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The restricted growth functions are known to encode set partitions. They are 
words whose subword of leftmost occurrences is the identity permutation. We 
generalize the notion of restricted growth function by considering words whose 
subword of leftmost occurrences is a fixed general permutation. We prove a 
natural generalization of results of Wachs and White which state that the enumer- 
ators for the joint distribution of two pairs of inversion like statistics on restricted 
growth functions are the p, q-Stirling numbers. © 1994 Academic Press, Inc. 

The  p,  q-Stif l ing number s  of the second kind were defined recursively in 
[ww] 
Sp,q(n,k) 

= { i k - l S p , q ( n - - l , k - - 1 )  + [ k ] p , q S p , q ( n - 1 ,  k) i f O < k _ < n  

i f n  = k = O  
otherwise 

(1) 

where  

[k]p,q =pk-1  _}_pk-2q + . . .  +pqk-2 + qk-1. 

W h e n  p is set equal  to 1, Gould ' s  q-Stif l ing number s  of the second kind 
[G] are obta ined .  There  has b e e n  a considerable  a m o u n t  of recent  in teres t  
in proper t ies  and  combinator ia l  in te rpre ta t ions  of the q-Stirl ing numbers ,  
the p,  q-Stir l ing numbers ,  and  re la ted numbers ;  see, e.g., [M1], [M2], [GR], 
[WW], [L], [Sal], [Sa2], [Sa3], [Si], [B], [BDS], [W]. 
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It is shown in [WW] that Sp, q(n, k) is the enumera to r  for the joint 
distr ibution of  two pairs of  inversion-like statistics on set part i t ions or, 
equivalently, on restr icted growth functions (words whose subword of  
leftmost  occurrences  is the word 1 2 . . .  k). In this paper,  we generalize 
this result to words whose subword of  leftmost occurrences  is some fixed 
general  pe rmuta t ion  o-. 

Let  [k]  denote  the set { 1 , 2 , . . . ,  k} and let [k]  n denote  the set of  all 
words of  length n over the a lphabet  [k]. For  i = 1, 2 . . . . .  n, the ith letter 
of  a word w ~ [k]" will be deno ted  by w(i). A word w ~ [k]" is called a 
restricted growth function or RG function if 

w ( 1 )  = 1 

w(i) < max w(j )  + 1 ,  
1 <_j<i 

for all i = 2 , 3 , . . . , n .  Let  RG(n ,k )  be the set of  restricted growth 
functions of  length n and maximum k. There  is a natural  bijection 
be tween RG(n, k) and the set of  part i t ions of  {1, 2 . . . . .  n} into k blocks 
(see [SW]). Hence  the Stirling numbers  of  the second kind S(n, k) enu- 
mera te  RG(n, k). 

Let  5;: k denote  the symmetric  group on letters 1, 2 , . . . ,  k. More  gener-  
ally, S :  A denotes  the set of  all permuta t ions  of  the letters in A,  where  A 
is any finite set of  integers of  size k. For  cr ~ S A the usual inc, ersion index, 
inv(~r) is the number  of  pairs (i, j )  such that  1 < i < j < k and (r(i) > o-(j). 
For  any word  w ~ [k]" and i = 1 , 2 , . . . ,  n, let 

lbi(w ) = number  of  distinct letters to left of  and bigger than w(i) ,  

lsi(w) = number  of  distinct letters to left of  and smaller than w ( i ) ,  

rbi(w ) = number  of  distinct letters to rightof and bigger than w(i) ,  

rs~(w) = number  of  distinct letters to right of and smaller than w(i) .  

The four  inversion-like statistics are defined as 

= 

/ = 1  

= 

/ = 1  

rb(w) = ~ rbi(w), 
/ = 1  

n 

r s ( w )  = E r s , ( w ) .  
l = l  



472 NOTE 

In [WW], it is p roved  that  

Sp.a(n, k) = E p,,(w)q,b(w) _ E prb(w)q~S(W). (2) 

w~RG(n, k) w~RG(n, k) 

T h e  first equali ty is easily p roved  by establishing the recur rence  re la t ion 
(1). T h e  second equali ty is much  more  difficult to prove.  It  involves 
const ruct ing a bi ject ion on RG(n, k) which takes  ls to rb and lb to rs. The  
Ib and ls statistics were  first in t roduced  by Milne [M2], who establ ished 
the p = 1 and  q = 1 cases of  the  first equa t ion  of  (2). The  rs statistic 
arose  in the work  of  Ismail  and Stanton  [IS]. S tan ton  [St] d iscovered the 
p = 1 case of  the second equa t ion  of (2). The  rb statistic was in t roduced  in 
[WW]. 

