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a b s t r a c t

This paper introduces some relations about Cayley graphs and
G-graphs. We present a sufficient condition to recognize when a
G-graph is a Cayley graph. The relation between G-graphs and
Cayley graphs allows us to consider some applications to the
hamiltonicity of Cayley graphs. In the last section we illustrate our
results by showing that some new classes of Cayley graphs are
hamiltonian.
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1. Introduction

G-graphs have been introduced to study the graph isomorphism problem (Bretto and Faisant,
2005). These ones are constructed from a group and like Cayley graphs, have nice and highly regular
properties; they may or may not be regular (Bretto et al., 2007, 2008). Most well-known graphs are
in fact G-graphs: Hamming graphs, meshes of d-ary trees MT (d, 1), and some star graphs, to name a
few. Moreover the algorithm to construct G-graphs is simple. A popular representation of groups by
graphs is the Cayley graph representation. These graphs were first used by A. Cayley in 1878 (Cayley,
1878, 1889) to construct pictorial representations of finite groups. To a group G and a set S ⊆ G of
generators a digraph called Cayley graph is associated. The set of vertices of this graph is the set of
elements of G and two vertices x, y are adjacent if and only if there exists s ∈ S such that y = sx. If
S = S−1 the graph is undirected. Cayley graphs are important in many areas of science, (for a survey,
see Cooperman et al. (1991)). G-graphs can be used in many areas of science as well: they are a good
tool in the construction of symmetric and semi-symmetric graphs, but also, they give a better upper
bound, (2p2) for the (p, 6)-cage problem than the Sauer bound which is equal to 4(p − 1)3.

This paper introduces a new application from G-graphs to the hamiltonicity of Cayley graphs.
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2. Basic definitions

In the sequel of this paper, groups will be finite. We shall denote the unit element by e. Let G be a
group, and let S = {s1, s2, . . . , sk} be a non-empty subset of G. The set S is a set of generators of G if
any element θ ∈ G can be written as a product θ = si1si2si3 . . . sit with i1, i2, . . . it ∈ {1, 2, . . . , k}. We
say that G is generated by S = {s1, s2, . . . , sk} and we write G = ⟨s1, s2, . . . , sk⟩.

A group G acts in the left way on a space Ω when the following operation (a, x) −→ a.x from
G × Ω to Ω verifies:

• e.x = x.
• a.(b.x) = (a.b).x., a, b ∈ G and x ∈ Ω .

Let H be a subgroup of G, we denote Hx instead of H{x}. The set Hx is called right coset of H in G. A
subset TH of G is said to be a right transversal for H if {Hx, x ∈ TH}, is precisely the set of all cosets of H
in G.

An S-group is a couple (G, S) where G is a finite group and S is a subset of G. A S-group morphism
between (G1, S1) and (G2, S2) is a morphism f from G1 to G2 such that f (S1) ⊆ S2.

Let (G, S) be a group, the automorphism set f ofG such that f (S) = Swewill be denoted byAutS(G).
It is subgroup of Aut(G). A group G acts regularly on a finite set if for any couple (x, y) , x, y ∈ X there
is a unique f ∈ Aut(G) such that f (x) = y. In this case we have |G| = |X |.

2.1. Graph definitions

We define a graph Γ = (V ; E; ϵ) as follows:

• V is the set of vertices and E is the set of edges.
• ϵ is a map from E to P2(V ), where P2(V ) is the set of subsets of V having 1 or 2 elements.

In this paper graphs are finite, i.e., sets V and E have finite cardinalities. For each edge a, we denote
ϵ(a) = [x; y] if ϵ(a) = {x, y} with x ≠ y or ϵ(a) = {x} if x = y. In this case a is a loop. The
elements x, y are called extremities of a, and a is incident to x and y. The set {a ∈ E, ϵ(a) = [x; y]}
is called multi-edge or p-edge, where p is the cardinality of the set. We define the degree of x by
d(x) = card({a ∈ E, x ∈ ϵ(a)}).

Given a graph Γ = (V ; E; ϵ), a chain is a non-empty graph P = (V , E, ϵ)with V = {x0, x1, . . . , xk}
and E = {a1, a2, . . . , ak−1ak}, where xi, xi+1, (i mod k) are extremities of ai. The elements of E must
be distinct. The cardinality of E is the length of this chain. A graph is connected if, for all x, y ∈ V , there
exists a chain from x to y.

