K_{2} of Cyclic Group Rings over λ-R ings

F. J.-B. J. Clauwens
Mathematisch Instituut, Katholieke Universiteit Nijmegen, Toernooiveld, 6525 ED Nijmegen, Netherlands

Communicated by Wiberd van der Kallen
R eceived A pril 14, 1997

The theory developed in previous papers of the author is used to compute the algebraic K_{2} of group rings of cyclic p-groups with coefficients in an arbitrary λ-ring. © 1998 A cademic Press

1. INTRODUCTION

This paper is a sequel to [5] and [6]. The purpose of this series of papers is to demonstrate a method which enables one, e.g., to make an explicit calculation of $K_{1}(\mathbf{Z}[\pi])$ for any finitely generated abelian group π. These algebraic K-groups of integral group rings occur in topology in the classification of homotopy equivalences $f: X \rightarrow Y$ up to simple homotopy, in the case that the fundamental groups of X and Y are equal to π. The results known before only apply to finite groups (see for example [12]) or other special groups or yield only partial information: the result of [4] says that if π is infinite then $K_{1}(\mathbf{Z}[\pi])$ is not finitely generated if it is not trivial.

To accomplish the above aim we view the group ring of π over \mathbf{Z} as the group ring of G over A. Here G is the torsion subgroup of π, and A is the group ring over \mathbf{Z} of a complementary free subgroup of π. In fact our method is applicable to any commutative ring A which has the structure of a λ-ring and has no integral torsion in its module of K ähler differentials.

The strategy is the same as in [1]: there is an exact sequence by means of which $K_{1}(A[G])$ can be expressed in terms of the group $K_{2}(A[G] / C)$ and the groups $K_{2}\left(A\left[\chi_{i}\right] / \chi_{i}(C)\right)$. Here C is a suitable small ideal of $\mathbf{Z}[G]$, and the χ_{i} are the characters of G. In the present paper $K_{2}(A[G] / C)$ is evaluated using the theory explained in [5] and [6]; in a future paper the groups $K_{2}\left(A\left[\chi_{i}\right] / \chi_{i}(C)\right)$ will be computed.

Thus in this series we try to generalize techniques from [13] by allowing the base ring A to be an arbitrary λ-ring, without restrictions on its dimension.
The result of the computation is expressed in terms of the additive group of A and similar data, thus explaining the lack of finite generation. In order to clarify this functorial dependence on A and also to simplify the computations, we restrict ourselves here to the case that G is cyclic. However the same ideas should suffice to treat the general case.

In [5] and [6] the author defined a homomorphism $L: K_{2}^{\text {pro }}(R, I) \rightarrow$ $K_{2, L}^{\text {pro }}(R, I)$ and gave a criterion for it to be an isomorphism. Here $K_{n}(R, I)$ denotes the nth group in the algebraic K-theory of the ring R and the ideal I. If $n=2$ and I is nilpotent then this group has a presentation in terms of elements of R and I, due to [11] and [9]. The group $K_{2, L}(R, I)$ is defined by a similar presentation but is more accessible to computation because of the linear nature of the relations; in fact this group is strongly related (but not identical) to the cyclic homology group $H C_{1}(R, I)$. The superscripts ${ }^{\text {pro }}$ mean that we really consider an inverse system of such groups associated to quotient rings of R. Everything is done under the assumption that R is equipped with a structure of λ-ring, that I is a λ-ideal, and that λ-operations of high order map elements of I to zero in such a quotient ring. For the details about these assumptions and other background material about λ-rings we refer to [6], in particular Sects. 2, 4, and 5.
In the present paper we apply this theory to the case that R is the group ring $A[G] / C$ and I is the augmentation ideal. Since C is a λ-ideal and since I is nilpotent modulo C the superscripts ${ }^{\text {pro }}$ can be omitted here. The map L is not an isomorphism in this situation but the theory of [5] and [6] is used to determine its kernel and cokernel and these turn out to be quite small.

2. STATEMENT OF THE RESULTS

Let p be a prime and let G be a cyclic group, generated by an element T of order $q=p^{e}$. Let A be a λ-ring, and let I be the augmentation ideal of the group ring $A[G]$, which is generated by $z=T-1$. We shall compute the pro-group $K_{2}^{\text {pro }}(A[G], I)$ associated to the filtration on $A[G]$ by powers of I. This means that we shall compute groups $K_{2}\left(A[G] / I_{M}, I\right)$, where the I_{M} constitute a filtration which is cofinal with the powers of I. In Sect. 10 we describe a choice for these I_{M} which is convenient for our calculations.

In order to be able to use the theory of [6] we must use a λ-ring structure on $A[G]$ such that I is at least ψ-nilpotent. The most obvious
λ-ring structure on $A[G]$ is the one for which $\theta^{k}(T)=0$ and thus $\psi^{k}(T)=T^{k}$ for every $k>1$. However in this situation $\psi^{k}(z)$ depends only on k modulo q, so I is not ψ-nilpotent.

As an A-module one has $A[G] / I^{n}=A \oplus I / I^{n}$, where I / I^{n} is p-primary torsion. Therefore we can define an "exotic" λ-ring structure on $A[G]$ by putting $\theta^{l}(z)=z^{l} / l$ for each prime $l \neq p$; then $\psi^{l}(z)=0$ for such l. We keep $\theta^{p}(T)=0$, so that $\psi^{p}(z)=(z+1)^{p}-1$. See Sect. 13 for details about this λ-ring structure.

For the exotic λ-ring structure on $A[G]$ the ideal I is θ-nilpotent and ψ-nilpotent, but not λ-nilpotent. Thus the theory of [6] tells us that the associated logarithmic map $L_{2}: K_{2}^{\text {pro }}(A[G], I) \rightarrow K_{2, L}^{\text {pro }}(A[G], I)$ is defined but not necessarily an isomorphism. In this paper we shall determine the kernel and cokernel of L_{2}.

In order to formulate the result we refer to the following diagram with exact rows:

The vertical maps L_{i} are logarithmic maps associated to the exotic λ-ring structure on $A[G]$. Thus the map L_{1} is an isomorphism by [6]. By chasing this diagram one finds an isomorphism

$$
p_{G L}^{*}: \operatorname{cok}\left(L_{2}\right) \cong \operatorname{cok}\left(L_{3}\right)
$$

and an exact sequence

$$
0 \rightarrow \operatorname{ker}\left(j_{G M}\right) \xrightarrow{L_{1}^{*}} \operatorname{ker}\left(j_{G L}\right) \rightarrow \operatorname{ker}\left(L_{2}\right) \xrightarrow{p_{G M M}^{*}} \operatorname{ker}\left(L_{3}\right) \rightarrow 0
$$

Here $p_{G L}^{*}, L_{1}^{*}$, and $p_{G M}^{*}$ are of course the maps induced by $p_{G L}, L_{1}$, and $p_{G M}$. In Sect. 3 we shall prove:

Theorem 1. If $p>2$ then L_{3} can be identified with the map

$$
1-\phi^{p}: \Omega_{A} / q \Omega_{A} \rightarrow \Omega_{A} / q \Omega_{A} .
$$

If $p=2$ then L_{3} can be identified with the direct sum of this same map with the map

$$
1-\psi^{2}: A / 2 A \rightarrow A / 2 A
$$

Here Ω_{A} denotes the group of absolute Kähler differentials of A and the $\phi^{i}: \Omega_{A} \rightarrow \Omega_{A}$ are the natural additive operations which were introduced in [5].

The above theorem takes care of $\operatorname{cok}\left(L_{2}\right)$ and part of $\operatorname{ker}\left(L_{2}\right)$; in order to describe the remaining part of $\operatorname{ker}\left(L_{2}\right)$ we must describe the cokernel of L_{1}^{*}. This is done in the following theorem

Theorem 2. There is a commutative diagram with vertical maps surjective

$$
\begin{array}{ccc}
{ }^{q} \Omega_{A} \oplus\left(A^{\prime} \oplus A\right) & \xrightarrow{\Phi \oplus \Psi} & { }^{q} \Omega_{A} \oplus\left(A^{\prime} \oplus A\right) \\
\kappa_{1}^{M}+\left(\kappa_{2}^{M}+\kappa_{3}^{M}\right) \downarrow & & \kappa_{1}^{G}+\left(\kappa_{2}^{G}+\kappa_{3}^{G}\right) \\
\operatorname{ker}\left(j_{G M}\right) & \xrightarrow{L_{1}^{*}} & \operatorname{ker}\left(j_{G L}\right),
\end{array}
$$

where $A^{\prime}=\{a \in A ; 2 a \in q A\}$. The map Ψ is surjective modulo the kernel of $\kappa_{2}^{G}+\kappa_{3}^{G}$.
In fact Φ is the map $1-\phi^{p}$ on the q-torsion of Ω_{A} and the map Ψ is given by

$$
\Psi=\left(\begin{array}{cc}
1-\psi^{p} & 0 \\
\psi^{p} & 1-p \psi^{p}
\end{array}\right) .
$$

The theorem implies that the cokernel of L_{1}^{*} is isomorphic to a quotient of the cokernel of $1-\phi^{p}:{ }^{q} \Omega_{A} \rightarrow{ }^{q} \Omega_{A}$. In particular the map L_{1} is surjective in the case that A is a group ring over \mathbf{Z} of a free abelian group, or a polynomial ring. In Sect. 5 the maps κ_{i}^{G} are described in detail. They involve only the additive structure of A and Ω_{A}; thus the determination of their kernel for other examples will not be too difficult.

The paper is organized as follows. In Sects. 4 and 5 we describe the target and domain of $j_{G L}$ and we compute $\operatorname{ker}\left(j_{G L}\right)$. In Sect. 6 we construct an epimorphism $\pi^{*}: \operatorname{ker}\left(j_{X L}\right) \rightarrow \operatorname{ker}\left(j_{G M}\right)$ where $j_{X L}$ is a map similar to $j_{G L}$ but for a truncated polynomial ring instead of a group ring. In Sect. 7 we compute $\operatorname{ker}\left(j_{X L}\right)$. Thus $\operatorname{cok}\left(L_{1}^{*}\right)$ can be computed from a description of the map $L_{1}^{*} \pi^{*}: \operatorname{ker}\left(j_{X L}\right) \rightarrow \operatorname{ker}\left(j_{G L}\right)$. This description involves the maps Φ and Ψ. In Sect. 8 we determine Φ, and in Sect. 9 we determine Ψ and prove the surjectivity mentioned in Theorem 2.

The last four sections contain proofs of technical results needed for these calculations. In particular the results of Sects. 11 and 12 are needed for the determination of Φ.

3. THE MAP L_{3}

In order to study the kernel and cokernel of L_{3} it is useful to view $A[G]$ as the homomorphic image of the polynomial ring $A[x]$.

The standard λ-ring structure on $A[x]$ extending the given one on A is the one for which $\theta^{k}(x)=0$ for every $k>1$. The standard filtration on $A[x]$ is the one by powers of (x). The λ-ideal (x) is λ-nilpotent, so the logarithmic map is an isomorphism in this case.
There is a ring homomorphism $\pi: A[x] \rightarrow A[G]$ defined by $\pi(x)=z$. The map π induces an isomorphism $A[x] /\left(x^{2}, q x\right) \rightarrow A[G] / I^{2}$. The standard λ-ring structure on $A[x]$ induces one on these groups. The associated logarithmic map

$$
L_{4}: K_{2}\left(A[G] / I^{2}, I\right) \rightarrow K_{2, L}\left(A[G] / I^{2}, I\right)
$$

is an isomorphism. This means that the kernel and cokernel of L_{3} can be computed.

Proposition 1. Let $R=A[G] /\left(z^{2}\right)=A[x] /\left(x^{2}, q x\right)$. Then

$$
K_{2, L}(R, x R)=\operatorname{cok}\left(\Delta: x R \otimes x R \rightarrow x R \otimes_{R} \Omega_{R}\right)
$$

is isomorphic to

$$
\left(\frac{\Omega_{A}}{q \Omega_{A}}\right) \oplus\left(\frac{A}{q A+2 A}\right) .
$$

Proof. One has

$$
x R \otimes_{R} \Omega_{R} \cong\left(\frac{\Omega_{A}}{q \Omega_{A}}\right) \oplus\left(\frac{A}{q A}\right) .
$$

Under this isomorphism the element $x \otimes \alpha+x \otimes a \delta x$ corresponds to the element ($[\alpha],[a]$). We must compute the image of $\Delta: x R \otimes_{R} x R \rightarrow x R \otimes_{R}$ Ω_{R}. The group $x R$ is generated by the elements $x a$ with $a \in A$. Therefore, the group $x R \otimes_{R} x R$ is additively generated by the elements $x a_{1} \otimes x a_{2}=$ $x \otimes x a_{1} a_{2}$ for $a_{1}, a_{2} \in A$. But $\Delta(x \otimes x a)=x \otimes 2 a \delta x$.

The kernel and cokernel of L_{3} are isomorphic to those of $L_{3}\left(L_{4}\right)^{-1}$. Although the evaluation of L_{3} and L_{4} could be done in a straightforward way, we use this occasion to demonstrate a technique which will be needed in a more complicated situation in Sect. 8.

The map $L_{3}\left(L_{4}\right)^{-1}$ is additive and natural for λ-homomorphisms. In Sect. 12 it is shown that there must then exist $c_{i}^{k} \in \mathbf{Z}$ such that

$$
L_{3}\left(L_{4}\right)^{-1}([\alpha],[a])=\left(\left[\sum_{i} c_{i}^{1} \phi^{i}(\alpha)\right]+\left[\sum_{i} c_{i}^{2} \phi^{i}(\delta a)\right],\left[\sum_{i} c_{i}^{3} \psi^{i}(a)\right]\right) .
$$

Moreover the c_{i}^{1} and c_{i}^{2} are unique modulo $q \mathbf{Z}$ and the c_{i}^{3} are unique modulo $q \mathbf{Z}+2 \mathbf{Z}$. To determine the c_{i}^{k} it suffices to evaluate this map for $A=\mathbf{Z}[t]$ and $\alpha=\delta t$ and for $a=t$.

This is done in the next two propositions showing that

$$
L_{3}\left(L_{4}\right)^{-1}=\left(1-\phi^{p}\right) \oplus\left(1-\psi^{p}\right)
$$

thus proving Theorem 1.

Proposition 2. One has

$$
\begin{aligned}
& L_{3}\langle x, t\rangle=x \otimes \delta t-x \otimes t^{p-1} \delta t+\operatorname{im}(\Delta), \\
& L_{4}\langle x, t\rangle=x \otimes \delta t+\operatorname{im}(\Delta) .
\end{aligned}
$$

In other words one can take $c_{1}^{1}=1, c_{p}^{1}=-1$ and $c_{i}^{1}=0$, otherwise.
Proof. By definition of the logarithmic map one has

$$
L\langle x, t\rangle=\sum_{m, k} \theta^{m}(x) \otimes \phi^{m} \delta \eta^{k}(x, t)+\operatorname{im}(\Delta) .
$$

In this formula we substitute the results of Sect. 13. For both λ-ring structures one has $\eta^{k}(x, t)=0$ for $k>1$, whereas $\eta^{1}(x, t)=t$.
First consider the standard λ-ring structure. Then one has $\theta^{m}(x)=0$ for $m>1$, whereas $\theta^{1}(x)=x$. So the only contribution is $x \otimes \delta t$.

Finally consider the exotic λ-ring structure. Then $\theta^{m}(x)=0$ for $m \neq$ $1, p$. For $m=1$ one gets the same contribution as in the standard case and for $m=p$ one gets $\theta^{p}(x) \otimes \phi^{p}(\delta t)=\theta^{p}(x) \otimes t^{p-1} \delta t \equiv-x \otimes t^{p-1} \delta t$.