For  w ~ [k]  n, the set  of  lef tmost  occur rences  of  w is def ined as 

L(w)  = {i ~ [n] l i  is the posi t ion of the lef tmost  occur rence  
o f  the le t ter  w ( i ) } ,  

and the set  of  r ightmost  occur rences  of  w is def ined as 

R(w)  = { i  ~ [n][ i  is the posi t ion 
o f  the r ightmost  occur rence  of  the le t ter  w ( i )  }. 

T h e  subword ofleftmost occurrences of w is defined as W(ia)w(i2)... w(ij),  
where  {il < i2 < " " " < ij} = L(w). For  example ,  if w = 52215141312 then  

L(w)  = { 1 , 2 , 4 , 7 , 9 } ,  

R(w)  = {5, 7, 9, 10, 11}, 

and the subword  of  lef tmost  occur rences  of  w is 52143. 
Note  tha t  w is a res t r ic ted growth funct ion on the let ters  1, 2 . . . . .  k if 

and only if its subword  of  lef tmost  occur rences  is the p e r m u t a t i o n  1 2 . . .  k. 
This  leads to the following genera l iza t ion  of  the not ion of  res t r ic ted 
growth function.  Let  o- be  any pe rmu ta t i on  in SPA. A word  w ~ A n shall 
be  called a o--restricted growth funct ion if its subword of  le f tmost  occur-  
rences  is o-. For  example ,  the  word  52215141312 is a 52143-restr icted 
growth function.  Le t  RG(n, o') be  the set of  ~r-restricted growth funct ions 
of  length n. 

Since [RG(n, cr)[ = [RG(n, k)[ for any o - ~ k ,  it is na tura l  to ask 
w he the r  some  vers ion of  (2) holds with RG(n, k) rep laced  by RG(n, o-). It  
is easy to establish a genera l iza t ion  of  the first equat ion  of  (2) for  any 
~r ~ ~ k -  T h e  second equa t ion  can be  genera l ized  only for a res t r ic ted class 
of  pe rmu ta t i ons  cr which we shall now define. A pe rmu ta t i on  o - ~  ~9~A 
shall be  called a rain-max p e r m u t a t i o n  if each  le t ter  of  ~r is e i ther  smaller  
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or larger than all the letters that  follow it. For  example, 651243 is a 
m i n - m a x  permuta t ion .  Note  that  o- ~ ~A is a m i n - m a x  permuta t ion  if 
and only if o - (1 )=  min A or  o - (1 )=  max A, and o-(2)0-(3).. ,  o-(k) is a 
m i n - m a x  permuta t ion .  

THEOREM 1. (a) For any cr ~ UPk, 

t inv(o-) 
E pls(w)qlb(w) = ( ~ ,  Sp, q ( n , k ) .  

w ~RG(n, o') 

(b) For any m i n - m a x  permutation o- ~ ~ k ,  

q) inv(o-) 
E prb(w)qrS(w) = Sp,q(n ,  k ) .  

wERG(n, o-) 

Proof  o f  (a). We shall construct  a simple bijection /3: R G ( n ,  k )  
R G ( n ,  o-) such that  ls([3(w)) = ls(w) - inv(o-) and lb([3(w)) = lb(w) + 
inv(tr). F rom this it follows that  

; )  inv(o') 
E pls(w)qlb(w) = __ E pls(w)qlb(w). 

w ~RG(n, o-) w ~RG(n, k) 

The result  is therefore  a consequence  of  (2). 
Let  w ~ R G ( n , k )  with L ( w )  = {i~ < i 2 <  . . .  < ik}. Define f i (w) as 

follows: 

• Let  /3(w)(i~) = o-(v) for all u = 1, 2 . . . . .  k. 

• For  each i ~ L (w) ,  let j be such that  ij < i < ij+ 1 (where ik+ l = 
n + 1). Then  set /3(w)(i) equal to the w(i)th smallest letter in 
{o-(1), o-(2),.. . ,  o-(j)}. 

For  example, if n = 8 and o- = 231 then /3(11212331) = 22323131. It is 
easy to see that  fi is indeed a bijection f rom R G ( n ,  k )  to R G ( n ,  o-) which 
satisfies 

ISi( W ) = lsi( ~ (  W ) ) 

for all i ~ L(w);  

and ~i (w)  = ~ i ( ~ ( w ) )  

ieL(w) 2 i~L(w) 
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and 

N O T E  

E lbi(f i(w)) = inv(~r) = E lbi(w) + inv(cr). 
i~L(w) i~L(w) 

It follows that /3 meets the desired specifications. I 

Remark. It is also easy to prove (a) directly from the defining recur- 
rence relation (1). 