Γ
′

= (V ′
; E ′

; ϵ
′

) is a subgraph of Γ if it is a graph satisfying V ′
⊆ V , E ′

⊆ E and ϵ
′

is the restriction
from ϵ to E ′. If V ′

= V then Γ
′

is a spanning subgraph.
An induced subgraph generated by A, Γ (A) = (A;U; ϵ), with A ⊆ V and U ⊆ E is a subgraph such

as U = {a ∈ E, ϵ(a) = [x; y], x, y ∈ A}.
An induced subgraph such that any pair of vertices are adjacent is called a clique. Let Γ = (V ; E; ϵ)

be a graph, a component of Γ is a maximal connected induced subgraph.
Let Γ1 = (V1; E1; ϵ1) and Γ2 = (V2; E2; ϵ2) be two graphs, a morphism from Γ1 = (V1; E1; ϵ1) to

Γ2 = (V2; E2; ϵ2) is a couple (f , f #) where f : V1 −→ V2 is a map and f # : E1 −→ E2 is a map
such that:

if ϵ1(a) = [x; y] then ϵ2(f #(a)) = [f (x); f (y)].

So (idV , idE) is a morphism from G = (V ; E; ϵ) to G.
The product of twomorphisms (f , f #) and (g, g#) is defined by: (f , f #)◦ (g, g#) := (f ◦g, f # ◦g#).

(f , f #) is an isomorphism if there exists amorphism (g, g#) fromΓ2 = (V2; E2; ϵ2) toΓ1 = (V1; E1; ϵ1)
such that (g, g#) ◦ (f , f #) = (idV1 , id

#
E1

) and (f , f #) ◦ (g, g#) = (idV2 , id
#
E2

). In this case we will denote
(g, g#) = (f , f #)−1. So (f , f #) is an isomorphism if and only if f is a bijection and f # is a bijection. If
there exists an isomorphism between Γ1 and Γ2 we will denote Γ1 ≃ Γ2 and we will say that Γ1 is
isomorphic to Γ2.
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3. Graph-group construction

Let (G, S) be a group with a set of generators S = {s1, s2, s3 . . . sk}, k ≥ 1. For any s ∈ S, we
consider the left action of the subgroup H = ⟨s⟩ on G. So we have a partition G =


x∈Ts⟨s⟩x, where

Ts is a right transversal of ⟨s⟩. The cardinality of ⟨s⟩ is o(s), the order of the element s.
Let us consider the cycles:

(s)x = (x, sx, s2x, . . . , so(s)−1x)
of the permutation gs: x −→ sx of ΣG. Hence ⟨s⟩x is the support of the cycle (s)x. Notice that just one
cycle of gs contains the unit element e, namely (s)e = (e, s, s2, . . . so(s)−1). We define a graph denoted
by Φ(G; S) = (V ; E; ϵ) in the following way:

• The vertices of Φ(G; S) are the cycles of gs, s ∈ S, i.e., V = ⊔s∈SVs with Vs = {(s)x, x ∈ Ts}.
• For each (s)x, (t)y ∈ V , if card(⟨s⟩x ∩ ⟨t⟩y) = p, p ≥ 1 then {⟨s⟩x, ⟨t⟩y} is a p-edge.

Thus, Φ(G; S) is a k-partite graph and any vertex has a o(s)-loop. We denote Φ(G; S) the graph
Φ(G; S) without loop. By construction, one edge stands for one element of G. We can remark that one
element of G labels several edges. Both graphs Φ(G; S) and Φ(G; S) are called graphs from groups or
G-graphs and we can say that the graph is generated by the groups (G; S). If S = G, the G-graph is
called canonic graph.

3.1. Algorithmic procedure

The following algorithm constructs a G-graph from the list L of the cycles of a group:
Group_to_graph_G(L)
for all s in L

Add s to V
for all s’ in L

for all x in s
for all y in s’

if x=y then Add (s,s’) to E
For the construction of the cycles we use the following algorithm, written in the GAP programming
language (The GAP Team, 2002):
InstallGlobalFunction (
c_cycles, function(G, ga)
local ls1,ls2,gs,k,x,oa,a,res,G2;
res:=[];
G2:=List(G);
for a in ga do

gs:=[];
oa:=Order(a)-1;
ls2:=Set([]);
for x in G do

if not(x in ls2) then
ls1:=[];
for k in [0..oa] do;

Add(ls1, Position(G2, (a^k)*x));
AddSet(ls2, (a^k)*x);

od;
Add(gs, ls1);

fi;
od;
Add(res, gs);

od;
return res; end);
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Fig. 1. The octahedral graph.

