0 =6, can be
tested. If we now consider a K-variate normal distribution, i.e,
O0=(p,0405;i=1,.,K j=1,.,K j>i) with dimension (K’+ 3K)/2,
then we can test Hy: (1, 2) = (up, 2y), where pu=pu,, ..., 4s)" is the mean
vector and X = (o) is the variance—covariance matrix.

For the two sample case, Kupperman (1957) established that if 8, = 8,,
then

2mD(6, 6) = 2nf f3(x) log 22 qu(x),

2mn

D(Ol, 02)—“—* Xw’

where 6, =(0,,, .., 0,,,) and 6, = (8,,, ..., éZM) are the maximum likelihood
estimators of &,=(8,,, .., ,,) and 8,=(0,,, .., 6,,,) based on inde-
pendent samples of sizes n and m, respectively. Based on this result, the null

683/51/2-12
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hypothesis H,:8, =08, can be tested. If we now consider a K-variate
normal case, then we can test Hy: (y,, 2,)=(p,, 2>), i€, the complete
homogeneity test. Clearly, there are some other possibilities not covered by
the above two tests. For the one sample problem, consider Hy: 2'=2,
(when p is unknown) or Hy: u=p, {(when X is unknown). For the two
samples problem, consider H: u, =u, (when X', and X, are equal but
unknown), Hy: X2, =2, (when pu, and p, are equal but unknown),
Hy:py=p¥ and 2, =2, (when uf is a predicted value of u,), and
Hy:p,=p¥ and 0,,=0,; (when ¢, and ¢, are equal but unknown for
every i <j).

In this paper, we give an answer to the above tests on the basis of the
(h, ¢)-divergence functional. So, on one side we deal with new problems
and on the other side we give a general procedure which could be used
with almost every divergence measure. More concretely, we suppose that

01 = (0“, e HIM)

is unknown and that
92 = (62] 5 veey sz, 62(k+ 1)9 *oos GZMQ’ 9?M0+ 1) tres 9:4)

is partially known. We assume that 8,,=0,, if iel,={1,2,.,k}, 6, is
unknown and different from 8,; when iel,={k+1,.., My} and 6, is
known and equal to 6} when ie ;= {M,+1,.., M}.

Therefore the joint parameter space I” is an open subset of R *#o- &
however, if we add the hypothesis §, = 0,, the joint parameter subspace I'
is an open subset of R*°, Moreover the elements of the parameter space

Y= {715 o0 Yar+ arpi) € I are as follows:
. Y if 1<isM
P W e o MA1<i< M+ Mo—k;

Le, =011, o Orar, Qa1 1ys oos Oangy)r

From each population independent random samples of sizesn and m
respectively are drawn. Let é”, (32,, i=1,., M, j=k+1,.., M,, be the
estimators which maximize the logarithm of the joint likelihood function

log L(y)= ) logf, (x)+ 3. log fo,(¥.)

i=1 i=1

and let $=(},, .., Far+ ay «) be the maximum likelihood estimator of y;
ie.,

¥ if 1<isM

Wi M+ k) if M+1<i<sM+M,—k
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In this paper the asymptotic distribution of D! (0,, 6 ,) is obtained, where
01 = (911, “es 91M) 92 = (971, 62/<a 92(k+l)7 I 02M05 9(M0+l)’ s 0%),
6,,=7, if 1<l<k and 92,—0* if M0+1<:<M We also obtam the
asymptotic distributions of D’ (6,, 6,) in some particular but very impor-
tant cases. Applications of these results in testing statistical hypotheses are
presented. Examples of multinomial and multivariate normal distributions
are given.