Proof of  (b). We shall construct a bijection 

6: RG(n ,o ' )  ~ RG(n ,  k) 

such that 

R(4~(w)) = R(w) ,  (3a) 

rs(ch(w)) = rs(w) - inv(cr), (3b) 

rb( gg(w)) = rb(w) + inv(~r). (3c) 

The result then follows from (2), (3b), and (3c). 
The construction of ~b is recursive and involves two involutions which 

we now define. First let A = {a I < a 2 < - . .  < ak}. The simple involu- 
tion 3': An ~ An is defined by letting 3'(w) be the word obtained from w 
by replacing each ai, i = 1, 2 , . . . ,  k, by a~_~+ 1. Clearly, 3' satisfies 

R(3"(w)) = R(w) ,  (4a) 

rs(3"(w)) = rb(w) (4b) 

rb(3"(w)) = rs(w).  (4c) 

The second involution r: RG(n, k) ~ RG(n, k) is given by the follow- 
ing lemma. 

LEMMA 2. There exists an involution "r: RG(n, k) ~ RG(n, k) satisfying 

R( 'r(w))  = R ( w )  (5a) 

rs('r(w)) = rb(w) - (k  2 ) (5b) 

rb('r(w)) = rs(w) + ( k " (5c) 

Proof. For any S _ [ n ]  let S b = { n  + 1 - i l i ~ S } .  We shall use a 
bijection from RG(n, k) to RG(n, k) constructed at the end of Section 5 
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of  [WW]. This bijection, denoted  here  by p, satisfies 

L ( p ( w ) )  = R ( w )  h 

lb(p(w))  =rs (w)  

z s ( p ( w ) )  = rb(w). 

We also need the simple involut ion/x:  RG(n, k) ~ RG(n, k) defined by 
letting 

w(i) if i ~ L(W) 
IX(W)(i) = max~<i{w(j)} - -w( i )  + 1 otherwise,  

for each i = 1, 2, . . . ,  n. Clear ly/x satisfies 

L ( t t ( w ) )  = L ( w )  

Is(ix(w)) = lb(w) + (k  2) 

Now let r :  RG(n, k) --+ RG(n, k) be the composit ion p-llX p. It is easy 
to verify that r is an involution satisfying (5a), (5b), and (5c). | 

Proof of  Theorem lb  continued. We are now ready to recursively 
construct  the main bijection ¢ = Cn,~: RG(n, o.) ~ RG(n, k), where o. is 
a m i n - m a x p e r m u t a t i o n i n ~ , C ~  A , A  = { a  I < a  2 <  . . .  < a  k}and  n >__k. If  
k = 1 then RG(n, o.) = {a~'} and RG(n, k) = {ln}. So define ¢ by setting 
¢ ( a D  = 1 ~. 

Now suppose that  k > 1 and that  ¢ :  RG(n, fi) ~ RG(n, IBI) has been 
defined for all n > ]B[ and all r a in -max  fl ~ ~9~8, where  B G A .  We will 
use the notat ion W]B to denote  the subword of  w ~ A "  consisting of  
letters in B. For  example, 23155143 ] {3, 4, 5~ = 35543. We shall also let 
w + 1 denote  the word obta ined f rom w by adding 1 to each letter of  w. 
For  example, 23114243 + 1 = 34225354. 

Since o- is a r a in -max  permutat ion,  o-(1) = a 1 or  o-(1) = a~. If  ¢(1)  = a 1 
then ~b(w) is obta ined  by setting 

4 ( w ) ( i )  = 1 whenever  w(i) = a 1 

and 

~/~(w)1{2,3 ..... k} = 4)(Wl{a2,a3 ...... k}) + 1. 
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If  o-(1) -- a k then set 

N O T E  

6 ( w )  = 

We now prove, by induct ion on k, that  ~b: R G ( n ,  or) ~ R G ( n ,  k )  is a 
well defined bijection satisfying (3a), (3b), and (3c). For  k = 1, the result 
holds trivially. Assume it holds for k - 1, where  k > 1. 

Case 1. Let  o - (1 )=  a 1. Since o - ' =  o ' (2)~r(3) . . .o- (k)  is a r a in -max  
permuta t ion  and w]{,2,, 3 ..... ~k} ~ RG(n ' , o " ) ,  where  n ' <  n, it follows by 
induct ion that  ~b(w[~:,~3 ..... ~ )  is defined. There fo re  ~b(w) is well defined. 
It is also easy to see how to invert ~b and thereby conclude that  ~b is 
indeed a bijection. 