3.2. Complexity and examples

It is easy to see that the complexity of our implementation is O(n2
× k2) where n is the order of

the group G and k is the cardinal of the family S.
Let G be the Klein’s group, the product of two cyclic groups of order 2. So G = {e, a, b, ab} with

o(a) = 2, o(b) = 2 and ab = ba. The set S = {a, b, ab} is a family of generators of G. Let us compute
the graph Φ(G; S).

The cycles of the permutation ga are (a)e = (e, ae) = (e, a); (a)b = (b, ab).
The cycles of the permutation gb are (b)e = (e, be) = (e, b); (b)a = (a, ba) = (a, ab). The cycles

of the permutation gab are (ab)e = (e, abe) = (e, ab); (ab)a = (a, aba) = (a, b). The graph Φ(G; S) is
isomorphic to the octahedral graph (see Fig. 1). The octahedral graph is a 3-partite symmetric quartic
graph.
Let Z/2Z × Z/2Z × Z/2Z be a group generated by S = {(1, 0, 0); (0, 1, 0); (0, 0, 1)} . The graphΦ(Z/2Z×Z/2Z×Z/2Z; S = {(1, 0, 0); (0, 1, 0); (0, 0, 1)}) is isomorphic to the graph shown in the
figure below.

4. Basic properties of G-graphs

Proposition 1. Let Φ(G; S) = (V ; E; ϵ) be a G-graph. Then the following properties are equivalent:

(i) Φ(G; S) has no multi-edges except loops.
(ii) for all s, t ∈ S, ⟨s > ∩⟨t >= e.

In particular it happens when for all s, t ∈ S, gcd(o(s), o(t)) = 1.

Proof. (i) ⇒ (ii) is easy
(ii) ⇒ (i) : let a = ([⟨s > x; ⟨t > y], u) and b = ([⟨s > x; ⟨t > y], v) be two edges with s ≠ t . From
the construction of G-graphs there exist i, j, k, l ∈ N such that six = t jy = u and skx = t ly = v with
0 ≤ i, k < o(s) and 0 ≤ j, l < o(t). So yx−1

= sit−j
= skt−l and si−k

= t j−l
∈ ⟨s⟩ ∩ ⟨t⟩ = e. Hence

si−k
= t j−l

= e, which leads to i = k and j = l, consequently u = v and a = b. �

We will need the following result (Bretto et al., 2007).

Proposition 2. Let h be a morphism between (G1, S1) and (G2, S2), then there exists a morphism, Φ(h),
between Φ(G1; S1) and Φ(G2; S2).
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In additionwe haveΦ(h◦h′) = Φ(h)◦Φ(h′), andΦ(id(G,S)) = idΦ(G,S); hence if (G1; S1) ≃ (G2; S2)
then Φ(G1; S1) ≃ Φ(G2; S2).

As for the Cayley graph Cay(G; S) it is easy (see Bretto and Faisant (2005)) to prove that Φ(G; S) is
connected iff ⟨S⟩ = G.

Let Φ(G; S) = (V ; E, ϵ) be a G-graph : for any g ∈ G one can associate the map: δg−1 : V −→ V ,
defined by δg−1((s)x) = (s)xg−1, and δ#

g−1 : E −→ E δ#
g−1(([⟨s⟩x; ⟨t⟩y], u)) = ([⟨s⟩xg−1

; ⟨t⟩yg−1
],

ug−1).
We have the following theorem.

Theorem 3. Let Φ(G; S) = (V ; E, ϵ) be a G-graph, where |S| ≥ 2.

(1) For all g ∈ G, (δg−1 , δ#
g−1) ∈ Autπ (Φ(G; S)).

(2) The map δ : G −→ Autπ (Φ(G; S)) defined by δ(g) = (δg−1 , δ#
g−1) is a morphism.

(3) δ(G) acts transitively on every Vs, s ∈ S
Stabδ(G)((s)) = δ(⟨s⟩) is a cyclic subgroup of δ(G) with an order ds|o(s).
Stabδ(G)((s)x) = δ(x−1

⟨s⟩x) and the stabilizers of the vertices of a principal clique are pairwise distinct.
(4) Kerδ =


s∈S;x∈G x⟨s⟩x−1.

If there exists s, t ∈ S such that ⟨s⟩ ∩ ⟨t⟩ = {1} then δ is injective.
(5) If S = {s1, s2, . . . sk} and if for all i ∈ {1, 2, . . . k} there is σi ∈ AutΦ(G; S) such that

σi((si)) = (si+1), then Φ(G; S) is vertex transitive.