Proposition 3. One has

$$
\begin{aligned}
L_{3}\langle x, x t\rangle & =x \otimes t \delta x-x \otimes t^{p} \delta x+\operatorname{im}(\Delta) \\
L_{4}\langle x, x t\rangle & =x \otimes t \delta x+\operatorname{im}(\Delta)
\end{aligned}
$$

In other words one can take $c_{i}^{2}=0$ for all i, and $c_{1}^{3}=1, c_{p}^{3}=-1$, and $c_{i}^{3}=0$, otherwise.

Proof. By definition of the logarithmic map one has

$$
L\langle x, x t\rangle=\sum_{m, k} \theta^{m}(x) \otimes \phi^{m} \delta \eta^{k}(x, x t)+\operatorname{im}(\Delta)
$$

In this we substitute the results of Sect. 13. For both λ-ring structures one has $\eta^{k}(x, x t)=0$ for $k>1, \eta^{1}(x, x t)=x t$.

N ow consider the standard λ-ring structure. Then one has $\theta^{m}(x)=0$ for $m>1$, whereas $\theta^{1}(x)=x$. So the only contribution is

$$
\theta^{1}(x) \otimes \phi^{1} \delta x t=x \otimes(x \delta t+t \delta x) \equiv x \otimes t \delta x
$$

Finally consider the exotic λ-ring structure. A gain $\theta^{m}(x)=0$ for $m \neq$ $1, p$. For $m=1$ one gets the same contribution as in the standard case and for $m=p$ one gets

$$
\begin{aligned}
\theta^{p}(x) \otimes \phi^{p}(\delta x t) & =\theta^{p}(x) \otimes \phi^{p}(x \delta t+t \delta x) \\
& =\theta^{p}(x) \otimes\left(\psi^{p}(x) \phi^{p}(\delta t)+\psi^{p}(t) \phi^{p}(\delta x)\right. \\
& \left.=\theta^{p}(x) \otimes\left((x+1)^{p}-1\right) t^{p-1} \delta t+t^{p}(x+1)^{p-1} \delta x\right) \\
& \equiv(-x) \otimes\left(p x t^{p-1} \delta t+t^{p} \delta x\right) \equiv-x \otimes t^{p} \delta x .
\end{aligned}
$$

4. DOMAIN AND TARGET OF $j_{G L}$

Let $M \in \mathbf{N}$. Let I_{M} be the ideal of $A[G]$ generated by the elements $p^{M+e-i} z^{p^{i}}$ for $0 \leq i<e$. We write $\epsilon(n)=M+e-i$ for $p^{i} \leq n<p^{i+1}$ and $0 \leq i<e$. We write $\beta(n)=\min (\epsilon(n), e)$.

Proposition 4. Let $B=\mathbf{Z}[G] / I_{M}$ and $R=B \otimes A=A[G] / I_{M}$. Then

$$
K_{2, L}(R, z R)=\operatorname{cok}\left(\Delta: z R \otimes_{R} z R \rightarrow z R \otimes_{R} \Omega_{R}\right)
$$

is isomorphic to a direct sum $C F_{\text {low }} \oplus C F_{2} \oplus \cdots \oplus C F_{q-1}$, where

$$
\begin{aligned}
C F_{\text {low }} & =\frac{\left(\frac{A}{p^{\epsilon(1)} A} \otimes_{A} \Omega_{A}\right) \oplus \frac{A}{p^{\beta(q-1)} A}}{\{([1] \otimes q \delta a, 0)\}}, \\
C F_{n} & =\frac{\left(\frac{A}{p^{\epsilon(n)} A} \otimes_{A} \Omega_{A}\right) \oplus \frac{A}{p^{\beta(n-1)} A}}{\{([1] \otimes \delta a,[n a])\}} \quad \text { for } n=2, \ldots, q-1 .
\end{aligned}
$$

Proof. Similar to the proof of the next proposition.
Proposition 5. Again let $B=\mathbf{Z}[G] / I_{M}$ and $R=B \otimes A=A[G] / I_{M}$. Then

$$
K_{2, L}\left(R, z^{2} R\right)=\operatorname{cok}\left(\Delta: z^{2} R \otimes_{R} z^{2} R \rightarrow z^{2} R \otimes_{R} \Omega_{R}\right)
$$

is isomorphic to a direct sum $C S_{\text {low }} \oplus C S_{4} \oplus \cdots \oplus C S_{q-1}$, where

$$
C S_{n}=\frac{\left(\frac{a}{p^{\epsilon(n)} A} \otimes_{A} \Omega_{A}\right) \oplus \frac{A}{p^{\beta(n-1)} A}}{\{([1] \otimes \delta a,[n a])\}} \quad \text { for } n=4, \ldots, q-1 .
$$

For $q \geq 4$ the group $C S_{\text {low }}$ is defined as the quotient of

$$
\begin{aligned}
M S_{\mathrm{low}}= & \left(\frac{q A}{p^{\epsilon(1)} A} \otimes_{A} \Omega_{A}\right) \oplus\left(\frac{a}{p^{\epsilon(2)} A} \otimes_{A} \Omega_{A}\right) \oplus\left(\frac{A}{p^{\epsilon(3)} A} \otimes_{A} \Omega_{A}\right) \\
& \oplus \frac{q A}{p^{\min (2 e, \epsilon(1))} A} \oplus \frac{A}{p^{\min (e, \epsilon(2))} A} \oplus \frac{A}{p^{\beta(q-1)} A}
\end{aligned}
$$

by the subgroup generated by the following three types of elements:

$$
\begin{aligned}
& D_{1}(a)=\left([q] \otimes \delta a,\binom{q}{2}[1] \otimes \delta a,\binom{q}{3}[1] \otimes \delta a, 0,0,0\right), \\
& D_{2}(a)=\left(0,[1] \otimes q \delta a,\binom{q}{2}[1] \otimes \delta a,[q a],\binom{q}{2}[a], 0\right), \\
& D_{3}(a)=(0,0, q[1] \otimes \delta a, 0,0,0) .
\end{aligned}
$$

Proof. One has

$$
\begin{aligned}
z^{2} R \otimes_{R} \Omega_{R} \cong & z^{2} R \otimes_{R}\left(B \otimes \Omega_{A} \oplus A \otimes \Omega_{B}\right) \\
\cong & z^{2} R \otimes_{R}\left(R \otimes_{A} \Omega_{A} \oplus R \otimes_{B} \Omega_{B}\right) \\
\cong & z^{2} R \otimes_{A} \Omega_{A} \oplus z^{2} R \otimes_{B} \Omega_{B} \\
\cong & \left(\frac{q A}{p^{M+e} A} \oplus \bigoplus_{n=2}^{q-1} \frac{A}{p^{\epsilon(n)} A}\right) \otimes_{A} \Omega_{A} \\
& \oplus\left(\frac{q A}{p^{M+e} A} \oplus \bigoplus_{n=2}^{q-1} \frac{A}{p^{\epsilon(n)} A}\right) \otimes \frac{\mathbf{Z}}{q \mathbf{Z}} \\
\cong & \frac{q A}{p^{M+e} A} \otimes_{A} \Omega_{A} \oplus \bigoplus_{n=2}^{q-1}\left(\frac{A}{p^{\epsilon(n)} A} \otimes_{A} \Omega_{A}\right) \\
& \oplus \frac{q A}{p^{\min (2 e, M+e)} A} \oplus \bigoplus_{n=2}^{q-1}\left(\frac{A}{p^{\min (e, \epsilon(n))} A}\right) .
\end{aligned}
$$

U nder this isomorphism the element

$$
\begin{aligned}
q z \otimes & \alpha_{1}+z^{2} \otimes \alpha_{2}+\cdots+z^{q-1} \otimes \alpha_{q-1} \\
& +q z \otimes a_{2} \delta z+z^{2} \otimes a_{3} \delta z+\cdots+z^{q-1} \otimes a_{q} \delta z
\end{aligned}
$$

corresponds to the element

$$
\left([q] \otimes \alpha_{1},[1] \otimes \alpha_{2}, \ldots,[1] \otimes \alpha_{q-1},\left[q a_{2}\right],\left[a_{3}\right], \ldots,\left[a_{q}\right]\right)
$$

We must compute the image of $\Delta: z^{2} R \otimes_{R} z^{2} R \rightarrow z^{2} R \otimes_{R} \Omega_{R}$. The group $z^{2} R \otimes_{R} z^{2} R$ is additively generated by the elements $z^{i} a_{1} \otimes z^{j} a_{2}=$ $z^{2} \otimes z^{i+j-2} a_{1} a_{2}$ for $a_{1}, a_{2} \in A$ and $i, j \geq 2$. M oreover z^{i} is a combination of z^{2}, \ldots, z^{q} for $i \geq q+1$. Therefore it suffices to consider

$$
\Delta\left(z^{2} \otimes z^{i} a\right)=z^{i+2} \otimes \delta a+z^{i+1} \otimes(i+2) a \delta z
$$

for $2 \leq i \leq q$.

1. If $i \leq q-3$ then this expression is already in the desired form. Since $q \delta z=0$ this implies that $z^{k} \otimes p^{e-f} \delta a$ is in the image of Δ if p^{f} divides k and $4 \leq k<q$.
2. If $i=q-2$ then the first term is

$$
\begin{aligned}
z^{q} \otimes \delta a & =-\sum_{k=1}^{q-1} z^{k} \otimes\binom{q}{k} \delta a \\
& \equiv-q z \otimes \delta a-z^{2} \otimes\binom{q}{2} \delta a-z^{3} \otimes\binom{q}{3} \delta a,
\end{aligned}
$$

modulo terms of type (1). The second term is $z^{q-1} \otimes q a \delta z=0$.
3. If $i=q-1$ then one gets

$$
\begin{aligned}
z^{q+1} \otimes & \delta a+z^{q} \otimes a \delta z \\
= & -z^{2} \otimes q \delta a-z^{3} \otimes\binom{q}{2} \delta a-\sum_{k=3}^{q-1} z^{k+1} \otimes\binom{q}{k} \delta a \\
& -q z \otimes a \delta z-z^{2} \otimes\binom{q}{2} a \delta z-\sum_{k=3}^{q-1} z^{k} \otimes\binom{q}{k} a \delta z .
\end{aligned}
$$

However the two sums are together equivalent to

$$
\sum_{k=3}^{q-1} z^{k} \otimes(k+1)\binom{q}{k} a \delta z-\sum_{k=3}^{q-1} z^{k} \otimes\binom{q}{k} a \delta z \equiv 0,
$$

modulo terms of type (1) and (2).
4. If $i=q$ then one gets

$$
\begin{aligned}
z^{q+2} \otimes \delta a+z^{q+1} \otimes 2 a \delta z= & -z^{3} \otimes q \delta a-\sum_{k=2}^{q-1} z^{k+2} \otimes\binom{q}{k} \delta a \\
& -z^{2} \otimes 2 q a \delta z-\sum_{k=2}^{q-1} z^{k+1} \otimes 2\binom{q}{k} a \delta z .
\end{aligned}
$$

However the two sums are together equivalent to

$$
\sum_{k=2}^{q-1} z^{k+1} \otimes(k+2)\binom{q}{k} a \delta z-\sum_{k=2}^{q-1} z^{k+1} \otimes 2\binom{q}{k} a \delta z \equiv 0,
$$

modulo terms of type (1), (2), and (3).
Case (1) explains the definition of $C S_{n}$, and cases (2), (3), and (4) the definitions of D_{1}, D_{2}, D_{3}, respectively.
We indicate the necessary changes for $q<4$. If $q=3$ then $C S_{\text {low }}$ is the quotient of

$$
M S_{\text {low }}=\left(\frac{3 A}{3^{\epsilon(1)} A} \otimes_{A} \Omega_{A}\right) \oplus\left(\frac{A}{3^{\epsilon(2)} A} \otimes_{A} \Omega_{A}\right) \oplus \frac{3 A}{3^{\min (2, \epsilon(1))} A} \oplus \frac{A}{3 A}
$$

by the subgroup generated by the elements

$$
\begin{aligned}
& D_{2}(a)=([3] \otimes 3 \delta a,[1] \otimes 6 \delta a,[-3 a], 0), \\
& D_{3}(a)=(-[3] \otimes 6 \delta a,-[1] \otimes 9 \delta a, 0,0) .
\end{aligned}
$$

The cases (1) and (2) do not apply, and in cases (3) and (4) one expresses z^{3}, z^{4}, z^{5} in terms of z and z^{2}. This subgroup is also generated by the elements $D_{2}^{\prime}(a)=([3] \otimes 3 \delta a, 0,0,0)$ and $D_{3}^{\prime}(a)=(0,[1] \otimes 3 \delta a,[3 a], 0)$.

If $q=2$ then $C S_{\text {low }}$ is the quotient of

$$
M S_{\text {low }}=\left(\frac{2 A}{2^{\epsilon(1)} A} \otimes_{A} \Omega_{A}\right) \oplus \frac{2 A}{2^{\min (2, \epsilon(1))} A}
$$

by the subgroup generated by the elements

$$
D_{3}(a)=(-[2] \otimes 4 \delta a,[0])
$$

The cases (1), (2) and (3) do not apply, and in case (4) one expresses z^{2}, z^{3} in terms of z.

5. THE KERNEL OF $j_{G L}$

We write $A^{\prime}=\{a \in A ; 2 a \in q A\}$. We introduce the following maps

$$
\begin{array}{rlrl}
\kappa^{G}: \Omega_{A} & \rightarrow K_{2, L}\left(A[G] / I_{M},(z)\right) & \kappa^{G}(\alpha)=z \otimes \alpha, \\
\kappa_{\Omega}^{G}: \Omega_{A} \rightarrow K_{2, L}\left(A[G] / I_{M},\left(z^{2}\right)\right) & \kappa_{\Omega}^{G}(\alpha)=q z \otimes \alpha, \\
\kappa_{2}^{G}: A^{\prime} & \rightarrow K_{2, L}\left(A[G] / I_{M},\left(z^{2}\right)\right) & \kappa_{2}^{G}(a)=z^{2} \otimes \delta a+2 a z \otimes \delta z, \\
\kappa_{3}^{G}: A \rightarrow K_{2, L}\left(A[G] / I_{M},\left(z^{2}\right)\right) & \kappa_{3}^{G}(a)=z^{3} \otimes \delta a+3 a z^{2} \otimes \delta z .
\end{array}
$$

Then $j_{G L}\left(\kappa_{\Omega}^{G}(\alpha)\right)=\kappa^{G}(q \alpha)$. Let κ_{1}^{G} be the restriction of κ_{Ω}^{G} to ${ }^{q} \Omega_{A}$.
Proposition 6. $\operatorname{ker}\left(j_{G L}\right)=\operatorname{im}\left(\kappa_{\mathrm{tot}}^{G}\right)$, where $\kappa_{\mathrm{tot}}^{G}=\kappa_{1}^{G}+\kappa_{2}^{G}+\kappa_{3}^{G}$.
Proof. We assume that $q>3$. First some notation. The maps κ^{G} factorize through maps κ with values in $M S_{\text {low }}$ defined by

$$
\begin{aligned}
& \kappa_{1}(\alpha)=([q] \otimes \alpha, 0,0,0,0,0), \\
& \kappa_{2}(a)=(0,[1] \otimes \delta a, 0,[2 a], 0,0), \\
& \kappa_{3}(a)=(0,0,[1] \otimes \delta a, 0,[3 a], 0) .
\end{aligned}
$$