To  establish (3a), we first note  that  the r ightmost  1 occupies the same 
posit ion in qS(w) as does a t in w. By induction, we have 

R(w]{~z,~s . . . . . .  ~}) = R(6(w]c,2,a3 . . . . . .  k})) = R(~b(w)]{2,3 ..... ~}). 

Since the subwords wl~,~3 ..... ~k~ and ~b(w)lt2,3 ..... k~ occupy the same 
posit ions in their respective words, it follows that  the set of  r ightmost  
occurrences  of  the letters a2 ,  a 3 , . . .  , a k in w is the same as the set of  
r ightmost  occurrences  of  the letters 2, 3 , . . . ,  k in ~b(w). Hence  (3a) holds. 

Next we establish (3b). For  any w ~ A n, we let m ( w )  be the posit ion of  
the r ightmost  a I in w minus the number  of  times a 1 occurs in w. We  
clearly have 

~ ( w )  = ~(Wl{,2,  a 3 . . . . . .  k}) + m ( w ) .  

Since ch(w)(i) = 1 whenever  w(i )  = al, we also have 

m ( w )  = m ( 6 ( w ) ) .  

Hence  by induct ion we have 

rs( d ) (w) )  = rs(d)(w)l{2,3 ..... k}) + m (  dp(w))  

= rs(q)(Wl{a2, a3 ..... ~}))  + m ( w )  

= rs(W[{a2,,3 . . . . . .  k}) -- i n v ( o ' ( 2 ) o ' ( 3 ) . . . o - ( k ) )  + r e ( w )  

= r s (w)  - inv(o-).  

To establish (3c), we define mr(w),  for w ~ A n and j = 2, 3 , . . . ,  k, to be 
the number  of  times that  a I occurs to the left of  the r ightmost  occurrence  
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of a~ in w (let mflw) = 0 if aj does not  occur  in w). Clearly we have 

k 
rb(w) = r b ( w l { a 2 ,  a3 . . . . . .  k}) + E m j ( w ) .  

j=2 

Since 49(w)(i) = 1 whenever  w(i) = al, and R(w) = R(~(w)) we have 

k k 
E rni(6(w))  = E mi(w) .  

j=2 j=2 

Hence ,  by induction,  

k 
rb( q~(w)) = rb(c~(w)[{2,3 ..... k}) + E mi( qS(w)) 

j - - 2  

k 

= r b ( q ~ ( W l { a 2 ,  a 3 . . . . . .  e})) + Y'. m i ( w )  
j - 2  

= Fb(W]{a2 ,  a 3 . . . . . .  k}) + i n v ( o - ( 2 ) ( r ( 3 ) . . ,  o - ( k ) )  + 

= rb(w) + inv(o-) .  

k 
E mi(w)  

j=2 

Case 2. Let  o-(1) = a k. Clearly the restrict ion y: RG(n,o-) 
RG(n, 3~(o-)) is a bijection. Since -/(or) is a r a in -max  permuta t ion  of SPA 
and y(o-)(1) = al, it follows that ~b: RG(n, y(o-)) ~ RG(n, k) is a bijec- 
tion by Case 1. The  composit ion,  ~-~by: RG(n, o-) ~ RG(n, k) is there fore  
also a bijection. 

T he  fact that  ¢5 preserves R(w) follows f rom (4a), (5a), and (3a) (Case 
1). To  prove (3b), we use (5b), (3c) (Case 1), and (4c) to obtain 

r s ( 4 , ( w ) )  = 

= r b ( $ ( y ( w ) ) )  - (k2) 

= r b ( y ( w ) )  + inv(y(o-)) - ( k  ) 

= rs(w) - inv(o-) .  

Similarly, to prove (3c) we use (5c), (3b) (Case 1), and (4b). II 
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T h e o r e m  l b  has  the  fol lowing converse.  

THEORE~ 3. Let  n > k. I f  o- ~ S ~  satisfies 

E prb(w)qrS(w) = __ Sp q ( n ,  k )  (6)  

w ~RG(n, rr) 

then o" is a m i n - m a x  permutat ion.  

W e  shall  use  L e m m a  4 be low to prove  T h e o r e m  3. A p e r m u t a t i o n  
o- ~ S°k is said to avoid thepat tern 231 if t he re  is no  t r ip le  r < s < t ~ [k]  
such tha t  o ' ( t )  < or(r)  < o '(s) .  Similar ly  o- is said to avoid the  p a t t e r n  213 
if t h e r e  is no t r ip le  r < s < t ~ [k]  such tha t  o-(s) < o-(r)  < or(t). No te  
tha t  ~r is a m i n - m a x  p e r m u t a t i o n  if and  only if it avoids bo th  the  p a t t e r n s  
231 and  213. 