Proof. (1): We have δg−1(Vs) ⊆ Vs) and δg−1 |Vs is a bijection since if (s)xg−1
= (s)yg−1 then there

exists i such that xg−1
= siyg−1 and (s)x = (s)y, moreover (s)x = δg−1((s)xg).

Let e = {([⟨s⟩x; ⟨t⟩y], u)}, then δ#
g−1(e) = ([⟨s⟩xg−1

; ⟨t⟩yg−1
], ug−1) ∈ E because u ∈ ⟨s⟩x ∩ ⟨t⟩y,

which implies that ug−1
∈ ⟨s⟩xg−1

∩ ⟨t⟩yg−1. So δ#
g−1(e) is an edge between (s)xg−1

= δg−1((s)x)
and (t)yg−1

= δg−1((t)y). The map δ#
g−1 |E is an injection because ([⟨s⟩xg−1

; ⟨t⟩yg−1
], ug−1) =

([⟨s′⟩x′g−1
; ⟨r ′

⟩y′g−1
], u′g−1), we have u = u′ and [⟨s⟩xg−1

; ⟨t⟩yg−1
] = [⟨s′⟩x′g−1

; ⟨r ′
⟩y′g−1

].
Consequently ([⟨s⟩x; ⟨t⟩y], u) = ([⟨s′⟩x′

; ⟨r ′
⟩y′

], u′). Hence this map is a bijection and δg−1 ∈

Autπ (Φ(G; S)). (2): It is easy to show that δ(g1.g2) = δ(g1).δ(g2); moreover the graph Φ(G; S) =

(V ; E) being simple δ is injective.
(3): Let (s)x, (s)y ∈ Vs, we have (s)y = (s)xx−1y = δx−1y((s)x). So the action is transitive on Vs.
Assume that there are two vertices, (s1)x, and (s2)x of a principal clique, (see Section 5) such that
δ(x−1

⟨s1⟩x) = δ(x−1
⟨s2⟩x). Hence ⟨s1⟩ = ⟨s2⟩. Contradiction

If δ(g)((s))x) = (s)x then the cycles (s)xg−1 and (s)x are the same (i.e. there is i ≥ 0 such that
six = xg−1), hence g = x−1s−ix ∈ x−1

⟨s⟩x. Conversely if g ∈ x−1
⟨s⟩x, there is i ≥ 0 such that

g = x−1s−ix, so xg−1
= six. That leads to for all k ≥ 0, such that skxg−1

= sk+ix, consequently
(s)xg−1

= (s)x. We have δ(g)((s))x) = (s)x.
Since for all si, 0 ≤ i ≤ o(s) δ(si) ∈ δ(⟨s⟩), Stab((s)) = δ(⟨s⟩) is a cyclic subgroup of δ(G) with an

order ds|o(s).
(4): If g ∈ Kerδ, then we have for all x ∈ G, s ∈ S, (s)xg−1

= (s)x. So there exists i ≥ 0 such that
g = x−1s−ix, so xg−1

= six ∈ x−1
⟨s⟩x. Conversely x ∈ G, s ∈ S,we have g ∈ x−1

⟨s⟩x, hence there is
i ≥ 0 such that g = x−1s−ix. Following (3) we obtain Kerδ =


s∈S;x∈G x⟨s⟩x−1. From this result it is

easy to see that if there exists s, t ∈ S such that ⟨s⟩ ∩ ⟨t⟩ = e, we have Kerδ = {e}.
(5): Under these hypothesis and from (3) we have the result. �

5. Cayley graphs and G-graphs

Let Φ((G; S)) be a G-graph with ⟨S⟩ = G. Assume that Φ((G; S)) is simple. We call principal-clique
the clique Kx, x ∈ G such that any edge of Kx is labeled by x, ( Kx is the set of vertices of Φ(G; S) which
are extremities of edges of the form a = ([⟨s⟩y; ⟨t⟩z], x)) . Hence the principal-clique number is equal
to |G| and |Kx| = |S|.
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The clique graph denoted by K((G, S)) is the graph defined in the following way:

• the vertices of K((G, S)) are the principal-cliques.
• u = {Kx, Ky} is an edge iff Kx ∩ Ky ≠ ∅.

Because Φ((G; S)) is simple it is easy to see that |Kx ∩ Ky| ≤ 1.
Let (G, S) be a group we denote S∗

=


s∈S⟨s⟩ \ e, (e denotes the neutral of G).