Combining Propositions 4 and 5 we find that $j_{G L}=j_{\text {low }}^{G} \oplus j_{3}^{G} \oplus \cdots \oplus j_{q-1}^{G}$, where the map $j_{\text {low }}^{G}: C S_{\text {low }} \rightarrow C F_{\text {low }} \oplus C F_{2} \oplus C F_{3}$ is given by

$$
\begin{aligned}
& j_{\text {low }}^{G}\left(\left[[q] \otimes \alpha_{1},[1] \otimes \alpha_{2},[1] \otimes \alpha_{3},\left[q a_{2}\right],\left[a_{3}\right],\left[a_{q}\right]\right]\right) \\
& \quad=\left(\left[[1] \otimes q \alpha_{1},\left[a_{q}\right]\right],\left[[1] \otimes \alpha_{2},\left[q a_{2}\right]\right],\left[[1] \otimes \alpha_{3},\left[a_{3}\right]\right]\right)
\end{aligned}
$$

and where $j_{n}^{G}: C S_{n} \rightarrow C F_{n}$ is the obvious map and therefore an isomorphism for $n \geq 4$. If $w=\left([q] \otimes \alpha_{1},[1] \otimes \alpha_{2},[1] \otimes \alpha_{3},\left[q a_{2}\right],\left[a_{3}\right],\left[a_{q}\right]\right)$ is such that its class is in $\operatorname{ker}\left(j_{\text {low }}^{G}\right)$ then one has

$$
\begin{aligned}
{[1] \otimes q \alpha_{1} } & =[1] \otimes q \delta b_{1}, & & {\left[q a_{2}\right]=\left[2 b_{2}\right], } \\
{[1] \otimes \alpha_{2} } & =[1] \otimes \delta b_{2}, & & {\left[a_{3}\right]=\left[3 b_{3}\right], } \\
{[1] \otimes \alpha_{3} } & =[1] \otimes \delta b_{3}, & & {[a q]=0 . }
\end{aligned}
$$

Thus there are $\theta_{1}, \theta_{2}, \theta_{3} \in \Omega_{A}$ and $g_{2}, g_{3}, g_{q} \in A$ such that

$$
\begin{aligned}
q \alpha_{1} & =q \delta b_{1}+p^{\epsilon(1)} \theta_{1}, & & q a_{2}=2 b_{2}+q g_{2}, \\
\alpha_{2} & =\delta b_{2}+p^{\epsilon(2)} \theta_{2}, & & a_{3}=3 b_{3}+p^{\beta(2)} g_{3}, \\
\alpha_{3} & =\delta b_{3}+p^{\epsilon(3)} \theta_{3}, & & a_{q}=p^{\beta(q-1)} g_{q} .
\end{aligned}
$$

From the first equation one finds $\alpha_{1}=\delta b_{1}+p^{\epsilon(1)-e} \theta_{1}+\eta$ for certain $\eta \in^{q} \Omega_{A}$. From the fourth equation one finds that $b_{2} \in A^{\prime}$; in fact $2 b_{2}=q c$, where $c=a_{2}-g_{2}$. Since the terms involving the $\theta_{1}, \theta_{2}, \theta_{3}$ and the g_{3}, g_{q} represent zero one has

$$
w=\left([q] \otimes \delta b_{1}+[q] \otimes \eta,[1] \otimes \delta b_{2},[1] \otimes \delta b_{3},\left[q a_{2}\right],\left[3 b_{3}\right], 0\right) .
$$

Thus one finds

$$
\begin{aligned}
& \begin{aligned}
w- & \kappa_{1}(\eta)-\kappa_{3}\left(b_{3}\right)=\left([q] \otimes \delta b_{1},[1] \otimes \delta b_{2}, 0,\left[q a_{2}\right], 0,0\right) \\
w- & \kappa_{1}(\eta)-\kappa_{3}\left(b_{3}\right)-D_{1}\left(b_{1}\right) \\
& =\left(0,[1] \otimes \delta b_{2}-\binom{q}{2}[1] \otimes \delta b_{1},-\binom{q}{3}[1] \otimes \delta b_{1},\left[q a_{2}\right], 0,0\right) \\
w- & \kappa_{1}(\eta)-\kappa_{3}\left(b_{3}\right)-D_{1}\left(b_{1}\right)+\binom{q}{3} \kappa_{3}\left(b_{1}\right) \\
& =\left(0,[1] \otimes \delta b_{2}-\binom{q}{2}[1] \otimes \delta b_{1}, 0,\left[q a_{2}\right], 3\binom{q}{3}\left[b_{1}\right], 0\right) .
\end{aligned} .
\end{aligned}
$$

In order to write this in the form $\kappa_{2}\left(f_{2}\right)+\kappa_{3}\left(f_{3}\right)+D_{2}\left(h_{2}\right)+D_{3}\left(h_{3}\right)$ it is sufficient to have

$$
\begin{aligned}
b_{2}-\binom{q}{2} b_{1} & =f_{2}+q h_{2} \\
0 & =f_{3}+\binom{q}{2} h_{2}+q h_{3} \\
q a_{2} & =2 f_{2}+q h_{2} \\
3\binom{q}{3} b_{1} & \equiv 3 f_{3}+\binom{q}{2} h_{2} \quad \text { modulo } p^{e} .
\end{aligned}
$$

One can satisfy these conditions by choosing

$$
\begin{aligned}
& f_{2}=q a_{2}-b_{2}+\binom{q}{2} b_{1}, \\
& h_{2}=-a_{2}+c-(q-1) b_{1}, \\
& f_{3}=-\binom{q}{2} h_{2}, \\
& h_{3}=0 .
\end{aligned}
$$

For $q=3$ one has $z^{3}=-3 z^{2}-3 z$ and thus

$$
\begin{aligned}
& \kappa_{1}(\alpha)=([3] \otimes \alpha, 0,0,0), \\
& \kappa_{2}(a)=(0,[1] \otimes \delta a,[2 a], 0), \\
& \kappa_{3}(a)=(-[3] \otimes \delta a,-[1] \otimes 3 \delta a,[0],[0])
\end{aligned}
$$

If $w=\left([3] \otimes \alpha_{1},[1] \otimes \alpha_{2},\left[3 a_{2}\right],\left[a_{3}\right]\right)$ has its class in $\operatorname{ker}\left(j_{G L}\right)$ then one can write

$$
w-\kappa_{1}(\eta)=\left([3] \otimes \delta b_{1},[1] \otimes \delta b_{2},\left[3 a_{2}\right],[0]\right)
$$

for certain $\eta \in^{3} \Omega_{A}, b_{1}, b_{2} \in A$; and $2 b_{2}=3 c$ for certain $c \in A$. One can write this as $\kappa_{2}\left(f_{2}\right)+\kappa_{3}\left(f_{3}\right)+D_{2}^{\prime}\left(h_{2}\right)+D_{3}^{\prime}\left(h_{3}\right)$ by choosing

$$
\begin{aligned}
& f_{2}=3 a_{2}-b_{2}+3 b_{1}, \\
& f_{3}=-b_{1}, \\
& h_{2}=0, \\
& h_{3}=c-2 b_{1}-a_{2} .
\end{aligned}
$$

For $q=2$ one has $z^{2}=-2 z$ and thus

$$
\begin{aligned}
& \kappa_{1}(\alpha)=([2] \otimes \alpha, 0), \\
& \kappa_{2}(a)=(-[2] \otimes \delta a,[2 a]), \\
& \kappa_{3}(a)=([2] \otimes 2 \delta a,[-6 a]) .
\end{aligned}
$$

If $w=\left([2] \otimes \alpha_{1},\left[2 a_{2}\right]\right)$ has its class in $\operatorname{ker}\left(j_{G L}\right)$ then one can write

$$
w-\kappa_{1}(\eta)=\left([2] \otimes \delta b_{1},\left[2 a_{2}\right]\right)
$$

for certain $\eta \in^{2} \Omega_{A}, b_{1} \in A$. One can write this as $\kappa_{2}\left(f_{2}\right)+\kappa_{3}\left(f_{3}\right)+$ $D_{3}\left(h_{3}\right)$ by choosing

$$
\begin{aligned}
& f_{2}=-2 a_{2}-3 b_{1}, \\
& f_{3}=-a_{2}-b_{1}, \\
& h_{3}=0 .
\end{aligned}
$$

We list some elements in the kernel of $\kappa_{\text {tot }}^{G}$.
Proposition 7. One has

$$
\begin{aligned}
\kappa_{3}^{G}(q a) & =0, \\
\kappa_{2}^{G}\left(q^{2} a\right) & =0, \\
\kappa_{2}^{G}\left(q \psi^{p^{M}}(a)\right) & =0 .
\end{aligned}
$$

For $p=2$ the third statement can be strengthened to

$$
\kappa_{2}^{G}\left(q^{\prime} \psi^{2^{M}}(a)\right)+\binom{q}{2} \kappa_{3}^{G}\left(\psi^{2^{M}}(a)\right)=0
$$

Proof. We leave the cases $q \leq 3$ to the reader. If $q>3$ then one has

$$
\begin{aligned}
\kappa_{2}(q a) & =D_{3}(a), \\
\kappa_{2}\left(q^{2} a\right) & =q D_{2}(a)-\binom{q}{2} D_{3}(a), \\
\kappa_{2}\left(q \psi^{p^{M}}(a)\right) & =D_{2}\left(2 \psi^{p^{M}}(a)\right)
\end{aligned}
$$

and for $p=2$ one has

$$
\kappa_{2}\left(q^{\prime} \psi^{2^{M}}(a)\right)+\binom{q}{2} \kappa_{3}\left(\psi^{2^{M}}(a)\right)=D_{2}\left(\psi^{2^{M}}(a)\right) .
$$

Here we have used the fact $q^{\prime} \delta \psi^{2^{M}}(a)=q^{\prime} 2^{M} \phi^{2^{M}} \delta a$ is a multiple of $2^{\epsilon(2)}$. 】
In fact $\kappa_{2}^{G}(q b)=0$ if b is of the form $\sum_{i=0}^{M} p^{i} a_{i}^{p^{M-i}}$ with $a_{i} \in A$, and this is the case for $b=\psi^{p^{M}}(a)$.

6. THE MAP $j_{G M}$

Let $N \geq M+e$, with $M \geq 0$. Let J_{N} be the ideal of $A[x]$ generated by the elements $p^{N-i} x^{p^{i}}$ for $0 \leq i \leq N$. The map $\pi: A[x] \rightarrow A[G]$ induces a $\operatorname{map} A[x] / J_{N} \rightarrow A[G] / I_{M}$.
A ccording to Sect. 2 we must determine the image of $\operatorname{ker}\left(j_{G M}\right)$ under L_{1}. To determine $\operatorname{ker}\left(j_{G M}\right)$ we shall use the following diagram with exact rows

From this diagram it follows that $\operatorname{ker}\left(j_{G M}\right)=\pi_{2}\left(\operatorname{ker}\left(j_{X M}\right)\right)$. To compute the kernel of $j_{X M}$ we use the following diagram

Here L_{5} and L_{6} are the logarithmic maps associated to the standard λ-ring structure on $A[x]$; since (x) is λ-nilpotent they are isomorphisms. Note that $\left(x^{2}, q x\right)$ is a λ-ideal of $A[x]$, although $\left((x+1)^{q}-1\right)$ is not. From this diagram it follows that $\left.\operatorname{ker}\left(j_{X M}\right)\right)=L_{5}^{-1}\left(\operatorname{ker}\left(j_{X L}\right)\right)$.

Thus $L_{1}\left(\operatorname{ker}\left(j_{G M}\right)\right)=L_{1} \pi_{2} L_{5}^{-1}\left(\operatorname{ker}\left(j_{X L}\right)\right)$. To compute the composition $L_{1} \pi_{2} L_{5}^{-1}$ we use the following diagram

Here L_{7} and L_{8} are the logarithmic maps associated to the "exotic" λ-ring structure on $A[x] / J_{N}$, which has $\psi^{l}(x)=0$ for primes $l \neq p$ and $\psi^{p}(x)=$ $(x+1)^{p}-1$; see Sect. 13 for the details. For this λ-ring structure the ideals (x) and $\left(x^{2}, q x\right)$ are θ-nilpotent and ψ-nilpotent, but not λ-nilpotent; thus L_{7} and L_{8} are defined but not necessarily isomorphisms.
The diagram commutes since the map $\pi: A[x] / J_{N} \rightarrow A[G] / I_{M}$ is a λ-map, and the logarithmic map is natural for λ-maps. In particular one has $L_{1} \pi_{2}=\pi_{2} L_{7}$, and thus $L_{1}\left(\operatorname{ker}\left(j_{G M}\right)\right)=\pi_{2} L_{7}\left(L_{5}\right)^{-1} \operatorname{ker}\left(j_{X L}\right)$. In the next sections we shall compute $\operatorname{ker}\left(j_{X L}\right)$ and determine

$$
L_{7}\left(L_{5}\right)^{-1}: \operatorname{ker}\left(j_{X L}\right) \rightarrow \operatorname{ker}\left(j_{X L}\right) .
$$

7. THE KERNEL OF $j_{X L}$

We write $\gamma(n)=N-i$ for $p^{i} \leq n<p^{i+1}$ and $0 \leq i \leq N$. We write $Q=p^{N}$.

Proposition 8. Let $R=A[x] / J_{N}$. Then

$$
K_{2, L}(R, x R)=\operatorname{cok}\left(\Delta: x R \otimes_{R} x R \rightarrow x R \otimes_{R} \Omega_{R}\right)
$$

is isomorphic to a direct sum $X F_{1} \oplus X F_{2} \oplus \cdots \oplus X F_{Q}$, where

$$
\begin{aligned}
X F_{1} & =\frac{A}{Q A} \otimes_{A} \Omega_{A}, \\
X F_{n} & =\frac{\left(\frac{A}{p^{\gamma(n)} A} \otimes_{A} \Omega_{A}\right) \oplus \frac{A}{p^{\gamma(n-1)} A}}{\{([1] \otimes \delta a,[n a])\}} \quad \text { for } n=2, \ldots, Q-1, \\
X F_{Q} & =\frac{A}{p A} .
\end{aligned}
$$

Proof. Similar to the proof of the next proposition.
Proposition 9. If $Q>3$ then

$$
K_{2, L}\left(R, x^{2} R+q x R\right)
$$

is isomorphic to a direct sum $X S_{1} \oplus X S_{2} \oplus \cdots \oplus X S_{Q}$, where

$$
\begin{aligned}
& X S_{1}=\frac{q A}{Q A} \otimes_{A} \Omega_{A}, \\
& X S_{2}=\frac{\left(\frac{A}{p^{\gamma(2)} A} \otimes_{A} \Omega_{A}\right) \oplus \frac{q A}{p^{\gamma(1)} A}}{\left\{\left([1] \otimes q^{2} \delta a,\left[2 q^{2} a\right]\right)\right\}}, \\
& X S_{3}=\frac{\left(\frac{A}{p^{\gamma(3)} A} \otimes_{A} \Omega_{A}\right) \oplus \frac{A}{p^{\gamma(2)} A}}{\{([1] \otimes q \delta a,[3 q a])\}}, \\
& X S_{n}=\frac{\left(\frac{A}{p^{\gamma(n)} A} \otimes_{A} \Omega_{A}\right) \oplus \frac{A}{p^{\gamma(n-1)} A}}{\{([1] \otimes \delta a, n a)\}} \quad \text { for } n=4, \ldots, Q-1, \\
& X S_{Q}=\frac{A}{p A} .
\end{aligned}
$$

Proof. With $C=\mathbf{Z}[x] / J_{N}$ one has

$$
\begin{aligned}
\left(x^{2} R+q x R\right) \otimes_{R} \Omega_{R} \cong & \left(x^{2} R+q x R\right) \otimes_{R}\left(C \otimes \Omega_{A} \oplus A \otimes \Omega_{C}\right) \\
\cong & \left(x^{2} R+q x R\right) \otimes_{R}\left(R \otimes_{A} \Omega_{A} \oplus R \otimes_{C} \Omega_{C}\right) \\
\cong & \left(x^{2} R+q x R\right) \otimes_{A} \Omega_{A} \oplus\left(x^{2} R+q x R\right) \otimes_{C} \Omega_{C} \\
\cong & \left(\frac{q A}{Q A} \oplus \bigoplus_{n=2}^{Q-1} \frac{A}{p^{\gamma(n)} A}\right) \otimes_{A} \Omega_{A} \\
& \oplus\left(\frac{q A}{Q A} \oplus \bigoplus_{n=2}^{Q-1} \frac{A}{p^{\gamma(n)} A}\right) \otimes \frac{\mathbf{Z}}{Q \mathbf{Z}} \\
\cong & \frac{q A}{Q A} \otimes_{A} \Omega_{A} \oplus \bigoplus_{n=2}^{Q-1}\left(\frac{A}{p^{\gamma(n)} A} \otimes_{A} \Omega_{A}\right) \\
& \oplus \frac{q A}{Q A} \oplus \bigoplus_{n=2}^{Q-1}\left(\frac{A}{p^{\gamma(n)} A}\right) .
\end{aligned}
$$

