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Let P be a graded poset with 0 and 1 and rank at least 3. Assume that every rank
3 interval is a distributive lattice and that, for every interval of rank at least 4, the
interval minus its endpoints is connected. It is shown that P is a distributive lattice,
thus resolving an issue raised by Stanley. Similar theorems are proven for semi-
modular, modular, and complemented modular lattices. As a corollary, a theorem
of Stanley for Boolean lattices is obtained, as well as a theorem of Grabiner
(conjectured by Stanley) for products of chains. Applications to incidence geometry
and connections with the theory of buildings are discussed. � 2000 Academic Press
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1. INTRODUCTION

Can one determine if a given graded poset is a distributive lattice merely
by looking at small intervals? Stanley has suggested investigating this
question [15].

doi:10.1006�jcta.1999.3049, available online at http:��www.idealibrary.com on

119
0097-3165�00 �35.00

Copyright � 2000 by Academic Press
All rights of reproduction in any form reserved.

1 The authors thank Professor Francis Buekenhout for his valuable comments regarding the
paper. The authors also thank Professor Anders Bjo� rner for referring them to [2, 17].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82137028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Stanley has proven that one may recognize Boolean lattices by looking
at small intervals. Specifically, he has proven that a finite poset is a Boolean
lattice if and only if (1) P is a graded poset with 0 and 1; (2) every interval
of rank at most 3 is a Boolean lattice; and (3) for every interval of rank
at least 4, the interval minus its endpoints is connected (see Corollary 5.6;
[8, Lemma 8]).

Grabiner has proven Stanley's conjecture that ``Boolean lattice'' may be
replaced by ``product of chains'' (see Corollary 5.4; [8, Theorem 1]).

The first author has proven that ``Boolean lattice'' may be replaced by
``distributive lattice'' (Theorem 5.2); the proof here is due to the second
author. Indeed, the authors have independently shown that ``Boolean'' may
be replaced by ``modular,'' ``complemented modular,'' or ``semimodular''
(Theorems 3.4, 4.2, and 4.4).

The theorems of Stanley and Grabiner are fascinating because it is not
even obvious why a poset satisfying (1)�(3) should even be a lattice, much
less one with nice properties.

The motivation for the theorem comes from representation theory��
precisely, actions of the symmetric group on the maximal chains of a
graded poset with 0 and 1 [14, Sect. 5]. The theorems are reminiscent of
results by Regonati, Hibi and Terai, who show that certain global proper-
ties of distributive and modular lattices may be deduced by looking at rank
3 intervals [13, Part 3; 10, Theorem 0.1; 11, Theorem 3.3].

Grabiner takes a bare-hands approach, explicitly establishing the order
relations that exist amongst the elements of the poset in order to prove it
is a product of chains. Given the huge variety of distributive, modular, and
semimodular lattices, such an approach is not feasible for the more general
theorems. Instead, our proof is lattice-theoretic.

It turns out that these lattice-theoretic results intersect nicely with ideas
from incidence geometry and the theory of buildings.

1+- 5
2 . Historical Notes

The authors were inspired by the combinatorial and order-theoretic
approach to the above problem, as it was presented by Stanley [15]. The
referee has informed the authors, however, of the following important
historical information, which we take almost verbatim from the referee's
report.

The recognition of classes of posets by means of small intervals originated
with Tits in 1956 [16]. (Tits proved, inter alia, that lattices of projective
spaces can be characterized by the fact that their rank 3 intervals are
projective planes.) Interestingly, Tits' work on this problem is what led him
to the concept of building in 1961. It also led to the development of
diagram geometry that followed [3]. These ideas lead to Stanley's theorem
for Boolean lattices; see [6, p. 208].

120 FARLEY AND SCHMIDT



2. DEFINITIONS AND NOTATION

A basic reference is [5].
Let P be a poset. Denote its least element by 0, if it exists, and its

greatest element by 1, if it exists. For x # P, let A x :=[ p # P | x�p] and let
a x :=[ p # P | p�x]. For x, y # P such that x�y, the set

[ p # P | x�p�y]

is an interval. An interval is proper if it is not the whole poset. A down-set
is a subset D�P such that a x�D for all x # D. The poset is connected if,
for all x, y # P, there exists k # N (which, without loss of generality, may be
chosen to be odd) and a0 , ..., ak # P such that x=: a0�a1�a2� } } } �
ak :=y. The product of two posets P and Q is the poset P_Q :=
[( p, q) | p # P and q # Q] where ( p, q)�( p$, q$) if p�p$ and q�q$ ( p, p$ # P;
q, q$ # Q).