Theorem 4. The graph K((G, S)) is isomorphic to Cay((G, S∗)).

Proof. Define φ : K((G, S)) −→ Cay((G, S∗)) such that φ(Kx) = x. It is easy to see that Kx = Ky
imply that x = y.

Assume that u = {Kx, Ky} is an edge. So there is ⟨s⟩.a vertex of Kx and there is ⟨t⟩.b vertex of Ky

such that x ∈ ⟨s⟩.a and y ∈ ⟨t⟩.bwith ⟨s⟩.a = ⟨t⟩.b. Hence there is 1 ≤ i ≤ o(s) such that y = si.x.
Conversely suppose that {x, y} is an edge of Cay((G, S∗)), hence y = si.x, 1 ≤ i ≤ o(s). Because

⟨s⟩.x ∈ Kx we have y ∈ Kx. Hence x, y ∈ Kx ∩ Ky and {Kx, Ky} is an edge of K((G, S)). �

The following theorem gives a sufficient condition to recognize when a G-graph is a Cayley graph.

Theorem 5.1. Let Φ(G; S) be a G-graph where for all s ∈ S o(s) = k > 0 and |G| = n. Assume that:

(i) There exists a subgroup A of AutS(G) which acts regularly on S.
(ii) There exists a subgroup K of G with |K | =

n
k such that:

(a) ∀α ∈ A, α(K) = K .
(b) ∀s ∈ S, K ∩ ⟨s⟩ = {e}.

Under these conditions H = δ(K) o A ≤ AutΦ(G; S) acts regularly on the set of vertices V (Φ(G; S)) andΦ(G; S) is a Cayley graph Cay(H; T ). Moreover if α ∈ A =⇒ αK = idK then the product is direct.

Proof. The proof is constructed as follows:

(1) We show that ∀ s ∈ S, G =


k∈K ⟨s⟩.k.;
(2) we show ⟨δ(K), A⟩ = δ(K) o A;
(3) finally we prove that H = δ(K)oA ≤ AutΦ(G; S) acts regularly on the set of vertices V (Φ(G; S)).

Show that:

∀ s ∈ S, G =


k∈K

⟨s⟩.k. (1)

Assume that ⟨s⟩.k ∩ ⟨s⟩.l ≠ ∅, k, l ∈ K . There are i; j ∈ N such that sik = sll. So kl−1
= sj−i.

Consequently kl−1
∈ ⟨s⟩, it leads to kl−1

∈ ⟨s⟩ ∩ K thus kl−1
= 1 and k = l. Moreover |


k∈K ⟨s⟩.k| =

|⟨s⟩|.|K |, (from ii)b)) = o(s). nk = n = |G|. So G =


k∈K ⟨s⟩.k.
Show that:⟨δ(K), A⟩ = δ(K) o A. ⟨δ(K), A⟩ = δ(K).A, indeed: for k ∈ K , δk ◦ α((s)x) =

δk((α(s))α(x)) = (α(s))α(x)k−1. There is u−1
∈ K such that (α(s))α(x)k−1

= (α(s))α(x)α(u−1) =

α((s)xu−1) = α ◦ δu((s)x). So δ(K).A ⊂ A.δ(K), in the same way one can show that A.δ(K) ⊂ δ(K).A
and δ(K).A = A.δ(K), hence A.δ(K) is a subgroup of G and we have ⟨δ(K), A⟩ = δ(K).A.

δ(K) ▹ ⟨δ(K), A⟩: Let α ∈ A and k ∈ K , then α−1
◦ δk ◦ α((s)x) = α−1

◦ δk((α(s))α(x)) =

α−1
[(α(s))α(x)k−1

] = (s)xα−1(k−1) = (s)xα(k) = δα−1(k)((s)x). Because there is u ∈ K such that
α−1(k) = u, we have δα−1(k) ∈ δ(K).

δ(K) ∩ A = {e}: Assume that δ(K) ∩ A ≠ {1}. Let α ∈ δ(K) ∩ A, then α ≠ 1. There exists
k ∈ K such that α = δk. Because A acts regularly on S we have |A| = |S|. There are s, s′ ∈ S such
that α(s) = s′. Consequently α((s)x) = (s′)α(x). δk((s)x) = (s)xk−1, hence (s)xk−1

= (s′)α(x) and
(s) = (s′)α(x)kx−1. So δxk−1((s′)α(x)) = (s), which is in contradiction from the definition of δ.

