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Abstract

We study a recently developed product Abelian gauge field theory by Tong and Wong hosting magnetic 
impurities. We first obtain a necessary and sufficient condition for the existence of a unique solution realiz-
ing such impurities in the form of multiple vortices. We next reformulate the theory into an extended model 
that allows the coexistence of vortices and anti-vortices. The two Abelian gauge fields in the model induce 
two species of magnetic vortex-lines resulting from Ns vortices and Ps anti-vortices (s = 1, 2) realized as 
the zeros and poles of two complex-valued Higgs fields, respectively. An existence theorem is established 
for the governing equations over a compact Riemann surface S which states that a solution with prescribed 
N1, N2 vortices and P1, P2 anti-vortices of two designated species exists if and only if the inequalities

|N1 + N2 − (P1 + P2)| < |S|
π

, |N1 + 2N2 − (P1 + 2P2)| < |S|
π

,

hold simultaneously, which give bounds for the ‘differences’ of the vortex and anti-vortex numbers in terms 
of the total surface area of S. The minimum energy of these solutions is shown to assume the explicit value

E = 4π(N1 + N2 + P1 + P2),

given in terms of several topological invariants, measuring the total tension of the vortex-lines.
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1. Introduction

It is well known that the simplest and most important quantum field theory model is the 
Abelian Higgs model [18,28] which embodies an electromagnetic gauge field and spontaneously 
broken symmetry and allows mass generation through the Higgs mechanism. In the temporal 
gauge, its static limit gives rise to the classical Ginzburg–Landau theory for superconductivity 
[17] so that in its two dimensional setting mixed-state configurations known as the Abrikosov 
vortices [1] can be rigorously constructed [7,18,33,34,38]. Inspired by the gauged sigma model 
of Schroers [29,30], the classical Abelian Higgs model is extended in [42,43] to allow the co-
existence of vortices and anti-vortices. This extended model is also shown to generate cosmic 
strings and anti-strings when gravitation is switched on by the Einstein equations which give rise 
to curvature and mass concentrations essential for matter accretion in the early universe [19,20,
36,37,40,41]. In order to understand the topological contents of such an extended Abelian Higgs 
model, a reformulation of it is carried in [31] in the context of a complex line bundle over a com-
pact Riemann surface S as in [7,15,25,26]. In a sharp and interesting contrast with the Abelian 
Higgs model where vortices are topologically characterized by the first Chern class, the vortices 
and anti-vortices in the extended Abelian Higgs model [42,43] are characterized jointly and ele-
gantly [31] by the first Chern class of the line bundle and the Thom class [32] of the associated 
dual bundle. In the former case, there are only finitely many minimum energy values which can 
be attained due to the fact that the total number of vortices is confined by the total area |S| of the 
two-surface S where vortices reside. In the latter case, however, the confinement is made instead 
to the difference of the numbers of vortices and anti-vortices, but the minimum energy is pro-
portional to the sum of these numbers. Hence the possible minimum energy values becomes an 
explicitly determined infinite sequence as in the situation of vortices over a non-compact surface 
in the classical Abelian Higgs theory [18,33,34].

In a recent interesting work of Tong and Wong [35], a product Abelian gauge field theory 
is formulated to include magnetic impurities in the form of an extra gauge-matter sector. This 
gauge-matter sector is not treated as a background source but as a fully coupled sector. In other 
words, this is a product Abelian gauge field theory with two complex Higgs fields. It is shown in 
[35] that, like in the classical Abelian Higgs model, the new product model allows a BPS (after 
Bogomol’nyi [6] and Prasad–Sommerfield [27]) reduction, hence a construction of magnetic 
vortices as in [18]. The present paper aims to enrich our understanding of Abelian (magnetic) 
vortices by achieving two goals. The first is to extend the product Abelian gauge field theory 
of Tong and Wong [35] using the ideas in [29,30,42,43] into a new product field theory that 
allows the coexistence of two species of vortices and anti-vortices. The second is to establish 
an existence theorem for such vortices of beautiful topological characteristics. For clarity and 
simplicity, the underlying domain for the vortices to live is assumed to be a compact Riemann 
surface, as in [31].

