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The restricted growth functions are known to encode set partitions. They are
words whose subword of leftmost occurrences is the identity permutation. We
generalize the notion of restricted growth function by considering words whose
subword of leftmost occurrences is a fixed general permutation. We prove a
natural generalization of results of Wachs and White which state that the enumer-
ators for the joint distribution of two pairs of inversion like statistics on restricted
growth functions are the p, g-Stirling numbers. © 1994 Academic Press, Inc.

The p, g-Stirling numbers of the second kind were defined recursively in
[WW]

S, 4(n, k)
p*IS, (n— 1,k = 1) +[k], .S, (n—1,k) f0<k<n
=141 ifn=k=20
0 otherwise
(1)

where
[klp.a=pP""'+p*2q+ - +pg" 2 +q" .

When p is set equal to 1, Gould’s g-Stirling numbers of the second kind
[G] are obtained. There has been a considerable amount of recent interest
in properties and combinatorial interpretations of the g-Stirling numbers,
the p, g-Stirling numbers, and related numbers; see, e.g., [M1], [M2], [GR],
[WW], [L], [Sa1], [Sa2], [Sa3], [Si], [B], [BDS], [W].
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It is shown in [WW] that S, q(n,k) is the enumerator for the joint
distribution of two pairs of inversion-like statistics on set partitions or,
equivalently, on restricted growth functions (words whose subword of
leftmost occurrences is the word 12 --- k). In this paper, we generalize
this result to words whose subword of leftmost occurrences is some fixed
general permutation o.

Let [k] denote the set {1,2,...,k} and let [k]" denote the set of all
words of length n over the alphabet [k]. For i = 1,2, ..., n, the ith letter
of a word w € [k£]" will be denoted by w(i). A word w € [k]” is called a
restricted growth function or RG function if

w(l) =1
w(i) < max w(j) + 1,

1<j<i
for all i=2,3,...,n. Let RG(n, k) be the set of restricted growth
functions of length » and maximum k. There is a natural bijection
between RG(n, k) and the set of partitions of {1,2,..., n} into k blocks
(see [SW]). Hence the Stirling numbers of the second kind S(n, k) enu-
merate RG(n, k).

Let %, denote the symmetric group on letters 1,2,..., k. More gener-

ally, ., denotes the set of all permutations of the letters in A4, where A
is any finite set of integers of size k. For o € S the usual inversion index,

inv(o) is the number of pairs (i, j) such that 1 <i <j < k and o(i) > a(}).
For any word w € [k]" and i = 1,2,...,n, let

Ib,(w) = number of distinct letters to left of and bigger than w(i),
Is;(w) = number of distinct letters to left of and smaller than w(i),
rb;(w) = number of distinct letters to rightof and bigger than w(i),

rs;(w) = number of distinct letters to right of and smaller than w(i).

The four inversion-like statistics are defined as
b(w) = ¥ lb,(w),
=1

Is(w) = [‘; Is;(w),

rb(w) = Y rb(w),

=1

rs(w) = lé rs;(w).
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In [WW], it is proved that

S, (nky =" Y pttghtt = ¥ prgrm ()
WERG(n,k) WERG(n,k)

The first equality is easily proved by establishing the recurrence relation
(1). The second equality is much more difficult to prove. It involves
constructing a bijection on RG(n, k) which takes Is to rb and b to rs. The
/b and Is statistics were first introduced by Milne [M2], who established
the p =1 and g = 1 cases of the first equation of (2). The rs statistic
arose in the work of Ismail and Stanton [IS]. Stanton [St] discovered the
p = 1 case of the second equation of (2). The rb statistic was introduced in
[WW].
For w € [k]", the set of leftmost occurrences of w is defined as

L(w) ={i € [n]li is the position of the leftmost occurrence
of the letter w(i)},

and the set of rightmost occurrences of w is defined as

R(w) ={i € [n]li is the position
of the rightmost occurrence of the letter w(i)}.

The subword of leftmost occurrences of w is defined as w(ipw(i,) ... w(i)),
where {i; <i, < --- <i} = L(w). For example, if w = 52215141312 then

L(w) = {1,2,4,7,9},
R(w) = {5,7,9,10,11},

and the subword of leftmost occurrences of w is 52143.