Now we prove that H = δ(K) o A ≤ AutΦ(G; S) acts regularly on the set of vertices V (Φ(G; S)) .
Let v ∈ Vs and w ∈ Vs′ be two vertices. We have v = (x, sx, s2x, . . .). There is k ∈ K , (from

Eq. (1)) such that x = sik, i ∈ N, hence v = (sik, si+1k, . . .) = (k, sk, s2k, . . .); in the same way
w = (l, s′l, s′2l, . . .).

From (i) there is α ∈ A such that α(s) = s′, we have : α(v) = (α(k), s′α(k), s′2α(k), . . .). From
Eq. (1) we have α(k) ∈ ⟨s′⟩.m, m ∈ K , thus α(k) = s′jm, j ∈ N. Consider z = l−1t−1α(k) =
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l−1m. We have δz(α(v)) = (α(s))α(k)z−1
= (α(k)z−1, s′α(k)z−1, s′2α(k)z−1, . . .), but α(k)z−1

=

α(k)α−1(k)s′jl = s′jl. So δz(α(v)) = s′jl, s′j+1l, . . .) = (l, s′l, s′2l, . . .) = (s′)l = w. Consequently
δz ◦ α ∈ δ(K) o Amaps v on w.

Assume now that there are z ′
∈ K and α′

∈ A such that δz′ ◦ α′(v) = w. One has δz′ ◦ α′(v) =

(α′(k)z ′−1, tα′(k)z ′−1, t2α′(k)z ′−1, . . .) = (α(k)z−1, s′α(k)z−1, s′2α(k)z−1, . . .). It implies that s′ = t ,
so α′(s′) = α(s′), hence α′

= α, from (i). α′(k)z ′−1
= α(k)z ′−1

= s′ul, so z ′
= l−1s′−uα(k), but

α(k) = s′jm, hence z ′
= l−1s′j−um, then lz ′m−1

= s′j−u
∈ K ∩ ⟨s⟩ = {1}, so z ′

= l−1m = z.
We conclude that H = δ(K) o A acts regularly on V (Φ(G; S)) and that Φ(G; S) is a Cayley graph

Cay(H; T ).
Assume now that αK = idK . v = (k, sk, s2k, . . .) ∈ Vs and k ∈ K . For u ∈ K , δu ◦ α(v) =

(α(k)u−1, α(s)α(k)u−1, α(s)2α(k)u−1, . . .) = (ku−1, α(s)ku−1, α(s)2ku−1, . . .). In the same way
α(v)◦δu(v) = (ku−1, α(s)ku−1, α(s)2ku−1, . . .). Consequently δu◦α = α(v)◦δu. SoH = δ(K)×A. �

6. Hypergraph, Cayley graphs and G-graphs

In this section we deal with groups generated by involutions, Example 3.2 is a group generated by
involutions. Recall that a cycle is Hamiltonian if it goes through any vertex exactly once.

A hypergraph H on a finite set S is a family (Ei)i∈I , I = {1, 2, . . . , n} n ∈ N of non-empty subsets
of S called hyperedges with:

i∈I

Ei = S.

Denote a hypergraph by: H = (S; (Ei)i∈I).
A hypergraph is simple if Ei = Ej =⇒ i = j, i.e. there is no repeated hyperedge in H .
For x ∈ S, a star of H – with x as a center – is the set of hyperedges which contains x, and is called

H(x). The degree of x is the cardinality of the star H(x). We will denote it by deg(x).
A hypergraph is said k-uniform if |Ei| = k for all i ∈ I .
A chain of length k in a hypergraph H is a sequence x1E1x2E2 . . . xkEkxk+1 where Ei are distinct

hyperedges and the xi are vertices such that for 1 ≤ i ≤ k xi, xi+1 ∈ Ei. If x1 = xk+1 the chain is called
cycle.

A hypergraph is connected if any two vertices are joined by a chain.
The representative graph (or line-graph but also intersection graph) of a hypergraph H is the graph

L(H) such that the vertices are the hyperedges of H and two distinct vertices x, y form an edge of
L(H) if the hyperedges standing for x and y have a non-empty intersection.

A hypergraph is linear if |Ei ∩ Ej| ≤ 1 for i ≠ j.
The dual of a hypergraph H = (E1, E2, . . . , Em) on S is a hypergraph H∗

= (X1, X2, . . . , Xn) whose
vertices e1, e2, . . . , em correspond to the hyperedges of H , and with hyperedges such that

Xi = {ej, xi ∈ Ej}

In an equivalent way: H∗
= (E, (H(x))x∈S

Remark 5. We have H∗∗
= H .