2. ASYMPTOTIC DISTRIBUTION OF Dg(él, f,)

Consider the function

wa)=h1{jzfgz(x)¢ (foy (X)fo (X)) il x ¢(1)}

A Taylor’s expansion of H,(7) around y yields
D;(61,62)=Df?(61,62)+ T —7)+ R
where T'=(t), ., trrs gt )
with
= (14 0 8utf o i, 1)}

afal(—\')

a0, ¢;(fa, (x)/foz(-“))

<[ (L 00 (0tf o + T

fo,(x) fo,(x)
08, faz(x)

= f (h; {Lfoz(x) B (fo, (x)/fo, (x)) du— 4. (1 )}

o, (W (X)) )du>drr i 1<i<k,

<[ (T2 bt Aoy i )it k1<
X 6011

= (] ) 600 0 = .00

o, (0
><L< o, (x) b (Fo, (X)/fo, (X)) — 65 (o, (X)/f 5, (X))

005 sk
faz(x) fo (x)) ) . .
X ! du ) dn if M+1<isM+M—k
a92,;>M+k fez(x) # 0
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I m/(m+n)——— 2€(0,1), then

",n— x

(m”)“(er———»Mozwhe)J

"1_+_n non— L
where
Z‘(619 0 )
Db 1 0)) 4= L 02) S IE (80— B T(02)
FRIATANS [ w02 2 mle 1= ;k+1\1(,l
1 ‘ 1,
= z'fi' M1:0)) I : ad i (0)) 0 s
l k+ 1L .My l + 1. My
1 — 4 Mk 1:(0,) 0 "'"'—1 g S ol #(0)

oI 1.(0) is the (j—i+1)x(r—s+1) submatrix of /,(0) which have the
rowsi, i+ 1,..,j and the columns r,r+1,..,s and I.(0) is the Fisher
information matrix associated to 0. Therefore

1,2
< e ) (D30, 02) = Dy(81,05) = N0, T'2(6,,05) 1 T),
m+n "

provided T'X(0,,0,) ' T>0, because (mn/(m+n))''> R, converges in
probability to zero.

If 6,=40,, then T'2(0,,0,) ' T=0. Therefore using again a Taylor’s
expansion of H (y) we get
20% (8., 0,) M
[ m0) b (ydn 5,
2 Y Y a,6u—0,)6,-0,)

i=k+1j=k+1

(0, —0.,)(0,,~0,,)

a

My . .
+ Z a[/‘(02i_62i)(92/—'02j)+ an

Li=k+1
=(f—PB) AP~ P)+R,,,
where
E= (éuk+ 1ys oo é\Ms é2<k+ 1)y =oos éZMU)
and

ﬁ= (01(k+ 1) =+ 61/\4, 02(k+ L)s v 02.@10)
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are vectors of dimension M+ M,—2k and A4 is a partitioned matrix of
dimension (M + M, —2k)x (M + M, — 2k), which is given by

kLl e(0) Mot dr(0) =G RIA(0))
A= O35 100) wpe i e (0) =GO 1:(0))
— (I Ir0) = Gt de0) L0 (0)

If we assume that m/(m + n) A€(0, 1) then

n.n— X

1/2 .
( nm ) (f—B)—Ls N(O. £,

n+m e
where
s (A’k‘i{:%h(@z)‘ 0 )
: 0 (L—2) {2 iiner,.(0,)""
Therefore
2nm DZ(él,éz) L M+§’72k B2,

m+n | h(0) (1) dy ">

i=1

where the f;s are the eigenvalues of the matrix 42, and the ¥3s are
independent.

Let us observe that in the matrix A, the last My, — k columns (rows) are
exactly the first My — k first columns (rows) with opposite sign. Therefore
the number of linearly independent columns (rows) is less than or equal to
M — k, hence the rank of A is less than or equal to M — k. Moreover

FAZ,) <min(r(4), (X5))) <min{M —k, M+ My~2k} =M —k,

since k< M,. For this reason, the maximum number of non-null
eigenvalues of 42, is M —k. So we get the following result:

THEOREM 1. Assume the regularity conditions (1)—(iii) hold.
(a) If m/(m+n)——> Ae(0,1) and T'Z(#,,0,)" ' T>0, then

m,n — X

—L L NO, T'Z(0,,8,) ' T).

n,nt —

172 o
e AU SRV AUNA)

m+n
(by If8,=40,, then

2nm D;(él’éz)
m+n |, h,(0)¢;(1)dn

M~k
L . 2
P Z Bixis

i=1
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where the yis are independent and the B.s are the non-null eigenvalues of the
matrix AZ, provided that ( , h,(0) ¢, (1) dn #0.