In order to put our study in an appropriate perspective, we shall first present a reformulation of 
the Tong–Wong model [35] in terms of a complex line bundle over a compact Riemann surface. 
In such a context, we show that a Bradlow type bound or limit appears as in the Abelian Higgs 
theory for the existence of multiple vortices [7,15,25,26,38], which is a preparation for our work 
regarding the extended model.

http://creativecommons.org/licenses/by/4.0/
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An outline of the rest of the paper is as follows. In Section 2, we present the Tong–Wong 
theory and our extended product Abelian gauge field theory, in their static limits. We describe in 
detail the field-theoretical properties of the extended theory and derive its BPS equations. We then 
state our main existence theorems for the existence of multiple vortices in the Tong–Wong theory 
and for the coexistence of multiple vortices and anti-vortices, of two species. In Section 3, we 
convert the BPS equations into systems of nonlinear elliptic equations, state the main existence 
theorems in terms of these equations, and carry out some preliminary discussion. In Section 4, we 
establish the existence and uniqueness theorem for the Tong–Wong multiple vortex solutions by 
calculus of variations. In Section 5, we prove the existence theorem for the vortex and anti-vortex 
solutions of our extended model by using a Leray–Schauder fixed-point theorem argument [16]
under a necessary and sufficient condition. In Section 6, we explicitly compute the (minimum) 
energy of a vortex and anti-vortex solution and show that such energy arises topologically and is 
proportional to the sum of vortex and anti-vortex numbers of two species. In Section 7, we make 
some concluding remarks regarding coexisting vortices and anti-vortices in the extended model.

2. Energy functionals, BPS reductions, and existence theorems

Let L be complex Hermitian line bundle over a Riemann surface S. Use q , p to denote two 
sections L → S and Dq , Dp the connections induced from the real-valued connection 1-forms 
Â, Ã, respectively, so that

Dq = dq − i(Â–Ã)q, Dp = dp − iÃp. (2.1)

Using ∗ to denote the usual Hodge dual operating on differential forms, the energy density of the 
Tong–Wong model [35] for a product Abelian Higgs theory implementing magnetic impurities 
may be rewritten as

E = 1

2
∗ (F̂ ∧ ∗F̂ ) + 1

2
∗ (F̃ ∧ ∗F̃ ) + ∗(Dq ∧ ∗Dq) + ∗(Dp ∧ ∗Dp)

+ 1

2
(1 − |q|2)2 + 1

2
([1 − |q|2] + [|p|2 − 1])2, (2.2)

where F̂ = dÂ, F̃ = dÃ are curvature 2-forms, which recovers the classical Ginzburg–Landau 
model [17] when impurities are switched off by setting

Ã = 0, p = 1. (2.3)

Note also that there holds the identity

Dq ∧ ∗Dq + (∗Dq) ∧ Dq = (Dq ± i ∗ Dq) ∧ ∗(Dq ± i ∗ Dq)

± i(Dq ∧ Dq − (∗Dq) ∧ (∗Dq)). (2.4)

Thus we get

E = 1

2

∣∣∣F̂ ∓ ∗(1 − |q|2)
∣∣∣2 + 1

2

∣∣∣F̃ ± (∗[1 − |q|2] + ∗[|p|2 − 1])
∣∣∣2

± ∗F̂ (1 − |q|2) ∓ ∗F̃ ([1 − |q|2] + [|p|2 − 1])
+ |Dq ± i ∗ Dq|2 + |Dp ± i ∗ Dp|2

± i
(Dq ∧ Dq − (∗Dq) ∧ (∗Dq)) ± i

(Dp ∧ Dp − (∗Dp) ∧ (∗Dp)). (2.5)

2 2
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On the other hand, with the current densities