For x and y in a poset P, we write x<}y if x< y and x�p< y implies
x= p for all p # P; we say x is a lower cover of y (in the classical geometric
context, one might consider x a ``hyperplane'' of y). An element is join-
irreducible if it has a unique lower cover. Let J be the set of join-irre-
ducibles. In a poset with least element 0, a cover of 0 is called an atom.

A chain is a totally ordered set. A finite chain of cardinality n+1 has
rank n (n # N0). A poset has rank (or height) n if the longest maximal chain
is finite of rank n (n # N0). The rank of an interval is its rank as a poset.
A poset is graded if every maximal chain has the same finite rank.

A lattice is a non-empty poset L such that, for all x, y # L, the least
upper bound x 6 y and the greatest lower bound x 7 y exist. The lattice is
distributive if, for all x, y, z # L, x 6 ( y 7 z)=(x6 y) 7 (x 6 z). It is
modular if, for all x, y, z # L such that x�z, x 6 ( y 7 z)=(x 6 y) 7 z. If L
has a 0 and a 1, it is complemented if, for all x # L, there exists y # L such
that x 6 y=1 and x 7 y=0. A lattice is Boolean if it is complemented and
distributive.

It is well known that a lattice is modular if and only if it does not
contain the lattice N5 :=[0, a, b, c, 1] as a sublattice, where 0<a<b<1;
0<c<1; and no other non-trivial comparabilities hold. It is also well
known that a modular lattice is distributive if and only if it does not
contain the lattice M3 :=[0, x, y, z, 1] as a sublattice, where 0<x, y, z<1
and no other non-trivial comparabilities hold. (See [5, 6.10], and Fig. 1.)

Let L be a lattice of finite rank. It is (upper) semimodular if, for all x,
y # L, x 7 y<}x, y implies x, y<}x 6 y. It is lower semimodular if, for all x,
y # L, x, y<}x 6 y implies x 7 y<}x, y. Every semimodular lattice of finite
rank is a graded poset with 0 and 1. It is well known that L is modular if
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FIG. 1. The lattices M3 and N5 .

and only if it is upper and lower semimodular [1, Chap. II, Theorems 15
and 16].

Every finite distributive lattice L is isomorphic to the poset of down-sets
of J(L). It is a product of chains exactly when J(L) is a disjoint union of
chains (that is, elements from distinct chains are incomparable), and a
Boolean lattice exactly when J(L) is an antichain (that is, distinct elements
are incomparable). These and other facts we shall use below are trivial
consequences of Priestley duality (see [5, Chap. 8]).

Additional definitions are given in Sections 6�8.

3. POSETS THAT LOCALLY RESEMBLE
SEMIMODULAR LATTICES

In this section, we prove that if a poset resembles a semimodular lattice
``up close,'' then it is a semimodular lattice (under certain weak conditions).
We do not assume P is finite. See Theorems 3 and 4.

Proposition 3.1. Let P be a graded poset with 0 and 1 of rank at least
4. Assume that every proper interval is a semimodular lattice.

Then P is a lattice.

Remark. We do not need the connectivity assumption mentioned in
Section 1.

We do need the assumption about rank, as the poset Q2 in Fig. 2
demonstrates: For n�2, let Qn :=[0, a1 , ..., an , b1 , ..., bn , 1] where

0<a1<a2< } } } <an<1;

0<b1<b2< } } } <bn<1;

a1<b2 ; b1<a2 ;

and no other comparabilities hold but the necessary ones.
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FIG. 2. The posets Q2 and Q3 .

The poset Q2 is a graded poset with 0 and 1 such that every proper inter-
val is a distributive lattice and such that Q2"[0, 1] is connected; it is not
a lattice, however. Indeed, Q2 is the only poset satisfying all of these condi-
tions that is not a lattice. (In the language of diagram geometry, Q2 is
known as a digon.)