U nder this isomorphism the element

$$
\begin{aligned}
q x \otimes & \alpha_{1}+x^{2} \otimes \alpha_{2}+\cdots+x^{Q-1} \otimes \alpha_{Q-1} \\
& +q x \otimes a_{2} \delta x+x^{2} \otimes a_{3} \delta x+\cdots+x^{Q-1} \otimes a_{Q} \delta x
\end{aligned}
$$

corresponds to the element

$$
\left([q] \otimes \alpha_{1},[1] \otimes \alpha_{2}, \ldots,[1] \otimes \alpha_{Q-1},\left[q a_{2}\right],\left[a_{3}\right], \ldots,\left[a_{Q}\right]\right) .
$$

We must compute the image of

$$
\Delta:\left(x^{2} R+q x R\right) \otimes_{R}\left(x^{2} R+q x R\right) \rightarrow\left(x^{2} R+q x R\right) \otimes_{R} \Omega_{R}
$$

The group $x^{2} R+q x R$ is additively generated by the elements $q x a$ and the elements $x^{i} a$ with $a \in A$ and $i \geq 2$. Therefore the group ($x^{2} R+q x R$) \otimes_{R} ($x^{2} R+q x R$) is additively generated by the elements $q x \otimes q x a, q x \otimes x^{i} a$ and $x^{2} \otimes x^{i} a$ for $a \in A$ and $i \geq 2$. Thus it suffices to consider

$$
\begin{aligned}
\Delta(q x \otimes q x a) & =x^{2} \otimes q^{2} \delta a+q x \otimes 2 q a \delta x, \\
\Delta\left(q x \otimes x^{i} a\right) & =x^{i+1} \otimes q \delta a+x^{i} \otimes(i+1) q a \delta x \\
\Delta\left(x^{2} \otimes x^{i} a\right) & =x^{i+2} \otimes \delta a+x^{i+1} \otimes(i+2) a \delta x .
\end{aligned}
$$

We introduce maps

$$
\begin{array}{ll}
\kappa^{X}: \Omega_{A} \rightarrow K_{2, L}\left(A[x] / J_{N},(x)\right), & \kappa^{X}(\alpha)=x \otimes \alpha, \\
\kappa_{\Omega}^{X}: \Omega_{A} \rightarrow K_{2, L}\left(A[x] / J_{N},\left(x^{2}, q x\right)\right), & \kappa_{\Omega}^{X}(\alpha)=q x \otimes \alpha \\
\kappa_{2}^{X}: A^{\prime} \rightarrow K_{2, L}\left(A[x] / J_{N},\left(x^{2}, q x\right)\right), & \kappa_{2}^{X}(a)=x^{2} \otimes \delta a+2 a x \otimes \delta x, \\
\kappa_{3}^{X}: A \rightarrow K_{2, L}\left(A[x] / J_{N},\left(x^{2}, q x\right)\right), & \kappa_{3}^{X}(a)=x^{3} \otimes \delta a+3 a x^{2} \otimes \delta x .
\end{array}
$$

Then $j_{X L}\left(\kappa_{\Omega}^{X}(\alpha)\right)=\kappa^{X}(q \alpha)$. Let κ_{1}^{X} be the restriction of κ_{Ω}^{X} to ${ }^{q} \Omega_{A}$.
Proposition 10. $\operatorname{ker}\left(j_{X L}\right)=\operatorname{im}\left(\kappa_{\text {tot }}^{X}\right)$, where $\kappa_{\text {tot }}^{X}=\kappa_{1}^{X}+\kappa_{2}^{X}+\kappa_{3}^{X}$.
Proof. First assume $Q>3$. Combining Propositions 8 and 9 we find that $j_{X L}$ is the direct sum $j_{1}^{X} \oplus j_{2}^{X} \oplus \cdots j_{Q}^{X}$, where $j_{n}^{X}: X S_{n} \rightarrow X F_{n}$ is the obvious map for each n. In particular it is an isomorphism for $n \geq 4$. The behaviour for $n=1,2,3$ is easily analyzed in the same spirit as in Proposition 6.

For $Q=q=3$ one has

$$
\begin{array}{lll}
X F_{1}=\frac{A}{3 A} \otimes_{A} \Omega_{A}, & X F_{2}=\frac{\left(\frac{A}{3 A} \otimes_{A} \Omega_{A}\right) \oplus \frac{A}{3 A}}{\{([1] \otimes \delta a,[2 a])\}}, & X F_{3}=\frac{A}{3 A}, \\
X S_{1}=0, & X S_{2}=\frac{A}{3 A} \otimes_{A} \Omega_{A}, & X S_{3}=\frac{A}{3 A} .
\end{array}
$$

The map $j_{X L}$ is injective and the maps κ_{i}^{X} vanish.
For $Q=q=2$ one has

$$
\begin{array}{ll}
X F_{1}=\frac{A}{2 A} \otimes_{A} \Omega_{A}, & X F_{2}=\frac{A}{2 A}, \\
X S_{1}=0, & X S_{2}=0 .
\end{array}
$$

The map $j_{X L}$ is injective and the maps κ_{i}^{X} vanish.
From the definitions of κ_{2}^{X} and κ_{3}^{X} and from the structure of $X S_{2}$ and $X S_{3}$ it is clear that κ_{2}^{X} vanishes on $q^{2} A$ and κ_{3}^{X} vanishes on $q A$. This is related to the analogous properties of the κ_{i}^{G} by the fact that $\pi_{2} \kappa_{\text {tot }}^{X}=\kappa_{\text {tot }}^{G}$.

The maps κ_{i}^{M} which are mentioned in Theorem 2 are now defined as $\pi_{2}\left(L_{5}\right)^{-1} \kappa_{i}^{X}$.

8. THE MAP Φ

A s mentioned in Sect. 6 we must compute the map

$$
L_{7}\left(L_{5}\right)^{-1}: \operatorname{ker}\left(j_{X L}\right) \rightarrow \operatorname{ker}\left(j_{X L}\right) .
$$

In Proposition 10 we have seen that $\kappa_{\text {to }}^{X}$ is a surjection onto $\operatorname{ker}\left(j_{X L}\right)$. Thus it is sufficient to compute $L_{7}\left(L_{5}\right)^{-1} \kappa_{\text {tot }}^{X}$. For κ_{1}^{X} this is done in this section, for κ_{2}^{X} and κ_{3}^{X} in the next section.

Proposition 11. There are $f_{i} \in \mathbf{Z}$ such that the following diagram commutes:
where $\Phi=\sum_{i} f_{i} \phi^{i}$.
Proof. We may assume $Q>3$. The map $L_{7}\left(L_{5}\right)^{-1} \kappa_{\Omega}^{X}$ is a natural additive map; we shall write ξ_{n}^{s} for its component in $X S_{n}$ for $4 \leq n \leq Q$. A ccording to Sect. 12 there must be $c_{i}^{k} \in \mathbf{Z}$ such that $\alpha \in \Omega_{A}$ maps to

$$
\begin{aligned}
& {\left[[q] \otimes \sum c_{i}^{1} \phi^{i}(\alpha)\right] \oplus\left[[1] \otimes \sum c_{i}^{2} \phi^{i}(\alpha), 0\right] \oplus\left[[1] \otimes \sum c_{i}^{3} \phi^{i}(\alpha), 0\right]} \\
& \quad \oplus \xi_{4}^{S} \oplus \cdots \oplus \xi_{Q}^{S} \in X S_{1} \oplus X S_{2} \oplus \cdots \oplus X S_{Q}
\end{aligned}
$$

If one applies $j_{X L}$ to this one gets

$$
\begin{aligned}
& {\left[[1] \otimes \sum q c_{i}^{1} \phi^{i}(\alpha)\right] \oplus\left[[1] \otimes \sum c_{i}^{2} \phi^{i}(\alpha), 0\right] \oplus\left[[1] \otimes \sum c_{i}^{3} \phi^{i}(\alpha), 0\right]} \\
& \quad \oplus \xi_{4}^{S} \oplus \cdots \oplus \xi_{Q}^{S} \in X F_{1} \oplus X F_{2} \oplus \cdots \oplus X F_{Q} .
\end{aligned}
$$

The map $L_{8}\left(L_{6}\right)^{-1} \kappa^{X}$ is also a natural additive map. We shall write ξ_{n}^{F} for its component in $X F_{n}$ for $4 \leq n \leq Q$. Again there must be $d_{k}^{i} \in \mathbf{Z}$ such that $\alpha \in \Omega_{A}$ maps to

$$
\begin{aligned}
& {\left[[1] \otimes \sum d_{i}^{1} \phi^{i}(\alpha)\right] \oplus\left[[1] \otimes \sum d_{i}^{2} \phi^{i}(\alpha), 0\right] \oplus\left[[1] \otimes \sum d_{i}^{3} \phi^{i}(\alpha), 0\right]} \\
& \quad \oplus \xi_{4}^{F} \oplus \cdots \oplus \xi_{Q}^{F} \in X F_{1} \oplus X F_{2} \oplus \cdots \oplus X F_{Q}
\end{aligned}
$$

Since $\kappa^{X}(q \alpha)=j_{X L}\left(\kappa_{\Omega}^{X}(\alpha)\right)$ the value of this map on $q \alpha$ must be the same as the result of the former map on α. According to Sect. 12 this means that

$$
\begin{aligned}
q c_{i}^{1} & \equiv q d_{i}^{1} & & \text { modulo } p^{\gamma(1)} \mathbf{Z}, \\
c_{i}^{2} & \equiv q d_{i}^{2} & & \text { modulo } p^{\gamma(2)} \mathbf{Z}, \\
c_{i}^{3} & \equiv q d_{i}^{3} & & \text { modulo } p^{\gamma(3)} \mathbf{Z}, \\
\xi_{n}^{F}(\alpha) & =\xi_{n}^{S}(q \alpha) & & \text { for } n=4, \ldots, q-1 .
\end{aligned}
$$

Thus if $\gamma(2) \geq e$ this says that $c_{i}^{2} \in q \mathbf{Z}$, so $q \alpha=0$ implies that $c_{i}^{2} \alpha=0$. If on the other hand $\gamma(2) \leq e$ this says that $c_{i}^{2} \in p^{\gamma(2)} \mathbf{Z}$, so $c_{i}^{2} \alpha$ represents zero in $X S_{2}$ anyway. Therefore if $q \alpha=0$ one has

$$
\begin{aligned}
L_{7}\left(L_{5}\right)^{-1} \kappa_{\Omega}^{X}(\alpha) & =\left[[q] \otimes \sum c_{i}^{1} \phi^{i}(\alpha)\right] \oplus 0 \oplus \cdots \oplus 0 \\
& =\kappa_{\Omega}^{X}\left(\sum c_{i}^{1} \phi^{i}(\alpha)\right) .
\end{aligned}
$$

Thus one can take $f_{i}=c_{i}^{1}$.
It is clear from the proof that the coefficients f_{i} can be determined by evaluating the $X S_{1}$-part of $L_{7}\left(L_{5}\right)^{-1} \kappa_{\Omega}$ on a well chosen example. For this we take the ring $A=\mathbf{Z}[t]$ with the λ-ring structure given by $\psi^{i}(t)=t^{i}$, and the element $\delta t \in \Omega_{A}$.
Proposition 12. Let $A=\mathbf{Z}[t]$. Let

$$
y=t^{-1}\left(1-(1-t x)^{q}\right)=\sum_{i=1}^{q}\binom{q}{i}(-1)^{i-1} t^{i-1} x^{i} \in A[x] / J_{N} .
$$

Then $L_{7}\langle y, t\rangle=q x \otimes \delta t$ and the $X S_{1}$ component of $L_{7}\langle y, t\rangle$ is

$$
q x \otimes \delta t-q x \otimes t^{p-1} \delta t=q x \otimes\left(1-\phi^{p}\right)(\delta t) .
$$

Proof. Let L denote L_{5} or L_{7}. One has

$$
\begin{aligned}
L\langle y, t\rangle & =\sum_{m, k} \theta^{m}(y) \otimes \phi^{m} \delta \eta^{k}(y, t)=\sum_{m} \theta^{m}(y) \otimes \phi^{m} \delta t \\
& =\sum_{m} \theta^{m}(y) \otimes t^{m-1} \delta t=\sum_{m} t^{m-1} \theta^{m}(y) \otimes \delta t,
\end{aligned}
$$

since $\eta^{k}(y, t)=0$ for $k>1$. However $\theta=\sum_{m} \theta^{m}$ has the property $\theta(a)+$

$$
\theta(b)=\theta(a+b-a b) \text {, so }
$$

$$
\sum_{m} t^{m} \theta^{m}(y)=\sum_{m} \theta^{m}(t y)=q \sum_{m} \theta^{m}(t x)=q \sum_{m} t^{m} \theta^{m}(x) .
$$

Therefore

$$
L\langle y, t\rangle=\sum q \theta^{m}(x) \otimes t^{m-1} \delta t .
$$

In computing $L_{5}\langle y, t\rangle$ one must use the standard λ-ring structure on $A[x] / J_{N}$. Then $\theta^{m}(x)=0$ for $m>1$ and the only nonvanishing term is the one for $m=1$.

In computing $L_{7}\langle y, t\rangle$ one must use the exotic λ-ring structure. If one is only interested in the $X S_{1}$-component then terms of degree >1 in x can be neglected. Therefore one gets the following contributions

$$
\begin{aligned}
q \theta^{1}(x) \otimes \delta t & =q x \otimes \delta t, \\
q \theta^{p}(x) \otimes t^{p-1} \delta t & \equiv-q x \otimes t^{p-1} \delta t,
\end{aligned}
$$

using the identities in Sect. 13.
This proposition shows that one can take $\Phi=1-\phi^{p}$.

9. THE MAP Ψ

In this section we evaluate the compositions $L_{7}\left(L_{5}\right)^{-1} \kappa_{2}^{X}$ and $L_{7}\left(L_{5}\right)^{-1} \kappa_{3}^{X}$.