To prove Theorem la (1b), we suppose that H, has continuous second
(third) partial derivatives verifying regularity conditions (such as
dominated convergence theorem)} which enable us to interchange the
symbols lim,,, ,  and |,. Note that, as A is finite, this assumption holds
for every divergence measure appearing in Section 1.

An important particular case of this theorem appears when M,= M, i.e.,
when the parameter of the second distribution is

02 = (021’ ey 02/(, 92(k+l|’ ey 02.&//)’

where 0,,,..,0,, are unknown and equal to #6,,..,6,, while
D2k 4 1ys - 0244 are unknown and different, in general, from the parameter
in the first distribution.

CoROLLARY 1. Under the regularity conditions (1)-(iil), if the k first
components of the parameters 8, and 8, are equal, then

(a) If m/(m+n) 2€(0,1) and T'X(0,,0,) ' T>0, then

mn—

mn \'"?* o - " L
(D"(B,,0,)— D" (0,,0,) —L—s N(O, T'2(0,,0,) ' T),
4 [ nm 2

m+n
where T= (1, ..., lax - )" is given in Theorem 1.

(b) If m{(m+n) 5= +€(0,1), [, #,(0) 5 (1) dn #0 and 6, =0,,
then

2nm D;(é,, 6,) . 2
m+n§/1 h;(0)¢:(l)d” mm— XMt i+

Proof. (a) Immediate, taking M,= M in Theorem 1.

(b) In this case, it is easy to check that the matrix 42 is idempotent
and its trace is M —k; therefore, (f—pfB) A(f—pB) has a chi-square
distribution with M — & degrees of freedom.

Another interesting case appears when M, = M and k =0; then we have

the following result:

COROLLARY 2. Let 0, and 52 be the maximum likelihood estimators of 8,
and 0,, and suppose that (1-ii) hold, then
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(@) If mim+n)5= Ae(0,1) and AT'1.(0,)"'T+(1-41)
ST,(0,) " S>0, then

1,2
() (D46, 8- D4(6,.0,)

m+n

——L s N(O, AT'I,(8,) ' T+ (1~ 1) S'1.(8,) " S),

n.m-— o
where T= (1, ..., ty) and S= (s, .., ;)" with

=] (Bd] 100 U (500 i 81

x L (aj;fb(:) @S0, (x)/fo,(x)}) dy)) dn

and

o= [ (8] Ao 82 a0t = 610}

[ (L0 o) = 2 (o) ) )

96, 08y fo(x)
(b) Imi(m+n) s 40, 1), [, 7,(0)$7(1)dn#0 and 6,=0,,
then
2mn Dh(élyé ) L

y a2
m+n|,h0)gr(1)dy mm== *M

Proof. Taking k=0 in Corollary 1, the result follows.

Another important case appears when M= k. In this case we only have
to observe a sample of size n in the first population and a new theorem
must be derived in a similar way to Theorem 1. Also note that the first M,
components of 8, coincide with the corresponding components in 8,, while
the last M — M, components are known. Let us define § =6, and 6* =4,;
we state without proof the following resulit.

THeOREM 2. Let G=(,,.,0,) and 6% =(6,, .., 0, 0% 11 1s - O%)
be the maximum likelihood estimators of 6=(0,,..,0,) and 0*=
(01, s Baggs 0%t 4 15 - O%f), respectively, based on a random sample of size n
Jrom fo(r) Assume that the regularity conditions (1)-(iii) hold, then
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(a) n'*(D%(6,0%)— D}(0, 0%)) L N(O, T'I.(0)~' T), when
T1.(0) ' T>0, where T=(t, ... ty),, with

n= [ (] 00 a0t ) = 1)

<[ (L= ot o0+ T2 g fy e

69 0 . .
o) e () fa(g )J{”((J)du)dn Fl<i<M,,

(=] (B[ S0 80 0 i 8,1

A Y
XL(Cfgéi\)‘ﬁ;(ﬁ’(-’”/fﬂ*(x))dﬂ))dn if Mo+1<i<M.
(b) If 0=0% and |, h,(0) $5(1)dn+#0, then
2n1);;(6, 0%) .
[ h(0)ygi(lydy "= > X1 Mo