The posets Qn (n�3) show that we also need some assumption like
semimodularity for the class of lattices to which our intervals belong.

Proof of Proposition. Assume P is not a lattice for a contradiction.
Then there exist distinct a, b, c, d # P"[0, 1] such that a and b are maximal
lower bounds of [c, d ].

Let j # P be such that 0<} j�a (so that j�3 b). Let c$ :=j6 b in the lattice
a c and let d $ :=j 6 b in the lattice a d. By semimodularity, b<} c$, d $. By
maximality, c${d $, so, by semimodularity again, c$, d $<} c$ 6 d $=1, c=c$
and d=d $. By symmetry, a<} c, d.

Let k # P be such that 0<} k�b. By semimodularity, there exist c"�c
and d"�d such that j, k<} c", d". By the preceding argument, c"{d"
would imply that P has rank 3, a contradiction. Hence c"=d".

In the lattice A j, c 7 d exists and equals a, so that a�d"�k, contradict-
ing the fact that a 7 b=0. K

Lemma 3.2. Let P be a graded poset with 0 and 1 of rank at least 4.
Assume that every proper interval is a semimodular lattice. Also assume that
P"[0, 1] is connected. Then for all distinct a, b }>0 in P, a 6 b }>a, b.

Remark. Some assumption about the rank is necessary: Let R be the
poset [0, a, b, c, d, e, 1] where 0<a, b, c; a, b<d<1; b, c<e<1; and no
other comparabilities hold but the necessary ones (Fig. 3).

Proof of Lemma. By Proposition 1, P is a lattice. For a, b }>0 in P,
write aqb if a<} a 6 b }>b.
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FIG. 3. The poset R.

Assume we have distinct a, b, c }>0 in P and that aqbqc. We claim
that aqc. Else 1>a 6 b 6 c }>a 6 b, b 6 c so that a<} a 6 c }>c.

By semimodularity and connectivity, if a and b are distinct atoms in P,
there exist k # N0 and a1 ,..., ak }>0 such that aqa1q } } } qak qb. By the
above claim, aqb. K

Theorem 3.3. Let P be a graded poset with 0 and 1 of rank at least 4.
Assume that every proper interval is a semimodular lattice. Also assume that
P"[0, 1] is connected.

Then P is a semimodular lattice.

Remark. The poset R of Fig. 3 shows that we need some assumption
about the rank.

Proof of Theorem. By Proposition 1, P is a lattice. By Lemma 2 and the
hypothesis, P is semimodular. K

The following theorem follows easily by induction on the rank.

Theorem 3.4. Let P be a graded poset with 0 and 1. Assume that every
rank 3 interval is a semimodular lattice. Also assume that, for every interval
of rank at least 4, the interval minus its endpoints is connected.

Then P is a semimodular lattice.

4. POSETS THAT LOCALLY RESEMBLE MODULAR LATTICES

In this section, we prove that if a poset resembles a (complemented)
modular lattice ``up close,'' it is a (complemented) modular lattice, under
certain weak assumptions.

Theorem 4.1. Let P be a graded poset with 0 and 1 of rank at least 4.
Assume that every proper interval is a modular lattice. Also assume that
P"[0, 1] is connected.

Then P is a modular lattice.
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Remark. The poset R of Fig. 3 shows that we need some assumption
about the rank.

Proof of Theorem. The theorem follows from Theorem 3.3 and its dual.
K

Theorem 4.2. Let P be a graded poset with 0 and 1. Assume that every
rank 3 interval is a modular lattice. Also assume that, for every interval of
rank at least 4, the interval minus its endpoints is connected.

Then P is a modular lattice.

Theorem 4.3. Let P be a graded poset with 0 and 1 of rank at least 4.
Assume that every proper interval is a complemented modular lattice. Also
assume that P"[0, 1] is connected.

Then P is a complemented modular lattice.