J (q) = i

2
(qDq − qDq), J (p) = i

2
(pDp − pDp), (2.6)

we have

dJ (q) = −(F̂ − F̃ )|q|2 + i

2
(Dq ∧ Dq − ∗Dq ∧ ∗Dq), (2.7)

dJ (p) = −F̃ |p|2 + i

2
(Dp ∧ Dp − ∗Dp ∧ ∗Dp). (2.8)

Inserting (2.7) and (2.8) into (2.5), we have

E = 1

2

∣∣∣F̂ ∓ ∗(1 − |q|2)
∣∣∣2 + 1

2

∣∣∣F̃ ± (∗[1 − |q|2] + ∗[|p|2 − 1])
∣∣∣2

+ |Dq ± i ∗ Dq|2 + |Dp ± i ∗ Dp|2
± ∗(F̂ − F̃ ) ± ∗F̃ ± ∗dJ (q) ± ∗dJ (p), (2.9)

which leads to the topological energy lower bound

E =
∫
S

E ∗ 1 ≥
∣∣∣∣∣∣
∫
S

F̂

∣∣∣∣∣∣ . (2.10)

From the form of (2.9) it is clear that the lower bound in (2.10) is attained by the solutions of the 
BPS equations

F̂ = ± ∗ (1 − |q|2), (2.11)

F̃ = ∓ ∗ ([1 − |q|2] + [|p|2 − 1]), (2.12)

Dq ± i ∗ Dq = 0, (2.13)

Dp ± i ∗ Dp = 0, (2.14)

as derived by Tong and Wong in [35].
The equations of motion of (2.2) are

D ∗ Dq = −(1 − |q|2)q − ([1 − |q|2] + [|p|2 − 1])q, (2.15)

d ∗ F̂ = i(qDq − qDq), (2.16)

D ∗ Dp = ([1 − |q|2] + [|p|2 − 1])p, (2.17)

d ∗ F̃ = −i(qDq − qDq) + i(pDp − pDp), (2.18)

which contain (2.11)–(2.14) as its first integral and may be viewed as a reduced form of 
(2.15)–(2.18). These reduced first-order equations are often referred to as the BPS equations 
after Bogomol’nyi [6] and Prasad–Sommerfield [27] who pioneered the idea of such reduction 
for the classical Yang–Mills–Higgs equations. When the upper sign is taken, the system is said to 
be self-dual; the lower, anti-self-dual. It may also be checked that the self-dual and anti-self-dual 
cases are related to each other through the transformation

Â� −Â, Ã �−Ã, q � q, p � p. (2.19)

Hence, in the sequel, we will only consider the self-dual situation.
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The structure of (2.13) and (2.14) indicates that the zeros of q , p are isolated and of integer 
multiplicities which may be assumed to be

Z(q) = {z1,1, . . . , z1,N1}, Z(p) = {z2,1, . . . , z2,N2}, (2.20)

where for convenience a zero of multiplicity m is counted as m zeros in the zero set. The quan-
tities 1

2π

∫
(F̂ − F̃ ) and 1

2π

∫
F̃ are the first Chern numbers induced from the connections Â–Ã

and Ã over L → S which are determined by the numbers of zeros, N1 and N2, by the formulas

1

2π

∫
S

(F̂ − F̃ ) = N1, (2.21)

1

2π

∫
S

F̃ = N2, (2.22)

respectively.
Regarding the Tong–Wong BPS equations (2.11)–(2.14), here is our existence theorem.

Theorem 2.1. For the BPS system consisting of equations (2.11)–(2.14) over a compact Riemann 

surface S with canonical total area |S| governing two connection 1-forms Â, Ã and two cross 
sections q , p with the prescribed sets of zeros given in (2.20), there exists a solution to realize 
these sets of zeros if and only if N1 and N2 satisfy the bound

N1 + 2N2 <
|S|
2π

. (2.23)

Such a solution carries a minimum energy of the form

E = 2π(N1 + N2), (2.24)

and is unique up to gauge transformations.

The condition stated in (2.23) is analogous to the so-called Bradlow bound [5,9,24] in the 
classical Abelian Higgs model [7,15,38] which was actually deduced earlier by Noguchi [25,26].