Another important case appears when M, =k =0. In this case we only
have to observe a sample of size n from the first population. Also note that
8, is completely known. Let us define 8 =6, and §,=0,, so we have the
following result:

COROLLARY 3. Assume that the regularity conditions (i)-(iii) hold. If 0 is
the maximum likelihood estimator of 0 and 00 is known; then

(a) n"2(D"(B,0,)— D"(0, 8,) L N(O, T'Ip(0,) ' T), where
T=0(t,,..ty)" is defined in Corol[arv 2a and T'7,.(60,)" ' T>0.
(b) If 0=86, and | ; h,,(0) $,(1) dn #0, then

2nDl‘(9 9)
j’/‘ 0)¢// " o0 XM’

Proof. Taking M,=0 in Theorem 2, the result is immediate.

3. STATISTICAL APPLICATIONS

The previous results giving the asymptotic distribution of the Di—
divergence statistics in random sampling can be used in various settings to
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construct confidence intervals and to test statistical hypotheses based on
one or more samples. First, we give some examples with one sample:

(1) To test the hypothesis that the divergence between 6 and 6@, a
predicted value of # available beforehand to the experimenter, is of a
certain magnitude D, ie., Hy: Dg(O, 0,) = D,, we can use the statistic

n'(D%(6, 6) — Do)
Zl = - 6_ B

which has approximately a standard normal distribution under H, for
sufficiently large n, and ¢ is obtained from Corollary 3a by replacing 6 by
its maximum likelihood estimator @ in (T'1;'(0)T)'".

(2) To test the hypothesis H,: 8 =8,, where 8, is a given value of the
parameter, we consider the statistic 7, given in Corollary 3b, whose
asymptotic probability distribution function under H, is a chi-square with
M degrees of freedom. If H, is true, then 7', will be small. Thus a large
value of 7, indicates data less compatible with the null hypothesis. Hence
for large n, when T, =1, one must reject Hy at a level o if P(yx3, > 1) < a.

(3) Let 8=(4,, .., 0,,) be the unknown true value of the parameter
and let 6* = (0,, ..., O, 0%, 1 1, .., O%) be a value of 8 having the same first
M, components as £ and with its last M — M, components being
prespecified values of 8, ,,..,0,. To test the hypothesis that the
divergence between 6 and 6* is of a certain magnitude D;; ie,
Hy: D;((), 0*)= D,, we can use the statistic

n'?(D’(6, §*) - D,

a

Zz—

L]

which has approximately a standard normal distribution under H, for
sufficiently large n, and ¢ is obtained from Theorem 2a by replacing ¢ by
its maximum likelihood estimator 6.

(4) Suppose the conditions given in (3) hold. To test the hypothesis
H,: 0 =0*, we use the statistic T, given in Theorem 2b. Hence for large n,
when T, =1, one must reject H, at a level « if P(xﬁ,;M0> <o

We shall now show some examples of two sample tests.

(5) To test the hypothesis that the divergence between 8, and 6, is
of a certain magnitude D,, ie., HO:Di(()],BZ):DO, we can use the

statistic
mn \'* . o 4
(55) (Db 8- D)

m+n
Z3= ~ 3

g
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which has approximately a standard normal distribution under H, for suf-
ficiently large n and m, and & is obtained from Corollary 2a by replacing
8, and 6§, by their maximum likelihood estimators 6, and &, in
ATINO0)T+(1—4) ST, '(0,)8)"

(6) To test the hypothesis H,: 8, =6,, we consider the statistic T,
given in Corollary 2b, whose asymptotic probability distribution function
under H, is a chi-square with M degrees of freedom. For large » and m,
when T, =1, we reject H, at a level o if P(x3,> 1)<

(7) Let 0,,=80,,, .., 0, =0, be unknown but equal components of
0, and 8,, respectively. To test the hypothesis that the divergence between
#, and 8, is of a certain magnitude, i.e, H,: DZ((),, 0,)= Dy, we can use
the statistic ;

m-+n
Z4= A k)
a

(7 ) (D" (8,,8,)— Dy)

where 6 is obtained from Corollary 1a by replacing #, and 6, by 6, and 0,,
respectively, in (T'2(0,,0,) ' T)"2

{8) Suppose the conditions given in (7) hold. To test the hypothesis
H,: 6, =0,, we use the statistic T, given in Corollary 1b. Hence for large n
and m, when T, =1, one must reject H, at a level o if P(y3, ,>1)<a.