Proof. By Theorem 1, P is a modular lattice. If P is not complemented,
it has a join-irreducible j that does not cover 0 [1, Chap. I, Theorem 14,
and Chap. IV, Theorem 6]. Hence P has a proper interval (which will be
a j if j{1) that is not complemented, a contradiction. K

Theorem 4.4. Let P be a graded poset with 0 and 1 of rank at least 3.
Assume that every rank 3 interval is a complemented modular lattice. Also
assume that, for every interval of rank at least 4, the interval minus its
endpoints is connected.

Then P is a complemented modular lattice.

5. POSETS THAT LOCALLY RESEMBLE DISTRIBUTIVE
LATTICES

In this section, we prove that, if a poset resembles a distributive lattice
``up close,'' it is a distributive lattice (under certain weak assumptions). We
thus settle an issue raised by Stanley [15]. See Theorems 1 and 2.

As a consequence, we obtain the theorem of Stanley, in which Boolean
lattices replace distributive ones. We also obtain the theorem of Grabiner,
in which products of chains replace distributive lattices in the statement of
the result. (See Corollaries 4 and 6.)

The following theorem is due to the first author; the proof below is due
to the second.
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Theorem 5.1. Let P be a graded poset with 0 and 1 of rank at least 4.
Assume that every proper interval is a distributive lattice. Also assume that
P"[0, 1] is connected.

Then P is a distributive lattice.

Remark. The poset R of Fig. 3 shows that we need some assumption
about the rank.

Proof of Theorem. By Theorem 4.1, P is a modular lattice. It suffices to
show that M3 is not a sublattice.

Assume for a contradiction that it is, i.e., there exist distinct x, y, z # P
such that x6 y=x 6 z= y6 z and x7 y=x 7 z= y7 z. Clearly x 6 y=1
and x 7 y=0.

Let a # P be such that 0<} a�x. Let b :=(a 6 z) 7 y and let c :=
(a 6 y) 7 z. By modularity, 0<} b, c and clearly a, b, and c are distinct.

By modularity,

a 6 b=(a 6 y) 7 (a6 z)=a 6 c

which clearly equals b 6 c, so that M3 is a sublattice of a proper interval,
a contradiction. K

Theorem 5.2. Let P be a graded poset with 0 and 1 and rank at least 3.
Assume that every rank 3 interval is a distributive lattice (Fig. 4). Also assume
that, for every interval of rank at least 4, the interval minus its endpoints is
connected.

Then P is a distributive lattice.

Theorem 5.3. Let P be a graded poset with 0 and 1 of rank at least 4.
Assume that every proper interval is a product of chains. Also assume that
P"[0, 1] is connected.

Then P is a product of chains.

Remark. The poset R of Fig. 3 shows that some condition on the rank
is necessary. Also, there are exactly two finite distributive lattices that are

FIG. 4. The rank 3 distributive lattices.
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FIG. 5. The posets S and S�.

not products of chains with the additional property that every proper inter-
val is a product of chains: S and its dual S�, where S :=[0, a, b, c, 1],
0<a<b, c<1 and no other comparabilities hold but the necessary ones
(Fig. 5).

Proof of Theorem. By Theorem 1, P is a finite distributive lattice. Let
J :=J(P). For any minimal element j # J, J"[ j ] is a disjoint union of
chains. (For a :=[ j ] is a non-zero element of P, viewing P as the lattice
of down-sets of J, and A a is a product of chains.)

Similarly, for any maximal element k # J, J"[k] is a disjoint union of
chains.

Fix a minimal element j # J and let J"[ j ]=�i # I Ci be a disjoint union
of chains. Assume for a contradiction that there exist distinct chains C and
C$ and elements c # C and c$ # C$ such that j�c, c$. (If j is only comparable
to the elements of one chain Ci but J is not a disjoint union of chains, then
we get the dual situation.)

If *I�3, then we may choose a maximal element c" of a third chain
such that J"[c"] is not a disjoint union of chains, a contradiction.

If *C�2 or *C$�2, we again get a contradiction. Hence J=[ j, c, c$]
and P only has rank 3, which is false. K

Corollary 5.4 (Grabiner [8, Theorem 1]). Let P be a graded poset
with 0 and 1 and rank at least 3. Assume that every rank 3 interval is a

FIG. 6. The rank 3 products of chains.
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FIG. 7. The rank 3 Boolean lattice.

product of chains (Fig. 6). Also assume that, for every interval of rank at
least 4, the interval minus its endpoints is connected.