Note that w is a restricted growth function on the letters 1,2,..., k if
and only if its subword of leftmost occurrences is the permutation 12.. . k.
This leads to the following generalization of the notion of restricted
growth function. Let ¢ be any permutation in .%%,. A word w € A" shall
be called a o-restricted growth function if its subword of leftmost occur-
rences is o. For example, the word 52215141312 is a 52143-restricted
growth function. Let RG(n, o) be the set of o-restricted growth functions
of length n.

Since |RG(n, o)l = |RG(n, k)| for any o €.%,, it is natural to ask
whether some version of (2) holds with RG(n, k) replaced by RG(n, o). It
is easy to establish a generalization of the first equation of (2) for any
o € .%,. The second equation can be generalized only for a restricted class
of permutations o which we shall now define. A permutation o €.%,
shall be called a min—max permutation if each letter of & is either smaller
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or larger than all the letters that follow it. For example, 651243 is a
min-max permutation. Note that ¢ €.%, is a min—-max permutation if
and only if ¢(1) = min 4 or o(1) = max 4, and ¢(2)6(3)...c(k) is a
min-max permutation.

Tueorem 1. (a) For any o € %,

q inv(o)
E pls(w)qlb(w) == (——-) Sp!q(l’l,k)-
weRG(n, o) P

(b) For any min-max permutation o €.%,,

q inv(a}
5 e (2" o
weRG(n, o) 4

Proof of (a). We shall construct a simple bijection 8: RG(n, k) —
RG(n, o) such that Is(B(w)) = Is(w) — inv(g) and b(B(w)) = b(w) +
inv(co). From this it follows that

Z pls(w)qlb(w)_

q )inv((r>
weRG(n, k)

Z pls(w)qlb(w) — (_
weRG(n, o) p

The result is therefore a consequence of (2).
Let w € RG(n, k) with L(w) = {i, <i, < --- <i,}). Define B(w) as
follows:
e Let Bw)i,) =cW)forallv=1,2,..., k.

* For each i & L(w), let j be such that i; <i <i; , (where i, ,, =
n + 1). Then set B(wXi) equal to the w(i)th smallest letter in
{oc(1),02),...,0(/)}.

For example, if n = 8 and o = 231 then B(11212331) = 22323131. It is
easy to see that B is indeed a bijection from RG(n, k) to RG(n, ) which
satisfies

Is(w) =Is;( B(w)) and b (w) =1b,(B(w))
for all i & L(w);

L (b)) = (5] o) = T s0w) — imv(o)

ieL(w) ieL(w)
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and

Y b(B(w)) =inv(c) = Y, Ib(w) + inv(0o).

ieL(w) ieL{w)
It follows that B8 meets the desired specifications. ||

Remark. 1t is also easy to prove (a) directly from the defining recur-
rence relation (1).

Proof of (b). We shall construct a bijection

¢: RG(n,o) > RG(n, k)

such that
R($(w)) = R(w), (3a)
rs(p(w)) = rs(w) — inv(o), (3b)
rb(p(w)) = rb(w) + inv(o). (3¢)

The result then follows from (2), (3b), and (3c).

The construction of ¢ is recursive and involves two involutions which
we now define. First let 4 = {a, <a, < -+ < a,}. The simple involu-
tion y: A" — A" is defined by letting y(w) be the word obtained from w
by replacing each a,;, i = 1,2,...,k, by a,_,,. Clearly, y satisfies

R(y(w)) = R(w), (4a)
rs(y(w)) = rb(w) (4b)
rb(y(w)) = rs(w). (4c)

The second involution 7: RG(n, k) —» RG(n, k) is given by the follow-
ing lemma.

LemMma 2. There exists an involution 7: RG(n, k) — RG(n, k) satisfying

R(7(w)) = R(w) (52)
rs(r(w)) = rb(w) — (’;) (sb)
rb(r(w)) =rs(w) + (];) (5¢)

Proof. For any S c[n] let S° ={n + 1 —ili € S}. We shall use a
bijection from RG(n, k) to RG(n, k) constructed at the end of Section 5
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of [WW]. This bijection, denoted here by p, satisfies

L(p(w)) =R(w)"
b(p(w)) =rs(w)
Is(p(w)) = rb(w).