LEMMA 4. Let  n > k.  I f  cr ~ ~ k  satisfies 

E qrs(w) = qinv(cr)Sl,q(n ' k )  (7)  

w ~RG(n, or) 

then o- avoids the pattern 231. 

Proof. Suppose  ~r does  not  avoid the  p a t t e r n  231. W e  will show tha t  
t hen  the  coefficient  of  qinV(~) on the  left  h a n d  side of  (7) is less than  the  
coeff icient  on the  r ight  h a n d  side. 

Since Sl, q ( n , k ) =  ~w~nG(n,k)q rs(w), the  coefficient  of  qinV~) on the  
r ight  h a n d  side of  (7) is the  n u m b e r  of  w ~ R G ( n ,  k )  such tha t  rs(w)  = O. 
Clear ly  rs(w) = 0 if and  only if w is of  the  fo rm lV12~2.., k ~ ,  w h e r e  
v~ + u z + . . .  + u  k = n and  v~ > 1 for all i = 1 ,2  . . . . .  k. H e n c e  the  co- 
efficient  of  qin~(~) on the  r ight  h a n d  side of  (7) is the  n u m b e r  of  k -com-  

pos i t ions  of  n. 
W e  c la im tha t  for  each  k -compos i t i on  u I + u 2 + . . .  + u  k = n t h e r e  is 

at  mos t  one  w ~ R G ( n ,  o') with u i occur rences  of  i for  each  i, such tha t  
rs(w)  = inv(o-). I n d e e d ,  w is o b t a i n e d  by inser t ing  u i - 1  copies  of  i, 
i = 1, 2 . . . .  , k into the  p e r m u t a t i o n  ~r so tha t  no  add i t i ona l  invers ions  a re  
c rea ted .  To  do  this, each  of  the  v i - i copies  of  i mus t  be  inse r t ed  to the  
r ight  of  the  r igh tmos t  l e t t e r  of  or tha t  is less than  or  equal  to i. T h e  le t te rs  
inse r t ed  b e t w e e n  two ad jacen t  l e t te r s  (or a f te r  the  last  le t te r )  of  o- mus t  be  
a r r a n g e d  in weakly  increas ing  order .  Clear ly  t h e r e  is at  most  one  way to 
m a k e  this inser t ion.  

Suppose  the  p a t t e r n  231 occurs  at r < s < t. T h e n  we c la im tha t  t he re  
is no way to m a k e  the  inser t ion  if j = ~ ( r )  and  uj > 1. I nde e d ,  the  vj - 1 
copies  of  j mus t  be  inse r t ed  to the  r ight  of  ~r(t). But  this will c r ea t e  an 
invers ion  with  o-(s). Hence ,  for  those  compos i t ions  u 1 + u 2 + •. • + u k = n 
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in which uj > 1 there  is no w ~ RG(n,~r) with u i occurrences  of  i, 
i = 1, 2 , . . . ,  k and rs(w) = inv(o0. It follows that  the coefficient of  qinV(~) 
on the left hand  side of  (7) is less than the number  of  k-composi t ions of  n 
which, as we have already seen, equals the coefficient of  qi,V(~) on the 
right hand  side of  (7). | 

Proof of Theorem 3. Since (7) is obta ined from (6) by setting p = 1, it 
follows f rom L e m m a  4 that  ~ avoids the pat tern  231. By setting q = 1 in 
(6), we obtain 

prb(w) = p-inv(c~)Sp" l(n, k ) .  

w ~RG(n, o-) 

It follows immediately f rom the definition of Sp, q(n, k) given in (1) that  

Sp, l (n ,k )  =p(~)Sl ,p(n,k) .  

Hence  we have 

E p r b ( w ) = P ( : )  -inv(cr,S (11 k )  1,p\ } " 
w ~RG(n, o') 

(8) 

Recall  the bijection y:  RG(n, o') -+ RG(n, y(~r)) defined by letting y(w) 
be the word obta ined  f rom w by replacing each letter i ~ [k]  by k - i + 1. 
It follows f rom (4b) that  (8) is equivalent to 

E prS(w) = yninv(y(°-)) S l , p t n , i  k).  
w ~RG(n, y(o')) 

It now follows f rom L e m m a  4 that  y(o-) avoids the pat tern  231. This is 
equivalent  to ~r avoiding the pa t te rn  213. Since o- avoids both pat terns  231 
and 213, o- is a m i n - m a x  permutat ion.  ] 
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