Then P is a product of chains.

Theorem 5.5. Let P be a graded poset with 0 and 1 of rank at least 4.
Assume that every proper interval is a Boolean lattice. Also assume that
P"[0, 1] is connected.

Then P is a Boolean lattice.

Remark. The 3-element chain shows that some condition on the rank
is needed. It is the only finite distributive lattice that is not a Boolean
lattice with the property that every proper interval is a Boolean lattice.

Proof of Theorem. The result follows from Theorem 4.3 and Theorem 1.
K

Corollary 5.6 (Stanley [8, Lemma 8]). Let P be a graded poset with
0 and 1 and rank at least 3. Assume that every rank 3 interval is a Boolean
lattice (Fig. 7). Also assume that, for every interval of rank at least 4, the
interval minus its endpoints is connected.

Then P is a Boolean lattice.

6. EXTENSIONS TO POSETS OF INFINITE RANK

It turns out that many of the theorems we have proven for graded posets
of finite rank are true even for non-graded posets with infinite chains. (The
proofs, however, are different.) The results of this section are mostly due to
the second author, except for the results on semimodular posets, which are
mostly due to the first.

Definitions. Given an order-theoretic property X, we say that a poset
is PI ``X'' (or Proper Interval ``X'') if all of its proper intervals have the
property X. A poset with 0 is atomic if every non-zero element is above an
atom. A poset P is semimodular if, for all x, y, z # P such that z<} x and
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z�y, there exists w # P such that x�w, and either y=w or else y<} w.
A poset P is SM if, for all x, y, z # P such that z<} x, y and x{ y, there
exists w # P such that y, z<} w.

First, we investigate the relation between semimodularity and the SM
property for posets and lattices of finite or infinite rank.

Proposition 6.1. Let P be a semimodular poset with 0 of rank n # N0 .
Then

(1) P is graded ; and

(2) P has the SM property.

Proof (by induction on n). The result is trivial if n=0, so suppose that
the proposition holds for all semimodular posets with 0 of rank k<n
(k # N0).

Assume that P does not satisfy the SM property; we shall derive a
contradiction. Let x, y, z # P be such that z<} x, y and x{ y, but x and y
have no common upper cover. Clearly z equals 0.

By semimodularity, there exist x$, x", y$, y" # P such that x<} x$ and
y<} y"<x$ and y<} y$ and x<} x"< y$ (Fig. 8).

Let A x have rank k<n. Then A y$ has rank at most k&2, so A y has
rank at most k&1; but then by symmetry A x has rank at most k&2,
a contradiction. Thus P has the SM property.

It easily follows that P is graded. K

Note. A semimodular lattice has the SM property. For posets of finite
rank, semimodularity and the SM property are equivalent. The bounded
semimodular poset of Fig. 9 and the bounded SM poset of Fig. 10 show,
however, that neither property implies the other. (The poset of Fig. 9 is the
set [0, 1, x1 , y1 , x2 , y2 , ...] where xi<xi+1 , yi+2 and yi< yi+1 , xi+2 for
i�1. The poset of Fig. 10 is the set [0, 1, a, b, c, z1 , z2 , ...] where a, b<
c, zi and zi>zi+1 for i�1.) Indeed, the poset of Fig. 10 even has a finite
maximal chain, but is not graded.

FIG. 8. A subposet of P.
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FIG. 9. A semimodular poset that is not SM.

For the rest of the section, let L be an atomic bounded poset.

Proposition 6.2. The following are equivalent:

(1) L is a lattice;

(2) L is a PI ``lattice'' and any two atoms have a least upper bound.

FIG. 10. A non-semimodular poset with the SM property.
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Proof. Clearly (1) implies (2).
Now assume (2) holds. Because L is bounded, it suffices to prove that,

for all x, y, s, t # L"[0, 1] such that x, y�s, t, there exists z # L such that
x, y�z�s, t.

