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a b s t r a c t

A result of Ben-Or, Coppersmith, Luby and Rubinfeld on testing
whether a map between two groups is close to a homomorphism
implies a tight lower bound on the distance between the
multiplication tables of two non-isomorphic groups.

© 2011 Elsevier Ltd. All rights reserved.

In [3] Drápal showed that if ◦ and ∗ are two binary operations on the finite set G such that (G, ◦)
and (G, ∗) are non-isomorphic groups then the Hamming distance between the two multiplication
tables is greater than 1

9 |G|
2. In [5] there are constructed infinite families of non-isomorphic pairs of

3-groups at distance exactly 2
9 |G|

2.
In this notewe show that 2

9 |G|
2 is a lower bound for the distance between arbitrary non-isomorphic

group structures. The proof is a simple application of the following result from [2].

Fact 1. Let (G, ◦) and (K , ∗) be two groups and f :G → K be a map such that

#{(x, y) ∈ G × G : f (x ◦ y) = f (x) ∗ f (y)}
|G|2

>
7
9
.

Then there exists a group homomorphism h:G → K such that #{x∈G:f (x)=h(x)}
|G|

≥
5
9 .

Fact 1 is a weak version of Theorem 1 in [2]. Here is a brief sketch of its proof. For every x ∈ G, h(x)
is defined as the value taken most frequently by the expression f (x ◦ y) ∗ f (y)−1 where y runs over
G. Then the first step is showing that for every x ∈ G,#{y ∈ G : f (x ◦ y) ∗ f (y)−1

= h(x)} > 2
3 |G|.

The homomorphic property of h and equality of h(x)with f (x) for 5
9 of the possible elements x follow

from this claim easily.
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We apply Fact 1 to obtain a result on the distance between multiplication tables of groups of not
necessarily equal size. It will be convenient to state it in terms of a quantity complementary to the
distance. Let (G, ◦) and (K , ∗) be finite groups. We define the overlap between (G, ◦) and (K , ∗) as

max
γ :G↩→S,κ:K ↩→S

#

(x, y) ∈ G × G : ∃(x′, y′) ∈ K × K s.t.
γ (x) = κ(x′),
γ (y) = κ(y′),

γ (x ◦ y) = κ(x′
∗ y′)

 ,
where S is any set with |S| ≥ max(|G|, |K |).

Corollary 1. If |G| ≤ |K | and (G, ◦) is not isomorphic to a subgroup of (K , ∗) then the overlap between
(G, ◦) and (K , ∗) is at most 7

9 |G|
2.

Proof. Assume that the overlap is larger than 7
9 |G|

2. Then there exist injections γ : G ↩→ S, κ : K ↩→
S such that the set

Z =

(x, y) ∈ G × G : ∃(x′, y′) ∈ K × K s.t.
γ (x) = κ(x′),
γ (y) = κ(y′),

γ (x ◦ y) = κ(x′
∗ y′)


has cardinality larger than 7

9 |G|
2. Put

G0 = {x ∈ G|∃x′
∈ K such that γ (x) = κ(x′)}.

Then κ−1
◦ γ embeds G0 into K and it can be extended to an injection φ : G ↩→ K . For (x, y) ∈ Z we

have

φ(x ◦ y) = κ−1(γ (x ◦ y)) = κ−1(γ (x)) ∗ κ−1(γ (y)) = φ(x) ∗ φ(y),

and therefore, by Fact 1, there exists a homomorphism ψ : G → K such that

#{x ∈ G : ψ(x) ≠ φ(x)} <
4
9
|G|.

This, togetherwith the injectivity ofφ implies that theψ is injective aswell and its image is a subgroup
of (K , ∗) isomorphic to (G, ◦). �

We remark that the bound 2
9 |G|

2 on the distance for non-isomorphic group structures is only tight
in the case of general (or general Abelian) groups. For 2-groups the tight bound is 1

4 |G|
2 (see [4]).

In [5], a formula for p-groups is conjectured (and proved in the cases p = 2 and p = 3). Regarding
homomorphism tests, for special classes of groups, the ‘‘error bound’’ 2

9 = 1 −
7
9 of Fact 1 can also

be improved (at the cost of getting a somewhat worse, but still meaningful ‘‘distance bound’’ in the
conclusion). For the case of G = (Z/(2))m and K = Z/(2), 2

9 can be replaced with 45
128 >

1
4 (see [1]).

As the bound for distances between groups coincides with that for ‘‘errors’’ in homomorphism tests
for general groups, it is natural to ask whether this happens to be the case for certain classes of groups
as well. In particular, it would be interesting to knowwhether the bound 1

4 of [4] remains valid in the
context of testing homomorphisms between general 2-groups.
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