We also need the simple involution w: RG(n, k) — RG(n, k) defined by
letting

. w(i) if i € L(w)
ww) (1) = max; _ {w(j)} —w(i) + 1 otherwise,

for each i = 1,2,..., n. Clearly u satisfies
L(p(w)) = L(w)

() = to(w) + (5

k
() = i50w) = (4.
Now let 7: RG(n, k) - RG(n, k) be the composition p~'wp. It is easy
to verify that r is an involution satisfying (5a), (5b), and (5¢). |

Proof of Theorem 1b continued. We are now ready to recursively
construct the main bijection ¢ = ¢, .: RG(n, o) - RG(n, k), where o is

a min-max permutation in .%,, A = {a, <a, < -+ <a,}and n = k. If
= 1 then RG(n, o) = {a]} and RG(n, k) = {1"}. So define ¢ by setting
ola}) = 1"

Now suppose that & > 1 and that ¢: RG(n, B) = RG(n, |B|) has been
defined for all » > |B| and all min-max 8 € %, where B ¢ 4. We will
use the notation w|p to denote the subword of w & 4" consisting of
letters in B. For example, 23155143|5 45 = 35543. We shall also let
w + 1 denote the word obtained from w by adding 1 to each letter of w.
For example, 23114243 + 1 = 34225354,

Since ¢ is a min—max permutation, o(1) = a, or o(1) = a,. If ¢(1) = q,
then ¢(w) is obtained by setting

d(w)(i) =1 whenever w(i) = a,
and

d(Wles. oy = ¢(W|(a2,a3 ,,,,, ak}) + 1.
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If (1) = a, then set

d(w) =1(d(y(w))).

We now prove, by induction on k, that ¢: RG(n, o) — RG(n, k) is a
well defined bijection satisfying (3a), (3b), and (3c). For k = 1, the result
bolds trivially. Assume it holds for &k — 1, where k > 1.

Case 1. Let o(1) = a,. Since o' = o(2)0(3)...0(k) is a min—max
permutation and wl, 4, .. 4y € RG(#, 0’), where n' < n, it follows by
induction that ¢(wla, 4, ..., 4,)) is defined. Therefore ¢(w) is well defined.
It is also easy to see how to invert ¢ and thereby conclude that ¢ is
indeed a bijection.

To establish (3a), we first note that the rightmost 1 occupies the same
position in ¢(w) as does a, in w. By induction, we have

R(W|(a2,a3 ..... ak}) = R(¢(W|(a2,a3 ..... ak})) = R(¢(W)|(z,3 ,,,,, k))'

Since the subwords wl,, ay. .,y and &(w)lps ... k) occupy the same
positions in their respective words, it follows that the set of rightmost
occurrences of the letters a,,a;,...,4, in w is the same as the set of
rightmost occurrences of the letters 2,3, ..., k in ¢(w). Hence (3a) holds.

Next we establish (3b). For any w € A", we let m(w) be the position of
the rightmost a; in w minus the number of times a, occurs in w. We
clearly have

rs(w) = rs(Wlay. as....,a0) + m(w).
Since ¢(wXi) = 1 whenever w(i) = a;, we also have
m(w) =m(d(w)).
Hence by induction we have
rs(b(w)) = rs(d(w)les,....0) + m($(w))
= 15(d(Wlias, a5.....00)) + m(w)

= 15s(Wlay, a5,....a0) — V(0 (2)a(3) ... 0(k)) + m(w)

=rs(w) — inv(o).

To establish (3c), we define m (w), for w € A" and j = 2,3,...,k, to be
the number of times that a, occurs to the left of the rightmost occurrence
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of a; in w (let m;(w) = 0if a; does not occur in w). Clearly we have

Since ¢(w)(i) = 1 whenever w(i) = a,, and R(w) = R(¢(w)) we have
k k
Y mi(d(w)) = L my(w).
j=2 j=2
Hence, by induction,

k
b(p(w)) = rb(d(wW)lps,.. 1) + ;mj(fﬁ(w))

k
= rb(d)(Wi(az,a} ,,,,, ak))) -+ Z mj(w)
i=2

= rb(w) + inv(o).

Case 2. Let o(1) = a,. Clearly the restriction y: RG(n,o) —
RG(n, (o)) is a bijection. Since y(¢) is a min—max permutation of .#,
and y(oX1) = a,, it follows that ¢: RG(n,y(o)) = RG(n, k) is a bijec-
tion by Case 1. The composition, 7¢y: RG(n,a) — RG(n, k) is therefore
also a bijection.