We claim that, for all u, v # L, if 0<u�v�s, t, then u$ :=s 7 t (in the
proper interval A u) equals v$ :=s 7 t (in A v). (Clearly v$�u$; but since
v�u$�s, t, we have u$�v$, hence u$=v$.)

Choose atoms a, b # L such that a�x and b�y. Then x, a, a 6 b, b,
y�s, t and x�a�a 6 b�b�y, so that, by the claim, z :=s 7 t (in the
proper interval A x) equals s 7 t (in the interval A y).

Thus x, y�z�s, t. K

For the rest of the section, assume that L has no maximal chain of rank
3 or less.

Proposition 6.3. If L is a PI ``semimodular lattice,'' then L is a lattice.

Proof. By Proposition 2, we need only check that any two distinct
atoms x and y have a least upper bound. If 1 is the only upper bound, we
are done. Else, assume there exist s, t # L"[0, 1] such that x, y�s, t. It
suffices to find z # L such that x, y�z�s, t.

Let u :=x 6 y (in a s) and let v :=x 6 y (in a t). By semimodularity,
x, y<} u, v. If u=v, we are done. Else, by semimodularity, u, v<} w, where
w :=u 6 v in A x. Since L has no maximal chain of rank 3, w{1, so that
u=v (since a w is a lattice). K

Note. If L is a PI ``distributive lattice'' such that L"[0, 1] is connected,
but L does have a maximal chain of rank 3 or less, then either L is a lattice
or else L is the poset Q2 of Section 3.

Proposition 6.4. Consider the following statements:

(1) L is a semimodular poset;

(2) L is an SM poset;

(3) L is a PI ``semimodular poset'' and L"[0, 1] is connected ;

(4) L is a PI ``SM poset'' and L"[0, 1] is connected.

Then (3) implies (1), but not conversely. Similarly, (4) implies (2), but not
conversely.

Note. Figure 9 and Proposition 1 show that (1) does not imply (3) in
general. Figure 10 shows that (2) does not imply (4) in general. Figure 11
shows that (1) does not imply (3) [and (2) does not imply (4)] even if L
is finite and bounded. (The authors of [9] claim without proof that there
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FIG. 11. A semimodular poset that is not PI ``semimodular.''

are posets with the SM property that have intervals lacking the SM
property.)

Proof. We prove that (3) implies (1) [(4) implies (2)]. For a, b }>0 in
L, write aqb if there exists x # L such that a<} x�b (a<} x }>b). Assume
we have distinct atoms a, b, c }>0 in L and that aqbqc. We claim that
aqc.

(Suppose a<} x�b<} y�c where x, y # L (a<} x }>b<} y }>c). By semi-
modularity (the SM property) there exists w # L such that y�w, and either
x=w or else x<} w (x= y or else x, y<} w). Because L has no maximal
chains of rank 3, 0, a, and c are contained in a proper interval, so we can
use semimodularity (the SM property).) K

The situation is better for semimodular lattices.

Proposition 6.5. The following are equivalent:

(1) L is a semimodular lattice;

(2) L is a PI ``semimodular lattice'' and L"[0, 1] is connected.

Proof. Assume (1). Since a semimodular lattice is SM and L contains
no maximal chains of rank 2, L"[0, 1] is connected. Since L is a lattice, it
is a PI ``semimodular lattice.'' Hence (2) holds.

Now assume (2). By Proposition 3, L is a lattice. By Proposition 4, L is
a semimodular poset. Hence (1) holds. K

For the next results, we apply the M3�N5 theorem.

Proposition 6.6. If L is a semimodular lattice and a PI ``modular
lattice,'' then L is a modular lattice.

Proof. Assume L is not modular, for a contradiction. Then let [s, x, y, z, t]
be a sublattice isomorphic to N5 , where s<x< y<t and s<z<t. Clearly
s equals 0 and t equals 1.
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Let a, b # L be atoms such that a�x and b�z. Because A a is modular,
we have a<(a 6 z) 7 y (since x 6 [(a 6 z) 7 y]=[x 6 (a 6 z)] 7 y= y).
Because A b is modular,

x 6 [(b 6 y) 7 z]=(b 6 x) 6 [(b6 y) 7 z]

=(b 6 x 6 z) 7 (b 6 y)=b 6 y.