(9) Let 0,,=0,,,..., 6, =0, be unknown but equal components of
¢, and 0,, respectively. Let 0%, ..,..,0%, be predicted values of
02515+ 1> - 01 41, TESPEctively, available beforehand to the experimenter. To

test the hypothesis that the divergence between 8, and 6, is of a certain
magnitude, ie., Hy: D;(O,, 8,)= D,, we can use the statistic

mn \'* .

( ) (D%(d,,62)~ Dy)
m+n ¢

Z = ; ,

where ¢ is obtained from Theorem la by replacing 6, and 6, by 6, and 8,,
respectively, in (7°2(8,, 0,) ' T)'

(10) Suppose the conditions given in (9) hold. To test the hypothesis
Hy,:0,=6,, we can use the statistic 75 given in Theorem 1b. Hence
for large n, when 75=1 one must reject H, at a level o if
P(X M5 M0 B,42> 1) <a, where the s are independent and the f§;s are the
gigenvalues of the matrix obtained by replacing 8 =0, =8, by 6 (e.g., the
maximum likelihood estimator based on the joint sample of size n 4 m)

in A2,
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Remark 1. In (2),(4),(6), and (8), the degrees of freedom of the
asymptotic chi-square distributions are all equal to dim(@) — dim(@,).

Remark 2. 1If for given o, 0 < a < 1, a nonrandomized Neyman-Pearson
test of a simple hypothesis against a simple alternative exists, then there
exists an equivalent D’-divergence test statistic. To prove this statement,
consider the following estimator of fe @ = {0, 0, }:

é={9‘ if f(xy, .., %,/0,) = Af(xy, ... x,/00)
0, it (g, o x,/0) <Af(xy, . x,/0,)

We reject the null hypothesis if D:(@, 04) > ¢ for some proper ¢ >0, but

. {D;(é, 0) il f(x1s o %,00,) 2 A (X, o X, /00)

4 =
Dy (0. 05)= 0 i £, o X,/0) < Af(Xy, oy X,,/00)

So the decision rule is

1 f(Xyy e %,/0,) 2 A3, o X,/00)

Plxis x")z{o £ (10 s X, /00) < AL(X ) o X, /00)

where 4> 0 is chosen to verify that a = E, [o(X,, ... X,)].

Remark 3. 1If the Di-divergence test statistic is constructed on the basis

of maximum likelihood estimators, as it happens in Section 2, then, for
testing 6 € &, against @€ @, this statistic is a function of every sufficient
statistic for 8.

To illustrate the above results we consider the following example
ExaMmPLE 1. (Seal 1964, p. 106). Measures of cranial length (x,) and

cranial breadth (x,) on a sample of 35 mature female frogs led to the
following statistics

. _<22.86O and S _<l7.178 19.710)
17N 24397 '7\19.710 23.710)°

where S, is the maximum likelihood estimator of the variance-covariance
matrix 2. Similar measurements on 14 male frogs led to the statistics

_ 21821 4 g (17159 17731
27\ 22843 an 2=\17.731 19273)

where we have assumed that both populations are bivariate normally
distributed.
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We will use the r order and s degree divergence, D;(6,, 8,), with r=0.5
and s =2, to test the following hypotheses:
(a) Hy:p,=pu, given that 2 =2,
(b} Hy:p,=p, and 2, =2, (test of complete homogeneity).
(a) In this case the maximum likelihood estimator of u, under the

alternative hypothesis is x;, the ith sample mean (i=1, 2), and the maxi-
mum likelthood estimator of the common variance-covariance matrix is

S_nS,-i—mSz_ 17.173  19.145
- T\19.145 22442

n+m

and

o _( 1.18958 —1.01482)