Proposition 13. The formulas

$$
\begin{aligned}
& \kappa_{2}^{X M}(a)=\left\langle x^{2}, a\right\rangle+\left\langle 2 a x-a^{2} x^{3}, x\right\rangle, \\
& \kappa_{3}^{X M}(a)=\left\langle x^{3}, a\right\rangle+3\left\langle x^{2} a, x\right\rangle
\end{aligned}
$$

define homomorphisms $\kappa_{2}^{X M}: A^{\prime} \rightarrow \operatorname{ker}\left(j_{X M}\right)$ and $\kappa_{3}^{X M}: A \rightarrow \operatorname{ker}\left(j_{X M}\right)$.
Proof. The second formula clearly defines a map

$$
\kappa_{3}^{X M}: A[x] \rightarrow K_{2}\left(A[x] / J_{N},\left(x^{2}, q x\right)\right) .
$$

Computing in $K_{2}\left(A[x] / J_{N},(x)\right)$ one finds

$$
\left\langle x^{3}, a\right\rangle=\left\langle x, x^{2} a\right\rangle-\left\langle x a, x^{2}\right\rangle=-\left\langle x^{2} a, x\right\rangle-2\left\langle x^{2} a, x\right\rangle,
$$

so the map lands in $\operatorname{ker}\left(j_{X M}\right)$. For every $b \in A[x]$ one has

$$
\begin{aligned}
\left\langle x^{3}, b x\right\rangle & =\left\langle x^{2}, b x^{2}\right\rangle-\left\langle b x^{3}, x\right\rangle=-\left\langle b x^{2}, x^{2}\right\rangle-\left\langle b x^{3}, x\right\rangle \\
& =-2\left\langle b x^{3}, x\right\rangle-\left\langle b x^{3}, x\right\rangle,
\end{aligned}
$$

so the map vanishes on $x A[x]$. Finally one has

$$
\kappa_{3}^{X M}\left(a_{1}+a_{2}\right)-\kappa_{3}^{X M}\left(a_{1}\right)-\kappa_{3}^{X M}\left(a_{2}\right)=\kappa_{3}^{X M}\left(b x^{3}\right)=0
$$

if $b \in A[x]$ is chosen such that

$$
\left(1-\left(a_{1}+a_{2}\right) x^{3}\right)=\left(1-a_{1} x^{3}\right)\left(1-a_{2} x^{3}\right)\left(1-b x^{6}\right)
$$

in $A[x] / x^{Q+3}$. Thus $\kappa_{3}^{X M}$ is a homomorphism.
In the same way one checks that $\kappa_{2}^{X M}$ defines a map $A^{\prime}[x] \rightarrow \operatorname{ker}\left(j_{X M}\right)$ and that $\kappa_{X M}^{2}(b x)=\kappa_{X M}^{3}(b)$ so that $\kappa_{X M}^{2}\left(b x^{2}\right)=0$. Thus again

$$
\kappa_{2}^{X M}\left(a_{1}+a_{2}\right)-\kappa_{2}^{X M}\left(a_{1}\right)-\kappa_{2}^{X M}\left(a_{2}\right)=\kappa_{2}^{X M}\left(b x^{2}\right)=0
$$

if $b \in A[x]$ is chosen such that

$$
\left(1-\left(a_{1}+a_{2}\right) x^{2}\right)=\left(1-a_{1} x^{2}\right)\left(1-a_{2} x^{2}\right)\left(1-b x^{4}\right)
$$

in $A[x] / x^{Q+2}$.
Proposition 14. One has

$$
\begin{aligned}
& L_{5} \kappa_{3}^{X M}(a)=\kappa_{3}^{X}(a), \\
& L_{7} \kappa_{3}^{X M}(a)=\kappa_{3}^{X}\left(a-p \psi^{p}(a)\right) .
\end{aligned}
$$

Proof. Consider the exotic λ-structure on $R=A[x] / J_{N}$. One has

$$
\begin{aligned}
L_{7} \kappa_{3}^{X M}(t)= & \sum_{m, k} \theta^{m}\left(x^{3}\right) \otimes \phi^{m} \delta \eta^{k}\left(x^{3}, a\right) \\
& +3 \sum_{m, k} \theta^{m}\left(a x^{2}\right) \otimes \phi^{m} \delta \eta^{k}\left(a x^{2}, x\right) .
\end{aligned}
$$

But $L_{7} \kappa_{3}^{X M}(a)$ is in $\operatorname{ker}\left(j_{X L}\right)$ by naturality, so its components in $X S_{n}$ vanish for $n \geq 4$. Thus any term of degree ≥ 4 in x can be neglected.

The first sum can be evaluated using the following formulas from Sect. 13:

$$
\begin{aligned}
\theta^{m}\left(x^{3}\right) & \in x^{3} R & & \text { for all } m, \\
\theta^{m}\left(x^{3}\right) & \in x^{4} R & & \text { unless } m=1, p, \\
\theta^{1}\left(x^{3}\right) & =x^{3}, & & \\
\theta^{p}\left(x^{3}\right) & =-p^{2} x^{3} & & \text { modulo } x^{4} R, \\
\eta^{k}\left(x^{3}, a\right) & \in x^{3} R & & \text { unless } k=1, \\
\eta^{1}\left(x^{3}, a\right) & =a . & &
\end{aligned}
$$

The second sum can be evaluated using the following formulas

$$
\begin{aligned}
\theta^{m}\left(x^{2} a\right) & \in x^{2} R & & \text { for all } m, \\
\theta^{m}\left(x^{2} a\right) & \in x^{3} R & & \text { unless } m=1, p, \\
\theta^{1}\left(x^{2} a\right) & =x^{2} a, & & \\
\theta^{p}\left(x^{2} a\right) & =-p x^{2} \psi^{p}(a) & & \text { modulo } x^{3} R, \\
\eta^{k}\left(x^{2} a, x\right) & \in x R & & \text { for all } k, \\
\eta^{k}\left(x^{2} a, x\right) & \in x^{2} R & & \text { unless } k=1, \\
\eta^{1}\left(x^{2} a, x\right) & =x, & & \\
\phi^{p}(\delta x) & =\delta x & & \text { modulo } x R \delta x .
\end{aligned}
$$

A ltogether one gets

$$
\begin{aligned}
L_{7} \kappa_{3}^{X M}(a)= & x^{3} \otimes \delta a+3 x^{2} a \otimes \delta x-p^{2} x^{3} \otimes \phi^{p}(\delta a) \\
& -3 p x^{2} \psi^{p}(a) \otimes \delta a \\
= & x^{3} \otimes \delta a+3 x^{2} a \otimes \delta x-p x^{3} \otimes \delta \psi^{p}(a)-3 p x^{2} \psi^{p}(a) \otimes \delta a \\
= & \kappa_{3}^{X}\left(a-p \psi^{p}(a)\right) .
\end{aligned}
$$

The computation for L_{5} and the standard λ-structure is similar.

Proposition 15. One has

$$
\begin{aligned}
& L_{5} \kappa_{2}^{X M}(a)=\kappa_{2}^{X}(a), \\
& L_{7} \kappa_{2}^{X M}(a)=\kappa_{2}^{X}\left(a-\psi^{p}(a)\right)+\kappa_{3}^{X}\left(\psi^{p}(a)\right) .
\end{aligned}
$$

Proof. A gain we concentrate on the exotic λ-structure on R, and again we may neglect terms of degree ≥ 4 in x. However

$$
\left\langle 2 a x-a^{2} x^{3}, x\right\rangle=\langle 2 a x, x\rangle+\left\langle b x^{3}, x\right\rangle
$$

where $b=-a^{2} \sum_{i}\left(2 a x^{2}\right)^{i}$ gives rise to only such terms. Therefore it suffices to compute L_{7} of $\left\langle x^{2}, a\right\rangle+\langle 2 a x, x\rangle$.

First we consider $L_{7}\left(\left\langle x^{2}, a\right\rangle\right)$. By Sect. 13 we have

$$
\begin{aligned}
\theta^{m}\left(x^{2}\right) & \in x^{2} R & & \text { for all } m, \\
\theta^{m}\left(x^{2}\right) & \in x^{4} R & & \text { unless } m=1, p, \\
\theta^{1}\left(x^{2}\right) & =x^{2}, & & \\
\theta^{p}\left(x^{2}\right) & =-p x^{2}-p(p-1) x^{3} & & \text { modulo } x^{4} R, \\
\eta^{k}\left(x^{2}, a\right) & \in x^{2} R & & \text { unless } k=1, \\
\eta^{1}\left(x^{2}, a\right) & =a . & &
\end{aligned}
$$

Next we consider $L_{7}(\langle 2 a x, x\rangle)$ for $p>2$. We have

$$
\begin{aligned}
\theta^{m}(2 a x) & \in x R & & \text { for all } m, \\
\theta^{m}(2 a x) & \in x^{3} R & & \text { unless } m=1,2, p, 2 p, \\
\theta^{1}(2 a x) & =2 a x, & & \\
\theta^{2}(2 a x) & \in x^{2} R, & & \\
\phi^{2} \delta(x R) & \subseteq \psi^{2}(x) \Omega_{R}+R \phi^{2}(\delta x) & & \\
& \subseteq x^{2} \Omega_{R}+x R \delta x, & & \\
\theta^{p}(2 a x) & =\left(-2 x-(p-1) x^{2}\right) \psi^{p}(a) & & \text { modulo } x^{3} R, \\
\eta^{k}(2 a x, x) & \in x R & & \text { for all } k, \\
\eta^{k}(2 a x, x) & \in x^{3} R & & \text { unless } k=1,2, \\
\eta^{1}(2 a x, x) & =x, & & \\
\eta^{2}(2 a x, x) & =2 a x \theta^{2}(x)=a x^{3}, & & \text { modulo } x^{2} R \delta x .
\end{aligned}
$$

A ltogether one gets for $p>2$:

$$
\begin{aligned}
L_{7} \kappa_{2}^{X M}(a)= & x^{2} \otimes \delta a+\left(-p x^{2}-p(p-1) x^{3}\right) \otimes \phi^{p}(\delta a) \\
& +2 a x \otimes \delta x \\
& +\left(-2 x-(p-1) x^{2}\right) \psi^{p}(a) \otimes(1+(p-1) x) \delta x \\
= & x^{2} \otimes \delta a+2 a x \otimes \delta x \\
& -x^{2} \otimes \delta \psi^{p}(a)-2 \psi^{p}(a) x \otimes \delta x \\
& -(p-1) x^{3} \otimes \delta \psi^{p}(a)-3(p-1) \psi^{p}(a) x^{2} \otimes \delta x \\
= & \kappa_{2}^{X}(a)-\kappa_{2}^{X}\left(\psi^{p}(a)\right)-(p-1) \kappa_{3}^{X}\left(\psi^{p}(a)\right) .
\end{aligned}
$$

Here the κ_{3}^{X} term vanishes because $a \in A^{\prime}=q A$ where κ_{3}^{X} vanishes. Next we consider $L_{7}(\langle 2 a x, x\rangle)$ for $p=2$. We have

$$
\begin{aligned}
\theta^{m}(2 a x) & \in x R & & \text { for all } m, \\
\theta^{m}(2 a x) & \in x^{3} R & & \text { unless } m=1,2,4, \\
\theta^{1}(2 a x) & =2 a x, & & \\
\theta^{2}(2 a x) & =\left(2 a^{2}-\psi^{2}(a)\right) x^{2}-2 \psi^{2}(a) x, & & \\
\theta^{4}(2 a x) & =4 a^{4} x^{4}-\psi^{2}\left(a^{2} x^{2}\right) & & \\
& =-4 \psi^{2}(a)^{2} x^{2} & & \text { modulo } x^{3} R, \\
\eta^{k}(2 a x, x) & \in x R & & \text { for all } k, \\
\eta^{k}(2 a x, x) & \in x^{3} R & & \text { unless } k=1,2, \\
\eta^{1}(2 a x, x) & =x, & & \\
\eta^{2}(2 a x, x) & =2 a x \theta^{2}(x)=-2 a x^{2}, & & \\
\psi^{2}(x) & =x^{2}+2 x, & & \\
\phi^{2}(\delta x) & =(1+x) \delta x . & &
\end{aligned}
$$

A ltogether one gets for $p=2$

$$
\begin{aligned}
L_{7} \kappa_{2}^{X M}(a)= & x^{2} \otimes \delta a+\left(-2 x^{2}-2 x^{3}\right) \otimes \phi^{2} \delta a \\
& +2 a x \otimes \delta x+2 a x \otimes \delta\left(-2 a x^{2}\right) \\
& +\left(\left(2 a^{2}-\psi^{2}(a)\right) x^{2}-2 \psi^{2}(a) x\right) \otimes \phi^{2} \delta x \\
& +\left(-2 \psi^{2}(a) x\right) \otimes \phi^{2} \delta\left(-2 a x^{2}\right) \\
& -4 \psi^{2}(a)^{2} x^{2} \otimes \phi^{4} \delta x
\end{aligned}
$$

which can be evaluated and rearranged to

$$
\begin{aligned}
x^{2} \otimes & \delta a+2 a x \otimes \delta x \\
& -x^{2} \otimes \delta \psi^{2}(a)-2 \psi^{2}(a) x \otimes \delta x \\
& -x^{3} \otimes \delta \psi^{2}(a)-3 \psi^{2}(a) x^{2} \otimes \delta x \\
& -2 x^{3} \otimes \delta\left(a^{2}\right)-6 a^{2} x^{2} \otimes \delta x \\
& +4 x^{4} \otimes \delta \psi^{2}(a)^{2}+12 \psi^{2}(a)^{2} x^{2} \otimes \delta x \\
& =\kappa_{2}^{X}\left(a-\psi^{2}(a)\right)+\kappa_{3}^{X}\left(-\psi^{2}(a)-2 a^{2}+4 \psi^{2}(a)^{2}\right)
\end{aligned}
$$

Here the part $\kappa_{3}^{X}\left(-2 a^{2}+4 \psi^{2}(a)^{2}\right)$ vanishes because $2 a \in q A$, where κ_{3}^{X} vanishes.

From the last two propositions it follows that one can take

$$
\Psi=\left(\begin{array}{cc}
1-\psi^{p} & 0 \\
\psi^{p} & 1-p \psi^{p}
\end{array}\right) .
$$

Finally we prove a property of Ψ mentioned in Theorem 2.
Proposition 16. The map Ψ is surjective modulo the kernel of

$$
\kappa_{2}^{G}+\kappa_{3}^{G}=\pi_{2}\left(\kappa_{2}^{X}+\kappa_{3}^{X}\right)
$$

Proof. Let $\left(a^{\prime}, a\right) \in A^{\prime} \oplus A$. If $p>2$ then $a^{\prime}=q a_{1}$ for some $a_{1} \in A$. Thus we can write

$$
\begin{aligned}
a^{\prime} & =\left(1-\psi^{p}\right)\left(b_{1}\right)+\psi^{p^{M}}\left(q b_{2}\right), \\
a & =\psi^{p}\left(b_{1}\right)+\left(1-p \psi^{p}\right)\left(b_{3}\right)+q b_{4}
\end{aligned}
$$

by choosing

$$
\begin{gathered}
b_{1}=\sum_{i=0}^{M-1} \psi^{p^{i}}\left(q a_{1}\right), \quad b_{2}=a_{1}, \\
b_{3}=\sum_{i=0}^{e-1} p^{i} \psi^{p^{i}}(c), \quad b_{4}=\psi^{p^{e}}(c), \quad c=a-\psi^{p}\left(b_{1}\right) .
\end{gathered}
$$

If $p=2$ then $a^{\prime}=q^{\prime} a_{1}+a_{2}$ for some $a_{1}, a_{2} \in A$ with $2 a_{2}=0$. Thus we can write

$$
\begin{aligned}
& a^{\prime}=\left(1-\psi^{p}\right)\left(b_{1}\right)+\psi^{p^{M}}\left(q^{\prime} b_{2}\right), \\
& a=\psi^{p}\left(b_{1}\right)+\left(1-p \psi^{p}\right)\left(b_{3}\right)+\binom{q}{2} \psi^{p^{M}}\left(b_{2}\right)+q b_{4}
\end{aligned}
$$

by choosing

$$
b_{1}=a_{2}+\sum_{i=0}^{M-1} \psi^{p^{i}}\left(q^{\prime} a_{1}\right), \quad b_{2}=a_{1}
$$

$b_{3}=\sum_{i=0}^{e-1} p^{i} \psi^{p^{i}}(c), \quad b_{4}=\psi^{p^{e}}(c), \quad c=a-\psi^{p}\left(b_{1}\right)-\binom{q}{2} \psi^{p^{M}}\left(a_{1}\right)$.
Here we used the fact that $\psi^{2}\left(a_{2}\right)=2 a_{2}^{2}-\theta^{2}\left(2 a_{2}\right)=0$.
In both cases we have written $\left(a^{\prime}, a\right)$ as $\Psi\left(b_{1}, b_{3}\right)$ modulo elements which are in the kernel of $\kappa_{2}^{G}+\kappa_{3}^{G}$ by Proposition 7.

10. A CONVENIENT SYSTEM OF IDEALS IN $\mathbf{Z}[G]$

Let p be a prime, and let G be the cyclic group generated by an element T of order $q=p^{e}$. For $M \in \mathbf{N}$ let I_{M} be the ideal of $\mathbf{Z}[G]$ generated by the elements $p^{M+e-i} z^{p^{i}}$ with $0 \leq i<e$. In this section we will show that this system of ideals has some nice properties. In preparation we consider ideals in $\mathbf{Z}[x]$.