Next, following [42,43] based on the idea of gauged sigma model, we show that we may 
extend the Tong–Wong model [35] to accommodate vortices and anti-vortices by considering the 
modified energy density

E = 1

2
∗ (F̂ ∧ ∗F̂ ) + 1

2
∗ (F̃ ∧ ∗F̃ ) + 4

(1 + |q|2)2
∗ (Dq ∧ ∗Dq)

+ 4

(1 + |p|2)2
∗ (Dp ∧ ∗Dp)

+ 2

(
1 − |q|2
1 + |q|2

)2

+ 2

(
1 − |q|2
1 + |q|2 + |p|2 − 1

1 + |p|2
)2

. (2.25)

In fact, let φ and ψ be two S2-valued scalar fields. Fix n = (0, 0, 1) ∈ S2 and define the 
vacuum manifold of the model to be

n · φ = 0, n · ψ = 0. (2.26)
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Then we modify (2.2) into the form

E = 1

2
∗ (F̂ ∧∗F̂ )+ 1

2
∗ (F̃ ∧∗F̃ )+ |Dφ|2 + |Dψ |2 + 2(n ·φ)2 + 2(n · [φ −ψ])2, (2.27)

where

Dφ = dφ − (n × φ)(Â–Ã), Dψ = dψ − (n × ψ)Ã. (2.28)

Use the stereographic projection from the south pole −n of S2 to represent φ and ψ by complex-
valued functions q and p, respectively, so that

φ =
(

2�{q}
1 + |q|2 ,

2	{q}
1 + |q|2 ,

1 − |q|2
1 + |q|2

)
, ψ =

(
2�{p}

1 + |p|2 ,
2	{p}

1 + |p|2 ,
1 − |p|2
1 + |p|2

)
, (2.29)

where �{c} and 	{c} denote the real and imaginary parts of a complex number c. Inserting (2.29)
into (2.27), we arrive at (2.25).

It is interesting to observe that (2.2) is recovered from (2.25) when taking the limit |q| → 1, 
|p| → 1 in the denominators 1 + |q|2 and 1 + |p|2 of (2.25). The Euler–Lagrange equations of 
the energy density are found to be

D ∗
(

Dq

(1 + |q|2)2

)
= 1

(1 + |q|2)3
(Dq ∧ ∗Dq) + 2 ∗

(
1 − |q|2

(1 + |q|2)3

)
q

+ 2 ∗
(

1 − |q|2
1 + |q|2 + |p|2 − 1

1 + |p|2
)(

1 − |q|2
(1 + |q|2)2

)
q, (2.30)

d ∗ F̂ = 4i
(qDq − qDq)

(1 + |q|2)2
, (2.31)

D ∗
(

Dp

(1 + |p|2)2

)
= 1

(1 + |p|2)3
(Dp ∧ ∗Dp)

+ 2 ∗
(

1 − |q|2
1 + |q|2 + |p|2 − 1

1 + |p|2
)( |p|2 − 1

(1 + |p|2)2

)
p, (2.32)

d ∗ F̃ = −4i
(qDq − qDq)

(1 + |q|2)2
+ 4i

(pDp − pDp)

(1 + |p|2)2
, (2.33)

which appear rather complicated and intractable. In order to obtain interesting solutions of these 
equations, we follow [35,42] to pursue a BPS reduction.