—1.01482 0.91028

The expression of the (r, s)-divergence, obtained from (4, ¢)-divergence
for A={1}, nl)=1, h(x)=1/(s—IN[(x+1)*"Wr"Y_1] and
¢ (x)=x",r,5>0, r,s# 1, between two K-variate normal distributions, see
Pardo et al. (1992), is

DJr.((.ul,E])’ (.‘127 22))

2

[r22+(1—r)21|“ $)2r—1)
: l‘\:]l(,s» )2 |2‘2|(l——,\'Jn"2(r 1)

1
=(s~1)‘(exp{’“ )(u1~uz)'[rzz+(1—r)211‘(m—uz)}

—1), s, r#l, r>0.

As [, h,(0) ¢, (1)dn=r, we have to evaluate the test statistic given in
Corollary 1b, ie.,

_ 2nm
" r(m+n)

1.18958 — 1.01482\/1.03
=40<exp {0.25(1.039,1.554)< . )( 9)}—1)

D:((il’ S)’ (fz, S))

4

—1.01482 0.91028 /\ 1.554
=2.107.

Since x3,0s=135.94, we conclude that u, is equal to py, when ¥ =2,
Also oberve that from the proposed test a new test with exact distri-
bution can be derived as follows. T,>¢, iff (nm/(n+m))D*=
(nmf(n+m))(¥,—x,)' S, (X, — X,)>c,, where S,=((n+m)/(n+m—2))S
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and (nm/(n+m)) D? is the Hotelling’s two-sample T2 statistic. Further-
more, if u, =y, and =, =25,, then (nm/(n+m)) D* < T(K,n+m—2).
Using the relationship between 72 and F distributions, we may also deduce
that, under the stated conditions,

,  mmn+m—-K-1)

T (n+m)n+m—2)K K K 1-

One must reject the null hypothesis when 74> Fyx ., ,._ x_ 1., Finally, we
have T, =0.964 and F, 4 ¢0s = 3.20, so we again conclude that p, is equal
to u, when X', =2,

(b) Now we have that 6,=(y,,2,) and that 8,=(u,,Z2,). The
statistic that we have to evaluate is given in Corollary 2b, ie.,

2nm

=mDi((fh 51)7 ()_CZ’ S2))

T,

18.5197
=40 <exp{0.25-0.06970} ( O1970 1)

18.80628)'2 (16.31705)"2
=3.03174.

Since y3y0s = 11.07, we conclude that y, =y, and X, =2,.

4. APPLICATIONS TO MULTINOMIAL POPULATIONS

Recently, many works have appeared in the scientific literature treating
statistical problems in a multinomial distribution context by means of
divergence type measures. In Zografos et al. (1990) the sampling properties
of estimated ¢-divergences are studied. Approximate means and variances
are derived and asymptotic distributions are obtained. Furthermore, tests
of goodness of fit of observed frequencies to expected ones and tests of
equality of divergences based on two or more multinomial samples are
given. Zografos (1992) and Pardo et al (1992) studied a test of inde-
pendence based on ¢-divergences measures. Also related with the stratified
sampling setup is a recent paper by Zografos (1991). With a different
divergence measure, Morales et al. (1993) have studied the same problem
in a stratified random sampling with proportional allocation and inde-
pendence among strata. Other interesting works in this line can be seen in
Menéndez et al. (1992) and Salicri et al. (1993).

In this section we shall study the asymptotic behaviour of the (4, ¢)-
divergences in multinomial populations. More concretely, consider

(X, By, Pgloce With @={9=(P1’---,PM71)/P1>0a Z,M:illpizl_l"u}
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and X={x,,..,x,}. Consider the parameters 6,=(p,, ...Py 1)
and 6,=(qy,...qup_.), where p,20, ¢, 20 (i=12,.,M) and
SM . p,=2M q,=1 (Note that (M —1) is now the parameter dimension
and not M). Observe that for every value x; of X

fal(xf):Pf and fﬂz(xi):qh

where we have supposed that p is a counting measure giving mass one to
each of the values x; of X. Then, DZ((),, #1,) can be written in the following
way )