For $N \in \mathbf{N}$ let J_{N} be the ideal of $\mathbf{Z}[x]$ generated by the $p^{N-i} x^{p^{i}}$ with $0 \leq i \leq N$; these ideals are considered in Sect. 6. Also for $M \in \mathbf{N}$ let E_{M} be the ideal of $\mathbf{Z}[x]$ generated by the elements

$$
\begin{array}{ll}
p^{M+e-i} x^{p^{i}} & \text { for } 0 \leq i \leq e \\
p^{M-j} x^{q+j r} & \text { for } 1 \leq j \leq M,
\end{array}
$$

where $r=p^{e-1}(p-1)$.
Proposition 17. One has $p^{M-j} z^{q+j r} \in I_{M}$ for $0 \leq j \leq M$. This implies that $\pi\left(E_{M}\right)=I_{M}=\pi\left(J_{M+e}\right)$.

Proof. First note that $z^{q}=-\sum_{j=1}^{q-1}\binom{q}{j} z^{j}$ and that $\binom{q}{j} z^{j}$ is a multiple of $p^{e-i} z^{p^{i}}$, where $i=v_{p}(j)$, the p-valuation applied to j. Thus z^{q} is in the ideal generated by the $p^{e-i} z^{p^{i}}$ for $0 \leq i<e$.

If we multiply this with p^{M} we get the first statement for $j=0$. If we multiply this with $p^{M-j} z^{j r}$ then we find that $p^{M-j} z^{q+j r}$ is in the ideal generated by the $p^{M-j+e-i} z^{j r+p^{i}}$ for $0 \leq i<e$. Thus it suffices to show that $w=p^{M-j+f} z^{j r+p^{e-f}} \in I_{M}$ for $1 \leq f \leq e$.

If $f \leq j$ then $j r+p^{e-f} \geq(j-f) r+p^{e}$ which means that w is a multiple of $p^{M-j+f} z^{(j-f) r+q}$ which is in I_{M} by the induction hypothesis applied to $j-f$. The inequality is equivalent to $f r \geq p^{e}-p^{e-f}$ which is an equality for $f=1$, whereas for $f \geq 2$ it follows from the fact that $2 r \geq p^{e}$.

If $f-1 \geq j \geq 1$ then $e-1 \geq j$ and thus $j r+p^{e-f} \geq r \geq p^{e-1} \geq p^{j}$ so w is a multiple of $p^{M-j+f} z^{p^{j}}$ which is in I_{M} by definition of the latter. This finishes the proof of the first statement.
Thus $\pi\left(E_{M}\right) \subseteq I_{M}$. One has also $J_{M+e} \subseteq E_{M}$ since $p^{i} \geq q+j r$ if $j=$ $i-e \geq 0$. Finally it is clear from the definitions that $I_{M} \subseteq \pi\left(J_{M+e}\right)$. 【

In the next Proposition we write $S=\mathbf{Z}[x] / E_{M}$ and we write ξ for the class of x in S, and \tilde{q} for the class of $x^{-1}\left((1+x)^{q}-1\right)$ in S.

Proposition 18. Let $f: \xi S \rightarrow \xi S$ be the multiplication by \tilde{q}. Then $\operatorname{cok}(f)$ splits as a direct sum of the cyclic subgroups generated by the ξ^{n} with $1 \leq n<q$.

Proof. For $1 \leq n<q+M r$ we consider the diagram

where the vertical maps are induced by f. In such a situation there is an exact sequence

$$
\operatorname{ker}\left(f_{n}^{\prime}\right) \xrightarrow{\partial} \operatorname{cok}\left(f_{n+1}\right) \rightarrow \operatorname{cok}\left(f_{n}\right) \rightarrow \operatorname{cok}\left(f_{n}^{\prime}\right) \rightarrow 0
$$

and thus the cardinalities satisfy

$$
\# \operatorname{cok}\left(f_{n}\right)=(\# \operatorname{im}(\partial))^{-1}\left(\# \operatorname{cok}\left(f_{n+1}\right)\right)\left(\# \operatorname{cok}\left(f_{n}^{\prime}\right)\right) .
$$

The group $\xi^{n} S / \xi^{n+1} S$ is cyclic of order $p^{\epsilon(n)}$, where

$$
\epsilon(n)= \begin{cases}M+e-i & \text { if } p^{i} \leq n<p^{i+1} \text { and } 0 \leq i<e \\ M-j & \text { if } q+j r \leq n<q+(j+1) r \text { and } 0 \leq j<M \\ 0 & \text { if } q+M r \leq n .\end{cases}
$$

The map f_{n}^{\prime} is multiplication by $q=p^{e}$. Thus on the one hand

$$
\# \operatorname{cok}\left(f_{n}^{\prime}\right)= \begin{cases}p^{e} & \text { if } \epsilon(n) \geq e, \\ p^{\epsilon(n)} & \text { if } \epsilon(n)<e\end{cases}
$$

and on the other hand $\operatorname{ker}\left(f_{n}^{\prime}\right)$ is generated by

$$
\begin{array}{ll}
p^{\epsilon(n)-e} \xi^{n}+\xi^{n+1} S & \text { if } \epsilon(n) \geq e, \\
\xi^{n}+\xi^{n+1} S & \text { if } \epsilon(n)<e .
\end{array}
$$

A calculation as in the proof of Proposition 17 shows that for $0 \leq j<M$ one has $p^{M-j} x^{j r}\left((1+x)^{p^{e}}-1\right) \in E_{M}$; in other words $f\left(p^{M-j} \xi^{j r+1}\right)=0$ and therefore

$$
\partial\left(p^{\alpha(n)} \xi^{n}+\xi^{n+1} S\right)=f\left(p^{\alpha(n)} \xi^{n}\right)=0
$$

where α is defined for $1 \leq n \leq M r$ by

$$
\alpha(n)=M-j \text { for } j r+1 \leq n \leq(j+1) r \quad \text { and } \quad 0 \leq j<M .
$$

Thus only part of $\operatorname{ker}\left(f_{n}^{\prime}\right)$ survives in $\operatorname{im}(\partial)$ and one has

$$
\# \operatorname{im}(\partial) \leq \begin{cases}p^{\alpha(n)-\epsilon(n)+e} & \text { if } \epsilon(n) \geq e \\ p^{\alpha(n)} & \text { if } \epsilon(n)<e\end{cases}
$$

From this one gets in both cases

$$
\# \operatorname{cok}\left(f_{n}\right) \geq p^{\epsilon(n)-\alpha(n)} \# \operatorname{cok}\left(f_{n+1}\right) .
$$

Thus by induction one has

$$
\# \operatorname{cok}(f) \geq \prod_{n} p^{\epsilon(n)-\alpha(n)}
$$

Consider the group $D=\oplus_{1 \leq n<q} D_{n}$ where $D_{n}=\mathbf{Z} / p^{\epsilon(n)} \mathbf{Z}$ and consider the homomorphism $\rho: D \rightarrow \operatorname{cok}(f)$ mapping $1+p^{\epsilon(n)} \mathbf{Z} \in D_{n}$ to $\xi^{n}+\operatorname{im}(f)$. Then ρ is obviously a surjection, so one has

$$
\# D \geq \# \operatorname{cok}(f)
$$

However \#D and $\Pi_{n} p^{\epsilon(n)-\alpha(n)}$ are equal, so all inequalities are in fact equalities, and ρ is an isomorphism.

Let $\pi: \mathbf{Z}[x] \rightarrow \mathbf{Z}[G]$ be the homomorphism defined by $\pi(x)=z$. Let $B=\mathbf{Z}[B] / \pi\left(E_{M}\right)$. Then π induces an isomorphism $\operatorname{cok}(f) \rightarrow z B$. Thus Proposition 18 yields a splitting of $z B$ as the direct sum of cyclic subgroups generated by (the classes of) the z^{n}.

Proposition 19. For $i \geq 0$ one has

$$
p^{e+i} z \in \sum_{f=0}^{e-1} p^{e-f-1} z^{i(p-1)+p^{f+1}} B
$$

This implies that the ideals I_{M} are cofinal with the powers of $z B$.
Proof. Let $u_{k}=\sum p^{-e+k}\left(p_{j p^{k}}^{e}\right) z^{(j-1) p^{k}}$, where the sum is over all j prime to p such that $1 \leq j \leq p^{e-k}$. Then $\sum_{k=0}^{e} p^{e-k} z^{p^{k}} u_{k}=0$. The first statement for $i=0$ follows by multiplying this identity with some $v_{0} \in B$ such that $v_{0} u_{0}-1 \in z^{q} B$.

If the first statement is true for some $i=j$ and for $i=0$ then

$$
\begin{aligned}
p^{e+j+1} z & \in p \sum_{f=0}^{e-1} p^{e-f-1} z^{j(p-1)+p^{f+1}} B \\
& \subseteq p^{e} z^{j(p-1)+p} B+\sum_{f=1}^{e-1} p^{e-f} z^{j(p-1)+p^{f+1}} B \\
& \subseteq \sum_{f=0}^{e-1} p^{e-f-1} z^{(j+1)(p-1)+p^{f+1}} B+\sum_{f=0}^{e-2} p^{e-f-1} z^{j(p-1)+p^{f+2}} B \\
& \subseteq \sum_{f=0}^{e-1} p^{e-f-1} z^{(j+1)(p-1)+p^{f+1}} B
\end{aligned}
$$

so it is true for $i=j+1$.
Now we show that $p^{M+e-i} z^{p^{i}} \in z^{M(p-1)+p} B$ for $0 \leq i \leq e$. The first statement shows that $p^{M+e-i} z^{p^{i}} \in z^{(M-i)(p-1)+p} z^{p^{i}-1} B$ for $i \leq M$. If $e \leq$ M then this is sufficient. If $e \geq M+1$ and $i \geq M+1$ then $p^{M+e-i} z^{p^{i}} \in$ $z^{p^{K+1} B}$ which is also sufficient.

Together with Proposition 17 this shows that

$$
z^{q+M r} B \subseteq I_{M} \subseteq z^{p+M(p-1)} B,
$$

which proves the cofinality.
Proposition 20. The map $B / q B \rightarrow \Omega_{B}$ mapping $b+q B$ to $b \delta z$ is an isomorphism.

Proof. The ring B can be viewed as the quotient of $\mathbf{Z}[x]$ by the ideal generated by $(x+1)^{q}-1$ and the $p^{M+e-i} x^{p^{i}}$ for $0 \leq i \leq e$. Therefore there is an isomorphism $B / D \rightarrow \Omega_{B}$ where D is the ideal generated by the classes of the derivatives of these polynomials: the $q(z+1)^{q-1}$ and
the $p^{M+e} z^{p^{i}-1}$ for $0 \leq i \leq e$. Therefore $q \in D$ since $z+1$ is a unit in B. Furthermore, the elements of the second kind vanish modulo q. This means that $D=q B$.

11. A SPLITTING PRINCIPLE

The results of this section are needed in the proofs in Sect. 12.
Given a commutative ring A and $\mathscr{M}=\left(M_{1}, \ldots, M_{6}\right) \in \mathbf{Z}^{6}$ we shall write

$$
W(\mathscr{M} ; A)=\frac{\left(\frac{M_{5} A}{M_{5} M_{1} A} \otimes_{A} \Omega_{A}\right) \oplus \frac{M_{6} A}{M_{6} M_{2} A}}{\left\{\left(\left[M_{5} M_{3}\right] \otimes \delta a,\left[M_{6} M_{4} a\right]\right)\right\}} .
$$

If $M_{6}=0$ then we want to discard the associated $W(\mathscr{M}, A)$ summand. Therefore we will assume that $M_{2}=1$ in this case. Similarly if $M_{5}=0$ we will assume that $M_{1}=1$.

Consider the ring $P(n)=\mathbf{Z}\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ and consider the homomorphism $\pi: P(n) \rightarrow P(n)$ such that $\pi\left(v_{j}\right)$ is the elementary symmetrical polynomial $\sigma_{j}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.

Proposition 21. The induced map

$$
\pi_{*}: W(\mathscr{M} ; P(n)) \rightarrow W(\mathscr{M} ; P(n))
$$

is split injective.
Proof. A ssume that $M_{5} \neq 0$ and $M_{6} \neq 0$. Both $P(n)$ and $\Omega_{P(n)}$ can be written as direct sums of subgroups associated to each multidegree $I=$ $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$. Moreover the map $\delta: P(n) \rightarrow \Omega_{P(n)}$ is homogeneous. Therefore $W(\mathscr{M}, P(n))$ is a direct sum of subgroups associated to each multidegree I. We shall make this more precise.

If $I=\left(i_{1}, \ldots, i_{n}\right)$ and G is an abelian group then we write $G^{(I)}$ for the subgroup of G^{n} consisting of the $\left(g_{1}, \ldots, g_{n}\right)$ such that $g_{j}=0$ if $i_{j}=0$. Let

$$
\delta_{I}: \mathbf{Z} \rightarrow\left(\frac{\mathbf{Z}}{M_{1} \mathbf{Z}}\right)^{(I)} \oplus\left(\frac{\mathbf{Z}}{M_{2} \mathbf{Z}}\right)
$$

be the map defined by

$$
\delta_{I}(k)=\left(\left[M_{3} i_{1} k\right], \ldots,\left[M_{3} i_{n} k\right]\right) \oplus\left[M_{4} k\right] .
$$

Then there is map $\tau_{I}: \operatorname{cok}\left(\delta_{I}\right) \rightarrow W(\mathscr{M}, P(n))$ defined by

$$
\left.\left.\begin{array}{l}
\tau_{I}\left(\left(\left[k_{1}\right], \ldots,\left[k_{n}\right]\right) \oplus[l]\right) \\
\quad=\left[([M _ { 5 }] \otimes \sum k _ { j } v _ { 1 } ^ { i _ { 1 } } \cdots v _ { j } ^ { i _ { j } - 1 } \cdots v _ { n } ^ { i _ { n } } \delta v _ { j }) \oplus \left[M_{6} l v_{1}^{i_{1}} \cdots\right.\right. \\
v_{n}^{i_{n}}
\end{array}\right]\right], ~ l
$$

where the first sum is over all j such that $i_{j}>0$. Each τ_{I} is injective and $W(\mathscr{I}, P(n))$ is the direct sum of their images; we shall write p_{I} for the associated projections. We define

$$
\epsilon_{I}:\left(\frac{\mathbf{Z}}{M_{1} \mathbf{Z}}\right)^{(I)} \oplus\left(\frac{\mathbf{Z}}{M_{2} \mathbf{Z}}\right) \rightarrow\left(\frac{\mathbf{Z}}{M_{1} \mathbf{Z}}\right)^{n} \oplus\left(\frac{\mathbf{Z}}{M_{2} \mathbf{Z}}\right)
$$

as the obvious inclusion. It is split by a map q_{I} defined as "filling in the zeros." Thus the induced injection $\epsilon_{I}: \operatorname{cok}\left(\delta_{I}\right) \rightarrow \operatorname{cok}\left(\epsilon_{I} \delta_{I}\right)$ is split by the map induced by q_{I}.