The 2-section of a hypergraph H is the graph denoted by [H]2 such that the vertices of this graph
are the vertices of H and two vertices form an edge if and only if they are in the same hyperedge of
H .

Remark 6. It is well known (Berge, 1989; Bretto, 2004) that the 2-section of a hypergraph H is
isomorphic to the line graph of H∗.

Indeed, the set of vertices of L(H) is E and the set of vertices of [H∗
]2 is also E. Take the identity on E

as a bijection on vertices of L(H) to the vertices of [H∗
]2.

If {ei, ej} is an edge of L(H) that is equivalent to say that Ei ∩ Ej ≠ ∅ that is equivalent to say that
there is x ∈ Ei ∩ Ej that is equivalent to say X ∋ ei, ej that is equivalent to say that {ei, ej} is an edge of
[H∗

]2.
Sometimes we will denote the set of vertices of H by V (H) and the set of hyperedges by E(H).
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Lemma 7. Let H = (S; (Ei)i∈I) be a hypergraph. The dual of H, H∗
= (E, (H(x))x∈S is a graph if and only

if no vertex lies in more than two hyperedges.

Proof. Assume that the dual ofH is a graph. The hyperedge ofH∗ being the stars ofH , these ones have
a cardinality equal to two at most. Consequently any vertex of H has a degree equal to either 1 or 2.

Conversely, assume that no vertex lies in more than two hyperedges. For all x ∈ S |H(x)| ≤ 2.
Hence H∗ is a graph. �

The graphs below could have some multi-edges and some loops; for simple graphs we have the
following.

Proposition 8. Let H = (S; (Ei)i∈I) be a hypergraph. Suppose that H∗
= (E, (H(x))x∈S is a graph. H∗ is

simple if and only if H is linear and any vertex of H belong to exactly two hyperedges.

Proof. Under the hypothesis below and from Lemma 7 H∗ is a graph. If H is not linear there are two
hyperedges Ei and Ej which contains two xi, xj at least. These two vertices become two hyperedges in
H∗. These two hyperedges contain both ei and ej as vertices. Because H∗ is a graph {ej; ei} give rise to
a multi-edge. Hence H∗ is not simple.

In the same way if H∗ is not a simple graph one can deduce that H is not linear.
It is easy to prove that the graph H∗ has no loop, it is equivalent to say that any vertex of H belong

to exactly two hyperedges. �

A graph Γ = (V ; E) is k-connected, (k ∈ N) if |V | > k and V \ X is connected for every X ⊆ V with
|X | < k.

One define the k-edge connectivity in the same way.
In Godsil and Gordon (2001), p. 38 we have the following result.

Lemma 9. If Γ is a connected vertex transitive graph, then its edge connectivity is equal to its valence.

The following result can be found in Chartrand and Stewart (1969).

Theorem 10. LetΓ be a k-edge connected graph, then the line graph L(Γ ) is k-connected and 2k−2-edge
connected.

We will also need the following.

Theorem 11. Every line graph of a 4-edge connected graph is Hamiltonian.

The proof of this theorem can be found in Zhan (1986).
Now from these considerations we are able to prove the following theorem:

Theorem 12. Let G be a group and S be set of generators of G such that |S| ≠ 3 and for all s ∈ S, o(s) = 2.
The G-graph Φ̃((G; S)) = (V ; E) is Hamiltonian.

Proof. Because for all s ∈ S, o(s) = 2, any vertex of the principal clique hypergraph-i.e. the
hypergraph having as vertex set the vertex set of Φ̃((G; S)) and the hyperedge set the set of
principal clique – has a degree equal to 2, moreover this hypergraph is linear; so from Lemma 7 and
Proposition 8 the dual of H is a simple graph.

This graph is the Cayley graph Cay((G; S): the line graph of the principal clique hypergraph is the
graph K((G, S)) and from Theorem 4 it is isomorphic to Cay((G, S∗)) = Cay((G; S), (because for all
s ∈ S, o(s) = 2).

From Remark 6 we have L(Cay((G; S))) = Φ̃((G; S)).
If |S| = 1, 2, Cay((G; S)) is a cycle so it is Hamiltonian, hence L(Cay((G; S))) = Φ̃((G; S)) is

Hamiltonian.
Suppose now that |S| = k > 3. Hence the valence of Cay((G; S)) is k ≥ 4 and this graph

is vertex transitive, from Lemma 9 it is k-edge connected, k ≥ 4 consequently from Theorem 10,
L(Cay((G; S))) = Φ̃((G; S)) is k-connected, k ≥ 4 and 2k − 2-edge connected. From Theorem 11
Φ̃((G; S)) is hamiltonian. �
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7. Application

We are now using the results above for the hamiltonicity of Cayley graphs.