The fact that ¢ preserves R(w) follows from (4a), (5a), and (3a) (Case
1). To prove (3b), we use (5b), (3¢) (Case 1), and (4¢) to obtain
rs(p(w)) = rs(rdy(w))

= rb($(y(w))) - (g)

=rb(y(w)) + inv(y(o)) — (g)
=rs(w) — inv(0o).

Similarly, to prove (3¢) we use (5¢), (3b) (Case 1), and (4b). |}
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Theorem 1b has the following converse.

THEOREM 3. Let n > k. If o € %, satisfies

inv(o)
q
Z p,b(w)qrs(w) - (;) Sp,q(n, k) (6)

weRG(n, o)
then o is a min—max permutation.

We shall use Lemma 4 below to prove Theorem 3. A permutation
o € %, is said to avoid the pattern 231 if there is no triple r < s <t € [k]
such that o(¢) < o(r) < o(s). Similarly o is said to avoid the pattern 213
if there is no triple » < s < ¢ € [k] such that o(s) < a(r) < o(t). Note
that ¢ is a min—max permutation if and only if it avoids both the patterns
231 and 213.

LEmma 4. Let n > k. If o €.%, satisfies

Z qrs(w) — qinv(cr)SLq(n, k) (7)
weRG(n, o)

then o avoids the pattern 231.

Proof. Suppose o does not avoid the pattern 231. We will show that
then the coefficient of ¢™(“) on the left hand side of (7) is less than the
cocflicient on the right hand side.

Since S, (n,k) =X, c ron. 14", the coefficient of g™ on the
right hand 51de of (7) is the number of w € RG(n, k) such that rs(w) = 0.
Clearly rs(w) =0 if and only if w is of the form 1"12"2,.. k" where
vi+v,+ - +y,=nand v;>1for all i =1,2,..., k. Hence the co-
efficient of q‘“"(") on the rlght hand side of (7) is the number of k-com-
positions of .

We claim that for each k-composition v, + v, + -+ +v, = n there is
at most one w € RG(n, o) with »; occurrences of i for each i, such that
rs(w) = inv(o). Indeed, w is obtained by inserting v, — 1 copies of i,
i =1,2,..., k into the permutation ¢ so that no additional inversions are
created. To do this, each of the »; — 1 copies of i must be inserted to the
right of the rightmost letter of o that is less than or equal to i. The letters
inserted between two adjacent letters (or after the last letter) of o must be
arranged in weakly increasing order. Clearly there is at most one way to
make this insertion.

Suppose the pattern 231 occurs at » < s < t. Then we claim that there
is no way to make the insertion if j = o(r) and v; > 1. Indeed, the v; — 1
copies of j must be inserted to the right of o(¢). But this will create an
inversion with o(s). Hence, for those compositions v, + v, + -+ +v, =n
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in which v; > 1 there is no w € RG(n, o) with v, occurrences Qf i
i=1,2,..., k and rs(w) = inv(o). It follows that the coefficient of g™’
on the left hand side of (7) is less than the number of k-compositions of n
which, as we have already seen, equals the coefficient of g™ on the
right hand side of (7). |}

Proof of Theorem 3. Since (7) is obtained from (6) by setting p = 1, it
follows from Lemma 4 that ¢ avoids the pattern 231. By setting ¢ = 1 in
(6), we obtain

Z prb(w) =p—inv(a)Sp’I(n’ k)
weRG(n, o)

It follows immediately from the definition of S, (n, k) given in (1) that

Sp(n, k) =P(Z)Sl,p(n,k).

Hence we have

kY .
Z prb(w) :p(z)—mv(u-)sl’p(n’ k) (8)
weRG(n, o)

Recall the bijection y: RG(n, o) = RG(n, y(o)) defined by letting y(w)
be the word obtained from w by replacing cach letter i € [k]by k — i + 1.
It follows from (4b) that (8) is equivalent to

Z prS(W) — pinV(y(a))Slyp(n, k).
weRG(n,y(a))

It now follows from Lemma 4 that y(o) avoids the pattern 231. This is
equivalent to o avoiding the pattern 213. Since o avoids both patterns 231
and 213, o is a min—max permutation. ||
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