For any multidegree $I=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ we define a new multidegree $I+=\left(i_{1}^{+}, i_{2}^{+}, \ldots, i_{n}^{+}\right)$by the formula $i_{j}^{+}=\sum_{k=j}^{n} i_{k}$. We define

$$
\begin{aligned}
& \rho_{I}:\left(\frac{\mathbf{Z}}{M_{1} \mathbf{Z}}\right)^{n} \oplus\left(\frac{\mathbf{Z}}{M_{2} \mathbf{Z}}\right) \rightarrow\left(\frac{\mathbf{Z}}{M_{1} \mathbf{Z}}\right)^{n} \oplus\left(\frac{\mathbf{Z}}{M_{2} \mathbf{Z}}\right), \\
& \rho_{I}\left(\left(\left[m_{1}\right], \ldots,\left[m_{n}\right]\right) \oplus[l]\right)=\left(\left(\left[m_{1}^{+}\right], \ldots,\left[m_{n}^{+}\right]\right) \oplus[l]\right),
\end{aligned}
$$

where $m_{j}^{+}=\sum_{k=j}^{n} m_{k}$. Obviously $m_{j}^{+}=0$ if $i_{j}^{+}=0$; thus ρ_{I} induces a map

$$
\rho_{(I)}:\left(\frac{\mathbf{Z}}{M_{1} \mathbf{Z}}\right)^{(I)} \oplus\left(\frac{\mathbf{Z}}{M_{\mathbf{2}} \mathbf{Z}}\right) \rightarrow\left(\frac{\mathbf{Z}}{M_{1} \mathbf{Z}}\right)^{(I+)} \oplus\left(\frac{\mathbf{Z}}{M_{\mathbf{2}} \mathbf{Z}}\right) .
$$

M oreover $\rho_{(I)} \delta_{I}=\delta_{I+}$. Therefore it induces a map $\rho_{I}^{\prime}: \operatorname{cok}\left(\delta_{I}\right) \rightarrow \operatorname{cok}\left(\delta_{I+}\right)$. It also induces a map $\rho_{I}^{\prime \prime}: \operatorname{cok}\left(\epsilon_{I} \delta_{I}\right) \rightarrow \operatorname{cok}\left(\epsilon_{I+} \delta_{I+}\right)$ which is an isomorphism since ρ_{I} is. The situation is summarized in the diagram

In this diagram one has $p_{I+} \pi_{*} \tau_{i}=\rho_{I}^{\prime}$ since

$$
\pi\left(v_{1}\right)^{i_{1}} \pi\left(v_{2}\right)^{i_{2}}, \ldots, \pi\left(v_{n}\right)^{i_{n}}=\sigma_{1}\left(v_{1}, \ldots, v_{n}\right)^{i_{1}}, \ldots, \sigma_{n}\left(v_{1}, \ldots, v_{n}\right)^{i_{n}}
$$

is a sum of

$$
v_{1}^{i_{1}}\left(v_{1} v_{2}\right)^{i_{2}}, \ldots,\left(v_{1} v_{2} \cdots v_{n}\right)^{i_{n}}=v_{1}^{i_{1}^{+}} v_{2}^{i^{+}}, \ldots, v_{n}^{i_{n}^{i_{n}}}
$$

(which is detected by p_{I+}), and terms which are lexicographically of lower degree (and which are mapped to zero by p_{I+}).

Therefore

$$
q_{I}\left(\rho_{I}^{\prime \prime}\right)^{-1} \epsilon_{I+} p_{I+} \pi_{*} \tau_{I}=q_{I}\left(\rho_{I}^{\prime \prime}\right)^{-1} \epsilon_{I+} \rho_{I}^{\prime}=q_{I}\left(\rho_{I}^{\prime \prime}\right)^{-1} \rho_{I}^{\prime \prime} \epsilon_{I}=q_{I} \epsilon_{I}=1 .
$$

Thus π_{*} is split by $q_{I}\left(\rho_{I}^{\prime \prime}\right)^{-1} \epsilon_{I+} p_{I+}$ on the summand $\operatorname{im}\left(\tau_{I}\right)$.
Proposition 22. The map

$$
\pi_{2}=\pi \otimes \pi: P\left(n^{\prime}\right) \otimes P\left(n^{\prime}\right) \rightarrow P\left(n^{\prime}\right) \otimes P\left(n^{\prime}\right)
$$

also induces an injection on $W(\mathscr{M} ; A)$.
Proof. One can identify $P\left(n^{\prime}\right) \otimes P\left(n^{\prime}\right)$ with $P\left(2 n^{\prime}\right)$ by mapping $v_{j} \otimes 1$ to v_{j} and $1 \otimes v_{j}$ to $v_{n^{\prime}+j}$; thus π_{2} can be viewed as a map $P(n) \rightarrow P(n)$ where $n=2 n^{\prime}$. The same proof as for the Proposition 21 applies, with only the following changes:

$$
i_{j}^{+}=\left\{\begin{array}{ll}
\sum_{k=j}^{n^{\prime}} i_{k} & \text { if } j \leq n^{\prime} \\
\sum_{k=j}^{2 n^{\prime}} i_{k} & \text { if } j>n^{\prime},
\end{array} \quad m_{j}^{+}= \begin{cases}\sum_{k=j}^{n^{\prime}} m_{k} & \text { if } j \leq n^{\prime} \\
2 n^{\prime} & \\
\sum_{k=j} m_{k} & \text { if } j>n^{\prime}\end{cases}\right.
$$

Consider the ring $P(\infty)=\mathbf{Z}\left[v_{1}, v_{2}, \ldots\right]$ and consider the homomorphisms $\rho_{n}: P(\infty) \rightarrow P(n)$ such that $\rho_{n}\left(v_{i}\right)=v_{i}$ for $i \leq n, \rho_{n}\left(v_{i}\right)=0$ for $i>n$.

Proposition 23. The map $W(\mathscr{M}, P(\infty)) \rightarrow \lim W(\mathscr{M}, P(n))$ induced by ρ_{n} is injective.

Proof. An easy exercise.

12. NATURAL ADDITIVE MAPS

Proposition 24. Suppose there is given a natural additive map

$$
\xi: \Omega_{A} \rightarrow W(\mathscr{M} ; A) .
$$

Then there are $C_{i} \in \mathbf{Z}$, such that

$$
\xi(\alpha)=\left[\left[M_{5}\right] \otimes \sum_{i} C_{i} \phi^{i} \alpha, 0\right],
$$

for any λ-ring A and element $\alpha \in \Omega_{A}$.
Proof. First some notations. The ring $P(n) \otimes P(n)$ contains $s_{i}=v_{i} \otimes 1$ and $t_{i}=1 \otimes v_{i}$. Let U be the universal λ-ring and $u \in U$ the universal element. Then $U \otimes U$ contains $u_{1}=u \otimes 1$ and $u_{2}=1 \otimes u$. W rite $U(n)$ for the subring of U generated by the $\lambda^{i}(u)$ with $i \leq n$.

First consider ξ on the ring $P(1) \otimes P(1)=\mathbf{Z}[s, t]$. There is an $n \in \mathbf{N}$ and there are $c_{i, j}^{s}, c_{i, j}^{t}, d_{i, j} \in \mathbf{Z}$ such that
$\xi(s \delta t)=\left[\left[M_{5}\right] \otimes\left(\sum_{i, j}^{n} c_{i, j}^{s} s^{i-1} t^{j} \delta s+\sum_{i, j}^{n} c_{i, j}^{t} s^{i} t^{j-1} \delta t\right) \oplus\left[M_{6} \sum_{i, j}^{n} d_{i, j} s^{i} t^{j}\right]\right]$.
In the ring $\mathbf{Z}[x, y, z]$ one has by additivity

$$
\xi(x \delta y z)=\xi(x y \delta z)+\xi(x z \delta y)
$$

All three terms can be evaluated by using naturality for the three obvious λ-ring homomorphisms $\mathbf{Z}[s, t] \rightarrow \mathbf{Z}[x, y, z]$. From this one finds that there must be $f_{i, j, k}, g_{i, j, k}^{x}, g_{i, j, k}^{y}, g_{i, j, k}^{z}, h_{i, j, k} \in \mathbf{Z}$ such that

$$
\begin{aligned}
& M_{5}\left(\sum_{i, j} c_{i, j}^{s} x^{i-1} y^{i} z^{j} \delta x+\sum_{i, j} c_{i, j}^{s} x^{i} y^{i-1} z^{j} \delta y+\sum_{i, j} c_{i, j}^{t} x^{i} y^{i} z^{j-1} \delta z\right. \\
& \quad+\sum_{i, j} c_{i, j}^{s} x^{i-1} y^{j} z^{i} \delta x+\sum_{i, j} c_{i, j}^{t} x^{i} y^{j-1} z^{i} \delta y+\sum_{i, j} c_{i, j}^{s} x^{i} y^{j} z^{i-1} \delta z \\
& \left.\quad-\sum_{i, j} c_{i, j}^{s} x^{i-1} y^{j} z^{j} \delta x-\sum_{i, j} c_{i, j}^{t} x^{i} y^{j-1} z^{j} \delta y-\sum_{i, j} c_{i, j}^{t} x^{i} y^{j} z^{j-1} \delta z\right) \\
& \quad=M_{5} M_{3} \delta\left(\sum_{i, j, k} f_{i, j, k} x^{i} y^{j} z^{k}\right)+M_{5} M_{1}\left(\sum_{i, j, k} g_{i, j, k}^{x} x^{i-1} y^{j} z^{k} \delta x\right. \\
& \left.\quad+\sum_{i, j, k} g_{i, j, k}^{y} x^{i} y^{j-1} z^{k} \delta y+\sum_{i, j, k} g_{i, j, k}^{z} x^{i} y^{j} z^{k-1} \delta z\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& M_{6}\left(\sum_{i, j} d_{i, j} x^{i} y^{i} z^{j}+\sum_{i, j} d_{i, j} x^{i} y^{j} z^{i}-\sum_{i, j} d_{i, j} x^{i} y^{j} z^{j}\right) \\
& \quad=M_{6} M_{4}\left(\sum_{i, j, k} f_{i, j, k} x^{i} y^{j} z^{k}\right)+M_{6} M_{2}\left(\sum_{i, j, k} h_{i, j, k} x^{i} y^{j} z^{k}\right)
\end{aligned}
$$

Comparing coefficients and writing $f_{i, j}=f_{i, j, i}, g_{i, j}^{x}=g_{i, j, i}^{x}, g_{i, j}^{y}=g_{i, j, i}^{y}$, $h_{i, j}=h_{i, j, i}$ and $C_{i}=c_{i, i}^{t}-i M_{3} f_{i, i, i}-M_{1} g_{i, i, i}^{y}$ one finds that for all i, j

$$
\begin{aligned}
c_{i, j}^{s} & =i M_{3} f_{i, j}+M_{1} g_{i, j}^{x} \\
c_{i, j}^{t} & =j M_{3} f_{i, j}+M_{1} g_{i, j}^{y}+\delta_{i, j} C_{i} \\
d_{i, j} & =M_{4} f_{i, j}+M_{2} h_{i, j}
\end{aligned}
$$

(at least if $M_{5} \neq 0$ and $M_{6} \neq 0$). Substituting this in the formula for $\xi(s \delta t)$ one gets an expression which can be simplified to

$$
\xi(s \delta t)=\left[\left[M_{5}\right] \otimes\left(\sum_{i} C_{i} s^{i} t^{i-1} \delta t\right) \oplus[0]\right]
$$

N ow consider the map $\pi_{2}: U(n) \otimes U(n) \rightarrow P(n) \otimes P(n)$ which is the restriction of the unique λ-homomorphism such that $\pi_{2}\left(u_{1}\right)=\sum_{k=1}^{d} s_{k}$ and $\pi_{2}\left(u_{2}\right)=\sum_{m=1}^{d} t_{m}$. By naturality of ξ and additivity of ξ one has

$$
\begin{aligned}
\left(\pi_{2}\right)_{*} \xi\left(u_{1} \delta u_{2}\right) & =\xi\left(\left(\pi_{2}\right)_{*}\left(u_{1} \delta u_{2}\right)\right)=\xi\left(\left(\sum_{k=1}^{d} s_{k}\right) \delta\left(\sum_{m=1}^{d} t_{m}\right)\right) \\
& =\left[\left[M_{5}\right] \otimes\left(\sum_{i} \sum_{k=1}^{d} \sum_{m=1}^{d} C_{i} s_{k}^{i} t_{m}^{i-1} \delta t_{m}\right) \oplus[0]\right] \\
& =\left[\left[M_{5}\right] \otimes\left(\sum_{i} C_{i} \phi^{i}\left(\sum_{k=1}^{d} s_{k}\right) \delta\left(\sum_{m=1}^{d} t_{m}\right)\right) \oplus[0]\right] \\
& =\left(\pi_{2}\right)_{*}\left[\left[M_{5}\right] \otimes\left(\sum_{i} C_{i} \phi^{i}\left(u_{1} \delta u_{2}\right)\right) \oplus[0]\right]
\end{aligned}
$$

B ut the $\operatorname{map}\left(\pi_{2}\right)_{*}: W(\mathscr{M} ; U(n) \otimes U(n)) \rightarrow W(\mathscr{M} ; P(n) \otimes P(n))$ is injective according to Proposition 22. Therefore

$$
\xi\left(a_{1} \delta a_{2}\right)=\left[\left[M_{5}\right] \otimes\left(\sum_{i} C_{i} \phi^{i}\left(a_{1} \delta a_{2}\right)\right) \oplus[0]\right]
$$

for $a_{1}=u_{1}$ and $a_{2}=u_{2}$ in $U(n)$. By Proposition 23 the same is true for $a_{1}=u_{1}$ and $a_{2}=u_{2}$ in $U(\infty)$. By naturality the same identity holds for any λ-ring A and elements $a_{1}, a_{2} \in A$. The stated formula now follows by additivity.

Proposition 25. The C_{i} are unique modulo M_{1}.
Proof. Suppose that $\xi(\alpha)=0$ for all A and all $\alpha \in \Omega_{A}$. Then it is in particular the case for $A=\mathbf{Z}[s, t]$ and $\alpha=s \delta t$. So

$$
\left[\left[M_{5}\right] \otimes\left(\sum_{i}^{n} C_{i} s^{i} t^{i-1} \delta t\right) \oplus[0]\right]=0 .
$$

This means that there are $f_{i, j}, g_{i, j}^{s}, g_{i, j}^{t}, h_{i, j}$ such that

$$
\begin{aligned}
\left.M_{5}\left(\sum_{i}^{n} C_{i} s^{i} t^{i-1} \delta t\right)\right)= & M_{5} M_{3} \delta\left(\sum_{i, j} f_{i, j} s^{i} t^{j}\right) \\
& +M_{5} M_{1}\left(\sum_{i, j} g_{i, j}^{s} s^{i-1} t^{j} \delta s+\sum_{i, j} g_{i, j}^{t} s^{i} t^{j-1} \delta t\right), \\
0= & M_{6} M_{4}\left(\sum_{i, j} f_{i, j} s^{i} t^{j}\right)+M_{6} M_{2}\left(\sum_{i, j} h_{i, j} s^{i} t^{j}\right) .
\end{aligned}
$$

From the formulas that one gets by comparing coefficients one finds that $C_{i}=M_{1}\left(g_{i, i}^{t}-g_{i, i}^{s}\right)$.

Proposition 26. Suppose there is given a natural additive map

$$
\xi: A \rightarrow W(\mathscr{M} ; A) .
$$

Then there are $c_{i}, d_{i} \in \mathbf{Z}$, such that

$$
\xi(a)=\left[\left[M_{5}\right] \otimes\left(\sum_{i} c_{i} \phi^{i} \delta a\right) \oplus\left[M_{6} \sum_{i} d_{i} \psi^{i} a\right]\right],
$$

for any λ-ring A and element $a \in A$.
Proof. This is analogous to the proof of Proposition 24, and uses the fact that the map $\pi_{*}: W(\mathscr{M} ; U(n)) \rightarrow W(\mathscr{M} ; P(n))$ is injective.

Proposition 27. If c_{i}, d_{i} yield the zero map then there are f_{i}, g_{i}, h_{i} such that $c_{i}=M_{1} g_{i}+M_{3} i f_{i}$ and $d_{i}=M_{2} h_{i}+M_{4} f_{i}$.

Proof. Suppose that $\xi(a)=0$ for all A and all $a \in A$. Then it is in particular the case for $A=\mathbf{Z}[t]$ and $a=t$. So

$$
\left[\left[M_{5}\right] \otimes\left(\sum_{i} c_{i} t^{i-1} \delta t\right) \oplus\left[M_{6} \sum_{i} d_{i} t^{i}\right]\right]=0 .
$$

This means that there are f_{i}, g_{i}, h_{i} such that

$$
\begin{aligned}
M_{5}\left(\sum_{i} c_{i} t^{i-1} \delta t\right) & =M_{5} M_{3} \delta\left(\sum_{i} f_{i} t^{i}\right)+M_{5} M_{1}\left(\sum_{i} g_{i} t^{i-1} \delta t\right), \\
M_{6}\left(\sum_{i} d_{i} t^{i}\right) & =M_{6} M_{4}\left(\sum_{i} f_{i} t^{i}\right)+M_{6} M_{2}\left(\sum_{i} h_{i} t^{i}\right) .
\end{aligned}
$$

By comparing the coefficients one gets the result.