Hence [0, a, (a6 z) 7 y, z, a 6 z] and [0, x, y, (b 6 y) 7 z, b 6 y] are
both sublattices isomorphic to N5 . By PI ``modularity,'' a 6 z equals 1 and
b6 y equals 1. By semimodularity, y, z<} 1.

Since L has no maximal chains of rank 3, there exists c # L such that
b<c<z, and so semimodularity implies that a 6 b<a 6 c<1. As A a is
modular and (a 6 b) 6 y=1, we know that a<(a 6 c) 7 y.

Thus [0, a, (a 6 c) 7 y, c, a6 c] is a sublattice isomorphic to N5 in the
proper interval a a 6 c, a contradiction. K

Proposition 6.7. If L is a modular lattice and a PI ``distributive lattice,''
then L is a distributive lattice.

Proof. Assume for a contradiction that L is not distributive. Then there
exist s, x, y, z, t # L such that s<x, y, z<t and [s, x, y, z, t] is a sublattice
isomorphic to M3 . By PI ``distributivity,'' s equals 0 and t equals 1.

Let a # L be an atom such that a�x. Let b :=(a 6 z) 7 y and c :=
(a 6 y) 7 z. Note that a 6 b=(a 6 y) 7 (a6 z)=a 6 c }>b, c so that
a6 b=b 6 c. By modularity, 0<} b.

Since L has no rank 2 maximal chains, b6 c<1, so that the proper
interval a b 6 c contains M3 as a sublattice, a contradiction. K

As a consequence, we get the next results:

Corollary 6.8. The following are equivalent:

(1) L is a modular lattice;

(2) L is a PI ``modular lattice'' and L"[0, 1] is connected.

Corollary 6.9. The following are equivalent:

(1) L is a distributive lattice;

(2) L is a PI ``distributive lattice" and L"[0, 1] is connected.

A class K of bounded posets has the interval extension property with
respect to a class of posets L if, for every K in K, the following are
equivalent:
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(1) K is in L.

(2) Every proper interval of K is in L and K"[0, 1] is connected.

The above results may be summarized as follows:

Theorem 6.10. The class of bounded atomic posets with no maximal
chains of rank 3 or less has the interval extension property for semimodular,
modular, and distributive lattices, but not for semimodular posets.

7. INTERPRETATIONS IN THE LANGUAGE OF
INCIDENCE GEOMETRY

A lattice with 0 is atomistic if every element is a least upper bound of a
set of atoms. A lattice of finite rank is geometric if it is semimodular and
atomistic. Those geometric lattices that are modular and irreducible (in
the sense that they cannot be expressed as direct products of non-trivial
lattices) are known as projective geometries. For the definitions of affine
geometries and hyperbolic geometries, we refer to [7]. A general construc-
tion of affine geometries from projective geometries is given by removing
from any projective geometry a hyperplane (that is, the interval from 0 to
a lower cover of 1, minus [0]). A semimodular lattice is said to be locally
projective if A a is a projective geometry for every atom a. (These lattices
can often be embedded into projective geometries.)

A weak linear space is a two-sorted structure consisting of a set of points
and a set of lines with an incidence relation between points and lines such
that (1) any two points are incident with exactly one line, and (2) any line
is incident with at least one point. If, moreover, every line is incident with
at least two points, the structure is called a linear space (cf. [4]).

A linear space that possesses a quadrangle of lines is said to be a projective
plane (or an affine plane or a hyperbolic plane) if, for every non-incident point-
line pair, the number of lines incident with the point and not intersecting
the line is 0 (or 1, or at least 2, respectively).

Obviously, every weak linear space with at least one line can be considered
as a semimodular lattice of rank 3, and vice versa. (Here, points correspond
to atoms, lines to coatoms (the lower covers of 1), and the incidence relation
to the partial ordering.) The linear spaces with more than one line may be
identified as the geometric lattices of rank 3.

Now we are prepared to give an interpretation of our previous considera-
tions in the language of geometry (which indeed should also be viewed from
the perspective of diagram geometry��cf. [4]; also see below).
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Let L be a bounded graded poset of finite rank at least 4. Assume that,
for any interval of rank at least 3, the interval minus its endpoints is
connected.