7.1. The group ( Z
2Z )t

Let G = ( Z
2Z )t , t ≥ 2 be a group with the generator set S = {ei; 1 ≤ i ≤ t} with ei =

(0, 0 · · · , 0, 0  
i−1

, 1, 0, 0, · · · , 0, 0), |S| = t ≥ 4, o(ei) = 2.

Define now α(ei) = ei+1 i mod t and x =
∑

1≤i≤t λiei.
The map α(x) =

∑
1≤i≤t λiei+1, i mod t is a bijection, moreover we have α(x + y) =

α(
∑

1≤i≤t λiei + µiei) =
∑

1≤i≤t λiei+1 +
∑

1≤i≤t µiei+1, i mod t = α(x) + α(y). So α is an
automorphism.

The group ⟨α⟩, |⟨α⟩| = t acts transitively on S: for ei, ei+1 ∈ S, i < j and j = i+ k, mod t we have
αk(ei) = ej.

By the orbit stabilizer theorem we have |⟨α⟩x| = |S| =
|⟨α⟩|

|⟨α⟩x|
= t , consequently |⟨α⟩x| = 1. Hence

⟨α⟩ acts regularly on S.
Let K be the set {x ∈ G, x =

∑
1≤i≤t λiei, such that

∑
1≤i≤t λi = 0}. It is easy to show that K is a

subgroup of G.
We have K ∩ ⟨ei⟩ = {0}, 1 ≤ i ≤ t , because if x =

∑
1≤i≤t λiei = ej,

∑
1≤i≤t λi = 1; contradiction.

α(K) ⊂ K because for x ∈ K α(x) =
∑

1≤i≤t λiα(ei) =
∑

1≤i≤t λiei+1 and
∑

1≤i≤t λi = 0.
We can now conclude the following.

Theorem 13. The G-graph Φ(( Z
2Z )t; S) is a Cayley graph : Cay(δ(K)o⟨α⟩; T ) and this one is hamiltonian.

7.2. The group Sn

Let G be the group Sn with the generator set S = {(i, i + 1), 1 ≤ i ≤ n}, n ≥ 4. Let ρ be the cycle
(1, 2, 3, . . . , n). Settle α = φρ : φρ((i, i + 1)) = ρ(i, i + 1)ρ−1. We have ρ(i, i + 1)ρ−1(ρ(i)) =

ρ(i, i + 1)(i) = ρ(i + 1) = i + 2. Now ρ(i, i + 1)ρ−1(ρ(i + 1)) = ρ(i, i + 1)(i + 1) = ρ(i) = i + 1.
Hence ρ(i, i + 1)ρ−1

= (i + 1, i + 2).
The group ⟨α⟩ acts transitively on S:α2

= φ2
ρ = φρ ◦φρ = φρ(ρ(i, i+1)ρ−1) = φρ((i+1, i+2)) =

ρ(i + 1, i + 2)ρ−1
= (i + 2, i + 3), by induction φρ((i + k, i + k + 1)) = ρ(i + k, i + k + 1)ρ−1

=

(i + k + 1, i + k + 2). Consequently for (u, v) (w, z) ∈ S there is t such that φt
ρ((u, v)) = (w, z) and

⟨α⟩ acts transitively on S.
The ⟨α⟩ acts regularly on S: like above by applying the orbit stabilizer theorem.
Let K be the alternating group, i.e. K = An. For any transposition τ the signature of it is ϵ(τ ) = −1;

the group An is the kernel of the epimorphism ϵ : Sn −→ {−1, 1}, so for all ρ ∈ An we have ϵ(ρ) = 1;
from this: An ∩ ⟨α⟩ = {1}.

α(K) ⊂ K because for x ∈ K , ϵ(x) = 1 and α(x) = ρxρ−1 has the same parity of x, i.e.
ϵ(ρxρ−1) = 1 We can now conclude the following.

Theorem 14. The G-graph Φ(Sn; S) is a Cayley graph : Cay(δ(K) o ⟨α⟩; T ) and this one is hamiltonian.

Remark. The results above give us a newmethod to produce some new classes of hamiltonian Cayley
graphs.
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