Introduce the current densities

J (q) = i

1 + |q|2 (qDq − qDq), J (p) = i

1 + |p|2 (pDp − pDp). (2.34)

Then we have

K(q) = dJ (q)

= − 2|q|2
1 + |q|2 (F̂ − F̃ ) + i

(
Dq ∧ Dq − ∗Dq ∧ ∗Dq

(1 + |q|2)2

)
, (2.35)

K(p) = dJ (p)

= − 2|q|2
1 + |q|2 F̃ + i

(
Dp ∧ Dp − ∗Dp ∧ ∗Dp

(1 + |p|2)2

)
. (2.36)



X. Han, Y. Yang / Nuclear Physics B 898 (2015) 605–626 611
So, with |Dq|2 = ∗(Dq ∧ ∗Dq), etc., we arrive at the decomposition

E = 1

2

∣∣∣∣F̂ ∓ 2 ∗
(

1 − |q|2
1 + |q|2

)∣∣∣∣
2

+ 1

2

∣∣∣∣F̃ ±
(

2 ∗
(

1 − |q|2
1 + |q|2

)
+ 2 ∗

( |p|2 − 1

1 + |p|2
))∣∣∣∣

2

+ 2

(1 + |q|2)2
|Dq ± i ∗ Dq|2 + 2

(1 + |p|2)2
|Dp ± i ∗ Dp|2

± 2 ∗ (F̂ − F̃ ) ± 2 ∗ K(q) ± 2 ∗ F̃ ± 2 ∗ K(p). (2.37)

The quantities 1
4π

∫
K(q) and 1

4π

∫
K(p) are the Thom classes over L∗ → S, respectively 

[31]. Thus, the sum

τ = 2F̂ + 2K(q) + 2K(p) (2.38)

is a topological density which leads to the topological energy lower bound

E =
∫
M

E ∗ 1 ≥
∣∣∣∣∣∣
∫
M

τ

∣∣∣∣∣∣ , (2.39)

measuring the tension [8,13,11,12,10] of the vortex-lines, so that the lower bound is saturated 
when the quartet (q, p, Â, Ã) satisfies the equations

Dq ± i ∗ Dq = 0, (2.40)

Dp ± i ∗ Dp = 0, (2.41)

F̂ = ±2 ∗
(

1 − |q|2
1 + |q|2

)
, (2.42)

F̃ = ∓
(

2 ∗
(

1 − |q|2
1 + |q|2

)
+ 2 ∗

( |p|2 − 1

1 + |p|2
))

. (2.43)

It may directly be checked that (2.40)–(2.43) imply (2.30)–(2.33). In other words, (2.40)–
(2.43) may be regarded as a reduction of the system of equations (2.30)–(2.33).

From (2.40) and (2.41), we know [18,42,43] that the zeros and poles of the sections q , p are 
isolated and possess integer multiplicities. For simplicity, we may denote the sets of zeros and 
poles of q , p by

Z(q) = {z′
1,1, . . . , z

′
1,N1

}, P(q) = {z′′
1,1, . . . , z

′′
1,P1

}, (2.44)

Z(p) = {z′
2,1, . . . , z

′
2,N2

}, P(p) = {z′′
2,1, . . . , z

′′
2,P2

}, (2.45)

respectively, so that the associated multiplicities of the zeros and poles are naturally counted by 
their repeated appearances in the above collections of points.

If we interpret ∗F̂ as a magnetic or vorticity field, (2.42) indicates that it attains its maximum 
∗F̂ = 2 at the zeros and minimum ∗F̂ = −2 at the poles of q . Thus, the zeros and poles of 
q may be viewed as centers of vortices and anti-vortices. In other words, we may identify the 
zeros and poles of q as the locations of vortices and anti-vortices generated from the connection 
1-form Â. Similarly, the zeros and poles of p may be interpreted as vortices and anti-vortices 
generated from the connection 1-form Â + Ã. Therefore, in what follows, the zeros and poles 
of q , p are interchangeably and generically referred to as the vortices and anti-vortices of a 
solution configuration (Â, Ã, q, p).