1. The following are equivalent:

(1) L is a semimodular lattice;

(2) every rank 3 interval of L is a weak linear space.

2. The following are equivalent:

(1) L is a geometric lattice;

(2) every rank 3 interval of L is a linear space.

The poset L is a projective geometry (or affine geometry or hyperbolic
geometry��cf. [7]) if and only if every rank 3 interval of L containing 0 is
a projective plane (or affine plane or hyperbolic plane) and every other
rank 3 interval is a projective plane.

3. The following are equivalent:

(1) L is a semimodular locally projective lattice;

(2) every rank 3 interval of L that contains 0 is a weak linear
space and every other rank 3 interval is a projective plane.

In fact, all of the following results can be interpreted in the language of
diagram geometry: Theorems 3.4, 4.2, 4.4, and 5.2 and Corollaries 5.4
and 5.6.

8. FURTHER CONNECTIONS WITH DIAGRAM GEOMETRIES
AND THE THEORY OF BUILDINGS

To a graded poset P of finite rank, one may associate a geometry (in the
sense of Buekenhout��cf. [4, pp. 75�76]) using the comparability graph of
P together with the rank function of P. (Buekenhout calls his concept of
geometry ``the graph theoretic approach.'') An important notion for a
geometry is that of being ``residually connected.'' The geometry of a graded
poset P is residually connected if and only if, for every interval of rank at
least 3, the interval minus its endpoints is connected. We may call such a
poset ``residually connected.''

Comment. The concept of residual connectivity goes back to J. Tits.
Referring to P (usually the 0 and 1 of the poset are removed; that is, the
interval from 0 to 1 minus the endpoints is considered), a chain is also
called a ``flag,'' and a maximal chain a ``chamber.''
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What Tits was especially interested in is the ``flag complex'' (combina-
torialists would say, ``chain complex'') of P. (Here a chamber is just a
maximal simplex.)

Two chambers which differ by exactly one element are ``adjacent''; a finite
sequence of consecutive adjacent chambers is a ``gallery.'' The complex is
``connected'' if any two chambers can be joined by a gallery; it is ``strongly
connected'' if, for every simplex, its ``star'' (which is itself a complex) is
connected��and this just means that P is residually connected. Actually,
Tits was investigating strongly connected ``numbered'' complexes (for P,
the rank function gives the numbering). Thus we can state that the chain
complex of any graded poset is a numbered complex; it is strongly connected
if and only if the poset is residually connected.

The ``basic graph'' of a graded poset is given by the Hasse diagram of its
rank set (with its canonical ordering). It turns out (cf. [4, pp. 486�487])
that there is a 1�1 correspondence between

(1) all strongly connected numbered complexes with a string as the
basic graph; and

(2) all residually connected graded posets.

(Later Tits gave an intrinsic description in terms of ``chamber systems.''
(The chamber system of a graded poset is its set of maximal chains.) For
example, chamber systems with a group action are studied (possibly having
some transitivity property). Here Coxeter groups appear too. A ``building''
is a certain connected numbered chamber complex; all of its galleries of
reduced type are geodesic. If two simple galleries have the same origin, the
same extremity, and the same reduced type, they coincide ... and so on.
The posets that come from buildings are the ones with linear diagram; see
[2, Proposition 4.18; 17].)

To the geometry of a poset belongs its (basic) diagram, given by the
Hasse diagram of its ``type set,'' i.e., its rank set (which is canonically
ordered). The geometry is ``firm'' if every rank 3 interval has at least two
atoms.

The result of F. Buekenhout is now as follows:

Theorem. The geometric lattices (as geometries with basic diagram) are
exactly the firm residually connected geometries with string diagram��that
is, those residually connected graded posets such that every rank 3 interval
minus its endpoints is a linear space (or equivalently, every rank 3 interval is
a geometric lattice).

This theorem is proved in [3]. (See also [12, Theorem 7.6, p. 174; 6, p. 198].
Clearly, this theorem is also a direct consequence of Remark 2 in Section 7.)
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