13. SOME λ-RING CALCULATIONS

In the paper the ring $A[x] / J_{N}$ is considered with two different λ-ring structures. In this section we discuss the details of these structures. See Sect. 1 of [5] and Sect. 4 and 9 of [6] for some of the terminology used.
Let $\mathbf{Z}_{p}[x]$ denote the polynomial ring $\mathbf{Z}[x]$ localized at p, and let $\mathbf{Z}[x]^{0}$ be its subring consisting of polynomials with constant term in \mathbf{Z}. A s before we write J_{N} for the ideal generated by the $p^{N-i} x^{p^{i}}$ for $0 \leq i \leq N$, either in $\mathbf{Z}[x]$ or in $\mathbf{Z}[x]^{0}$. We shall identify $\mathbf{Z}[x] / J_{N}$ with $\mathbf{Z}[x]^{0} / J_{N}$ using the obvious map.

Because $\mathbf{Z}[x]^{0}$ has no \mathbf{Z}-torsion a λ-ring structure is characterized by giving the associated A dams operations ψ^{m}; see Proposition 1.9 of [5]. The standard structure has $\psi^{m}(x)=x^{m}$ for all m. The exotic structure has $\psi^{l}(x)=0$ for primes $l \neq p$, and $\psi^{p}(x)=(x+1)^{p}-1$.

Proposition 28. The ideal J_{N} of $\mathbf{Z}[x]^{0}$ is a λ-ideal for both λ-ring structures.

Proof. Let $J_{N, k}$ denote the ideal of $\mathbf{Z}[x]^{0}$ generated by the $p^{N-i} x^{p^{i}}$ or $N-k \leq i \leq N$. We shall prove by induction on k that $J_{N, k}$ is a λ-ideal.

From the above description of the $\psi^{m}(x)$ we see that $\psi^{m}(x) \in(x)$ for all $m>0$. By the Newton formula

$$
\begin{aligned}
& \psi^{m}(x)-\lambda^{1}(x) \psi^{m-1}(x)+\cdots+(-1)^{m-1} \lambda^{m-1}(x) \psi^{1}(x) \\
& =(-1)^{m-1} m \lambda^{m}(x)
\end{aligned}
$$

this implies that $m \lambda^{m}(x) \in(x)$ for $m>0$. Since $\mathbf{Z}[x]^{0} /(x)$ has no torsion this implies that $\lambda^{m}(x) \in(x)$. By the formulas for $\lambda(a x)$ and $\lambda^{m}(a+b)$ this says that (x) is a λ-ideal. Thus $\left(x^{n}\right)$ is also a λ-ideal for any n, since a product of λ-ideals is again a λ-ideal by Proposition 1.12 of [5]. In particular $J_{N, 0}$ is a λ-ideal.

Now suppose that $J_{N, k-1}$ is a λ-ideal. Since $J_{N, k}$ is generated by $p^{k} x^{p^{N-k}}$ and $J_{N, k-1}$ it is sufficient to prove that $\lambda^{n}\left(p^{k} x^{p^{N-k}}\right) \in J_{N, k}$ for every $n>0$.

If R is any λ-ring and $a \in R$ then we shall write $\lambda_{t}(a)$ for the formal power series $\sum_{n=0}^{\infty} t^{n} \lambda^{n}(a)$. One has

$$
\begin{aligned}
& \sum_{n=0}^{\infty} t^{n^{n}} \lambda^{n}\left(p^{k} x^{p^{N-k}}\right) \\
& \quad=\lambda_{t}\left(p^{k} x^{p^{N-k}}\right)=\left(\sum_{n=0}^{\infty} t^{n} \lambda^{n}\left(x^{p^{N-k}}\right)\right)^{p^{k}} \\
& \quad=\sum\binom{p^{k}}{i_{1}, \ldots, i_{m}}\left(t^{n_{1}} \lambda^{n_{1}}\left(x^{p^{N-k}}\right)\right)^{i_{1}} \cdots\left(t^{n_{m}} \lambda^{n_{m}}\left(x^{p^{N-k}}\right)\right)^{i_{m}},
\end{aligned}
$$

where the sum is over all $m \in \mathbf{N},\left(n_{1}, \ldots, n_{m}\right) \in \mathbf{N}^{m}$, and $\left(i_{1}, \ldots, i_{m}\right) \in \mathbf{N}^{m}$ satisfying $i_{1}+\cdots+i_{m}=p^{k}$.
Consider the term associated to (i_{1}, \ldots, i_{m}) and let p^{f} be the highest power of p which divides all i_{j}. Thus there is some j such that p^{f+1} does not divide i_{j}, which implies that p^{k-f} divides the binomial symbol $\left(p_{i_{j}}^{k}\right)$. Therefore p^{k-f} divides the multinomial symbol $\left({ }_{i_{1}, \ldots, i_{m}}^{k}\right)=p^{k}!/\left(i_{1}!\cdots i_{m}!\right)$ which is a multiple of $\left(p_{i}{ }_{i}^{k}\right)$. On the other hand the term contains a factor $\left(\lambda^{n_{j}}\left(x^{p^{N-k}}\right)\right)^{i_{j}}$ which is a multiple of $\left(x^{p^{N-k}}\right)^{p^{f}}$; so the term is in $J_{N, k-f}$. This proves the statement.

This proposition shows that $\mathbf{Z}[x] / J_{N}$ has an induced λ-ring structure, and thus also $A[x] / J_{N}=A \otimes \mathbf{Z}[x] / J_{N}$.

Proposition 29. For the exotic λ-ring structure on $A[x] / J_{N}$ the ideal (x) is ψ-nilpotent and θ-nilpotent.

Proof. In $\mathbf{Z}[x]^{0}$ one has $\psi^{n}(x)=0$ if $n>1$ is not a power of p. On the other hand $\psi^{p^{N}}(x) \in J_{N}$. Thus in $\mathbf{Z}[x] / J_{N}$ one has $\psi^{n}(x) \equiv 0$ for large n. Thus if $a \in(x)$ then $\psi^{n}(a) \equiv 0$ for large n since ψ^{n} is multiplicative.

If m is not divisible by p and $a \in(x)$ then $\theta^{m}(a)=m^{-1} a^{m}$ which vanishes for $m \geq p^{N}$. If k is of the form $k=p^{f}$ and $a \in(x)$ then
according to the proof of Proposition 5.2 of [5] one has

$$
\theta^{k}(a)=\sum p^{l-f}\binom{p^{f-1}}{l}\left(\psi^{p}(a)\right)^{p^{f-1}-l}\left(\theta^{p}(a)\right)^{l},
$$

which is in ($x^{p^{f-1}}$) and therefore vanishes if $f-1 \geq N$.
Now consider $n=k m$ where k is of the form p^{f} and m is not divisible by p; one can choose r, s such that $r k+s m=1$. A ccording to the proof of Proposition 2.1 of [5] one has

$$
\theta^{n}(a)=r \sum \mu(j) \psi^{j} \theta^{m}\left(a^{k / j}\right)+s \sum \mu(i) \psi^{i} \theta^{k}\left(a^{m / i}\right),
$$

where μ denotes the M öbius function. If n is large enough then in the first sum either j or m or k / j is large; in all three cases the associated term vanishes for $a \in(x)$ according to the above remarks. The same applies to the second sum.

Finally consider an expression of the form

$$
\psi^{n_{1}}\left(\theta^{n_{1}^{\prime}}(a)\right) \cdots \psi^{n_{g}}\left(\theta^{n_{s}^{\prime}}(a)\right),
$$

with $a \in(x)$. If the degree $n_{1} n_{1}^{\prime}+\cdots+n_{g} n_{g}^{\prime}$ is large enough then either g or one of the n_{i} or one of n_{i}^{\prime} is large enough; in all three cases the expression vanishes.

It follows from Proposition 17 that the ideal (z) in $A[G] / I_{M}$ has the same properties.

In the remainder of this section we shall prove the properties of the operations θ^{m}, η^{k} etc. which we have used in Sects. 3 and 9 . The ring $\mathbf{Z}[t]$ is equipped with the unique λ-ring structure such that $\psi^{n}(t)=t^{n}$ for all n.

We start with some remarks which apply to both λ-ring structures on $A[x] / J_{N}$. First the operations θ^{m} and η^{k}. From Proposition 2.4 in [5] it is clear that

$$
\theta^{m}(a b)=0 \quad \text { for } m>1
$$

if $\theta^{i}(a)=0=\theta^{i}(b)$ for $i>1$.
From Definition 3.1 in [5] it is clear that

$$
\begin{aligned}
& \eta^{1}(a, b)=b \\
& \eta^{2}(a, b)=a \theta^{2}(b) \\
& \eta^{k}(a, b)=0 \quad \text { for } k>1 \text { if } \theta^{i}(b)=0 \text { for } i>1 .
\end{aligned}
$$

In particular $\eta^{k}(a, t)=0$ for $k>1$. From Proposition 5.1 in [5] it is clear that

$$
\begin{array}{ll}
\eta^{k}(a, b) \in\left(x^{i+j}\right) & \text { if } a \in\left(x^{i}\right), b \in\left(x^{j}\right) \text { and } k>1 ; \\
\eta^{k}(a, b) \in\left(x^{2 i+j}\right) & \text { if } a \in\left(x^{i}\right), b \in\left(x^{j}\right) \text { and } k>2 .
\end{array}
$$

Next we discuss the operations ϕ^{m}.
Proposition 30. If l is prime then $\phi^{l}(\delta a)=a^{l-1} \delta a-\delta \theta^{l}(a)$.
Proof. Let U be the universal λ-ring and $u \in U$ the universal element. Then

$$
l \phi^{l}(\delta u)=\psi^{l}(\delta u)=\delta \psi^{l}(u)=\delta\left(u^{l}-l \theta^{l}(u)\right)=l\left(u^{l-1} \delta u-\delta \theta^{l}(u)\right) .
$$

But Ω_{U} has no torsion so $\phi^{l}(\delta u)=u^{l-1} \delta u-\delta \theta^{l}(u)$. The statement now follows by naturality.

In particular $\phi^{l}(\delta a)=a^{l-1} \delta a$ if $\theta^{l}(a)=0$. For example $\phi^{m}(\delta t)=$ $t^{m-1} \delta t$ for all m.

Finally we discuss some properties of the exotic λ-ring structure on $A[x] / J_{N}$.

Proposition 31. If $a \in(x)$ then $\theta^{n}(x) \in\left(x^{3}\right)$ for $n \neq 1,2, p, 2 p$. If $a \in\left(x^{2}\right)$ then $\theta^{n}(x) \in\left(x^{4}\right)$ for $n \neq 1, p$.

Proof. We write $n=k m$ where k is of the form p^{f} and m is not divisible by p; one can choose r, s such that $r k+s m=1$, with $s=0$ if $f=0$. One has

$$
\theta^{n}(a)=r \sum \mu(j) \psi^{j} \theta^{m}\left(a^{k / j}\right)+s \sum \mu(i) \psi^{i} \theta^{k}\left(a^{m / i}\right)
$$

Consider the first sum. For $b \in(x)$ one has $\theta^{m}(b)=m^{-1} b^{m}$ for such m; thus a term is in $\left(x^{3}\right)$ unless $m k / j=1,2$. On the other hand $\mu(j)$ vanishes unless $j=1, p$.

Consider the second sum, assuming $f>0$. For $b \in(x)$ one has $\psi^{i}(b)=$ 0 for such $i>1$ and $\theta^{k}(b) \in\left(x^{p^{f-1}}\right)$ for such f. Thus a term is in $\left(x^{3}\right)$ unless $i=1$ and either $m / i=2$ and $p^{f-1}=1$ or $m / i=1$ and $p^{f-1} \leq 2$. In other words either $m=2, k=p$ or $m=1, k=p$ or $m=1, k=4$.
The other statement is proved similarly.

In $\mathbf{Z}[x]^{0}$ one has

$$
\theta^{p}(x)=\frac{x^{p}-\psi^{p}(x)}{p}=\frac{x^{p}-(x+1)^{p}+1}{p}=-\sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{i} x^{i} .
$$

Thus the same formula applies in $A[x] / J_{N}$. In particular one has

$$
\begin{aligned}
& \theta^{2}(x)=-x \quad \text { for } p=2 \\
& \theta^{p}(x) \equiv-x-\frac{1}{2}(p-1) x^{2} \text { modulo } x^{3} \quad \text { for } p>2
\end{aligned}
$$

In the same way one checks that

$$
\begin{aligned}
\theta^{4}(x) & =-x^{2}-x^{3} \\
\theta^{p}\left(x^{2}\right) & \equiv-p x^{2}-2\binom{p}{2} x^{3} \operatorname{modulo}\left(x^{4}\right) \\
\theta^{p}\left(x^{3}\right) & \equiv-p^{2} x^{3}-3 p\binom{p}{2} x^{4} \operatorname{modulo}\left(x^{5}\right)
\end{aligned}
$$

The general formula

$$
\theta^{p}(u v)=\theta^{p}(u) v^{p}+\psi^{p}(u) \theta^{p}(v)
$$

can be used to show that for example

$$
\theta^{p}\left(x^{2} a\right)=\theta^{p}\left(x^{2}\right) \psi^{p}(a) \text { modulo }\left(x^{4}\right) .
$$

From the general remarks it follows that

$$
\begin{aligned}
\phi^{p}(\delta x) & =(1+x)^{p-1} \delta(x+1)=(1+x)^{p-1} \delta x, \\
\phi^{l}(\delta x) & =0 \quad \text { for primes } l \neq p .
\end{aligned}
$$

REFERENCES

1. R. C. Alperin, R. K. Dennis, and M. R. Stein, $S K_{1}$ of finite A belian groups I, Invent. Math. 82 (1985), 1-18.
2. R. C. Alperin, R. K. Dennis, R. Oliver, and M. R. Stein, $S K_{1}$ of finite A belian groups II, Invent. Math. 87 (1987), 253-302.
3. M.F.A tiyah and G. B. Segal, Equivariant K-theory and completion, J. Differential Geom. 3 (1969), 1-18.
4. F. T. Farell, The nonfiniteness of Nil, Proc. Amer. Math. Soc. 65 (1977), 215-216.
5. F. J.-B. J. Clauwens, The K-groups of λ-rings. Part I. Construction of the logarithmic invariant, Compositio Mathematica 61 (1987), 295-328.
6. F. J.-B. J. Clauwens, The K-groups of λ-rings. Part II. Invertibility of the logarithmic map, Compositio Math. 92 (1994), 205-225.
7. F. J.-B. J. Clauwens, K-theory, λ-rings, and formal groups, Compositio Math. 65 (1988), 223-240.
8. A. Grothendieck, "Technique de descente et théorèmes d'existence en géométrie algébrique. II. Le théorème d'existence en théorie formelle des modules," Séminaire Bourbaki 195 (1959/60).
9. F. Keune, The relativization of K_{2}, J. Algebra 54 (1978), 159-177.
10. D. K nutson, " λ-R ings and the R epresentation Theory of the Symmetric Group," Springer V erlag, New Y ork, 1973.
11. H. M aazen and J. Stienstra, A presentation for K_{2} of split radical pairs, J. Pure Appl. Algebra 10 (1977), 271-294.
12. R. Oliver, "Whitehead Groups of Finite Groups," L ondon M athematical Society Lecture N otes Series 132, Cambridge U niversity Press, Cambridge, 1988.
13. R. Oliver, K_{2} of p-adic group rings of A belian p-groups, Mathematische Zeitschrift 195 (1987), 505-558.