Here is our existence theorem for the BPS equations (2.40)–(2.43).
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Theorem 2.2. Consider the BPS system consisting of equations (2.40)–(2.43) of the energy den-
sity (2.25) formulated over a complex Hermitian line bundle L over a compact Riemann surface 
S with canonical total area |S| governing two connection 1-forms Â, Ã and two cross sections q , 
p and comprising a reduction of the Euler–Lagrange equations (2.30)–(2.33). For the prescribed 
sets of zeros and poles for the fields q and p given respectively in (2.44) and (2.45), the coupled 
equations (2.40)–(2.43) have a solution to realize these sets of zeros and poles, if and only if the 
inequalities

|N1 + N2 − (P1 + P2)| < |S|
π

, (2.46)

|N1 + 2N2 − (P1 + 2P2)| < |S|
π

, (2.47)

regarding the total numbers of zeros and poles are fulfilled simultaneously. Moreover, such a 
solution carries a minimum energy of the form

E = 4π(N1 + N2 + P1 + P2), (2.48)

which is seen to be stratified topologically by the Chern and Thom classes of the line bundle 
L and its dual respectively. In particular, in terms of energy, zeros (vortices) and poles (anti-
vortices) of q , p contribute equally.

It is interesting to note that the inequalities (2.46) and (2.47) imply that the differences of 
vortices and anti-vortices must stay within suitable ranges to ensure the existence of a solution:∣∣∣N1 − P1

∣∣∣ <
3|S|
π

, (2.49)∣∣∣N2 − P2

∣∣∣ <
2|S|
π

. (2.50)

However, it may be checked that the conditions (2.49) and (2.50) do not lead to (2.46) and 
(2.47). The latter may be called the difference of total numbers of vortices and anti-vortices and 
the difference of ‘weighted total numbers’ of vortices and anti-vortices. We note that (2.49) and 
(2.50) give the upper bounds of the total ‘magnetic fluxes’∫

S

(F̂ − F̃ ) = 2π(N1 − P1), (2.51)

∫
S

F̃ = 2π(N2 − P2), (2.52)

generated by the ‘magnetic fields’ F̂ − F̃ and F̃ , respectively, which may be compared with 
(2.21) and (2.22) for the fluxes of the Tong–Wong model [35]. See Section 6 for details of calcu-
lation.

3. Governing elliptic equations and basic properties

To proceed, we set

u = ln |q|2, v = ln |p|2, (3.1)
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in (2.11)–(2.14). Thus by [18,42,43] we are led to the following equivalent governing elliptic 
equations

�u = 4(eu − 1) − 2(ev − 1) + 4π
∑

z∈Z(q)

δz, (3.2)

�v = −2(eu − 1) + 2(ev − 1) + 4π
∑

z∈Z(p)

δz, (3.3)

where � is the Laplace–Beltrami operator on (S, g) defined by

�u = 1√
g

∂j (g
jk√g∂ku), (3.4)

and δz denotes the Dirac measure concentrated at the point z ∈ S with respect to the Riemannian 
metric g over S.

In what follows, we use d	g to denote the canonical surface element and |S| the associated 
total area of the Riemann surface (S, g).

The results stated in Theorem 2.1 are contained in the following theorem concerning the 
coupled elliptic equations (3.2) and (3.3).

Theorem 3.1. The system of equations consisting of (3.2) and (3.3) has a solution if and only if

N1 + 2N2 <
|S|
2π

. (3.5)

Moreover, if a solution exists, it must be unique and satisfies the quantization conditions∫
S

(1 − eu)d	g = 2π(N1 + N2), (3.6)

∫
S

(1 − ev)d	g = 2π(N1 + 2N2). (3.7)

Similarly, setting (3.1) in (2.40)–(2.43), we obtain

�u = 8(eu − 1)

eu + 1
− 4(ev − 1)

ev + 1
+ 4π

∑
z∈Z(q)

δz − 4π
∑

z∈P(q)

δz, (3.8)

�v = −4(eu − 1)

eu + 1
+ 4(ev − 1)

ev + 1
+ 4π

∑
z∈Z(p)

δz − 4π
∑

z∈P(p)

δz. (3.9)

Regarding the equivalently reduced equations (3.8) and (3.9) from (2.40)–(2.43), we have

Theorem 3.2. The coupled equations (3.8) and (3.9) admit a solution (u, v) with the prescribed 
sets Z(q), P(q), Z(p), P(p) in S specified in (2.44) and (2.45) if and only if the inequalities 
(2.46) and (2.47) are satisfied simultaneously. Moreover, for the solution to equations (3.8) and 
(3.9) obtained above, there hold the quantized integrals∫