0P, )= 040,00~ | (% 4t ()= 0)an.
i=1

Estimation of multinomial population (A4, ¢)-divergences can be made in
two ways: estimating both distributions involved in the argument or
estimating one distribution and considering the other as given. In the first
case we have an index of similarity or dissimilarity of P and Q. In the last
case we have the relative information or directed divergence between the
sample and a given probability model. In this section we shall only con-
sider the previous two cases as particular cases of Corollaries 2 and 3.
From these results it is possible to construct tests of goodness of fit and
homogeneity. Furthermore, it is not difficult to check that

11~'(01) '= (Pi(&/‘ﬂ,‘))f.j: Lo M—1
and
1,:(8,) = (qz'((szj— g))iietst—1-

After some straightforward calculus, all the results in Section 2 can be
obtained. Here we only present the particularized versions of Corollaries 2
and 3:

COROLLARY 4. Consider the analogue estimate, DZ(IS, Q), obtained by
replacing p,s and q;s by the observed relative frequencies p, and 4§,
(i=1,.., M), respectively. Suppose that (p,,..,py) and (4, .., Gr) are
based on independent samples of sizes n and m, respectively. If
(m/(m+n)) == 4€(0, 1), then

(@) (mn/(m+n))'? (D (P, 0)— D" (P Q))W N(0, 6}1), where
ol=lc%+ (1—1)6Q>0 )

=z n (] n (’;m( ) -6.m)(2) dn>2
(l‘;lpf (‘;q¢a< .~> $.(1 )) @ (5—) dn)2
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-2 ol (200 ()0 o () 5 (3) )
(Gl w200 G005 () )

(b) If P=Q and |, h,(0)¢,(1)dn+#0, then

2mn ;,P,Q)
n+mf R, (0) g (1)dy =m—> Xar—1-

and

COROLLARY 5. [If Q is known, then

(a) n'"*(DY(P,Q)~Dy(P,Q)) N(©, a3),

nm — oC

where o2, has been defined in Corollary 4.
(b) If Q is known, _f,, h,(0)du(1)dn+#£0 and P=Q, then

D! (P Q) .
M) iy

Based on Corollaries 4 and S we can construct the following tests:

2
X1

(1) Test for a predicted value of population divergence, i.e.,
Hy: DZ:(P, 0)=

See Section 3(1) if Q is known and Section 3(5) if Q is unknown.

(2) Test for a common predicted value of r population divergences,
ie.,

Hy: Dy(P1, Q\)= - = Dy(P,, 0,)=Ds,.

Q,; could be known or unknown, i=1,..,r
(3) Test for equality of r population divergences, ie.,

Ho: Dy(Py, Q)= --- =Dy(Pr, Q,).

0, could be known or unknown, i=1, .. r
(4) Test for goodness of fit, i.e.,

H,: P=p*.

P* is known. See Section 3(2).
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{5) Test for homogeneity of m populations with a known distribu-
tion Q; i.e.,
Hy: P =Py=--=P,=0Q.

(6) Test for homogeneity of two parallel samples, i.c.,

H,:P=0.
See Section 3(6).
ExaMPLE 2 (Rohatgi, 1984, p.624). Suppose we have the following
record of 340 fatal automobile accidents, per hour, on a long holiday

weekend in the United States.

No. of fatal accidents per hour <1 2 3 4 5 6 7 =28

No. of hours 5 3 10 11 11 9 8 10

The number X of fatal auto accidents per hour is clearly a discrete
random variable. We feel that the Poisson distribution with A =35 provides
an adequate representation for the distribution of X. The following table
compares the observed and the postulated relative frequencies:

X <1 2 3 4 5 6 7 =28

g, 07 1 14 15 15 .13 .11 .14
g, 04 085 .14 .175 .176 .146 .105 .133

We will use the r order and s degree divergence, D3 (P, Q), with r=0.5
and s =2, to test the above hypotheses. So, according to Corollary 5(b), we
have to evaluate the following test statistic:

2 M s—1ir—1
T2:TnDj(0,,02):g'1(s— 1) ! {[Z p;q,?'] - 1}=2.45433.

r j= 1

Since x3 405 = 14.07, we conclude that the Poisson model with 4 =5 does
provide a reasonable fit for the data.
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