1 − eu

1 + eu
d	g = π (N1 − P1 + N2 − P2) , (3.10)
S



614 X. Han, Y. Yang / Nuclear Physics B 898 (2015) 605–626
∫
S

1 − ev

1 + ev
d	g = π (N1 − P1 + 2(N2 − P2)) . (3.11)

For convenience, we first need to take care of the Dirac distributions by subtracting suitable 
background functions. To do so, we let u1

0, u2
0, v1

0 , v2
0 be the normalized solutions of the equations 

that determine the source functions arising from the sets Z(q), P(q), Z(p), P(p), respectively. 
For instance, u1

0 is the unique solution [4] to

�u1
0 = −4πN1

|S| + 4π
∑

z∈Z(q)

δz,

∫
S

u1
0 d	g = 0. (3.12)

Set u = u1
0 + U , v = v1

0 + V . Then we can rewrite (3.2) and (3.3) as

�U = 4(eu1
0+U − 1) − 2(ev1

0+V − 1) + 4πN1

|S| , (3.13)

�V = −2(eu1
0+U − 1) + 2(ev1

0+V − 1) + 4πN2

|S| . (3.14)

We first show the necessity of the condition (3.5). If there is a solution of (3.13)–(3.14), 
integration of which over S gives∫

S

eu1
0+U d	g = |S| − 2π(N1 + N2) ≡ a1 > 0, (3.15)

∫
S

ev1
0+V d	g = |S| − 2π(N1 + 2N2) ≡ a2 > 0. (3.16)

Then we see that the condition (3.5) is necessary to ensure the existence of a solution to the 
system (3.13)–(3.14). The quantized integrals (3.6)–(3.7) follow from (3.15)–(3.16).

Let u = u1
0 − u2

0 + U , v = v1
0 − v2

0 + V . Then equations (3.8) and (3.9) can be rewritten as

�U = 8f (u1
0, u

2
0,U) − 4f (v1

0, v2
0,V ) + 4π(N1 − P1)

|S| , (3.17)

�V = −4f (u1
0, u

2
0,U) + 4f (v1

0, v2
0,V ) + 4π(N2 − P2)

|S| , (3.18)

where and in what follows we use the notation

f (s1, s2, t) ≡ es1−s2+t − 1

es1−s2+t + 1
= es1+t − es2

es1+t + es2 , s1, s2, t ∈ R. (3.19)

For fixed s1, s2 ∈ R, we have

0 <
d

dt
f (s1, s2, t) = 2es1+tes2

(es1+t + es2
)2

≤ 1

2
, ∀ t ∈ R. (3.20)

We now show that the condition consisting of (2.46) and (2.47) is necessary for the existence 
of solutions for (3.17)–(3.18). In fact, integrating (3.17)–(3.18) over S, we find
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∫
S

f (u1
0, u

2
0,U)d	g = a|S|, (3.21)

∫
S

f (v1
0, v2

0,V )d	g = b|S|, (3.22)

where a, b are constants defined by

a ≡ − π

|S| (N1 − P1 + N2 − P2) , (3.23)

b ≡ − π

|S| (N1 − P1 + 2(N2 − P2)) . (3.24)

From (3.21)–(3.22) we see that the quantized integrals (3.10)–(3.11) hold.
On the other hand, noting

−1 < f (s1, s2, t) < 1 for any s1, s2, t ∈R, (3.25)

we arrive at

|a| < 1 and |b| < 1, (3.26)

which is equivalent to (2.46) and (2.47). Thus the inequalities (2.46) and (2.47) are necessary for 
a solution to exist.

4. Proof of existence for the Tong–Wong system

In this section we establish Theorem 2.1 or Theorem 3.1 through a thorough study of the 
coupled vortex equations (3.2) and (3.3). To this end, we recast the problem into a variational 
problem and apply a direct minimization approach recently developed in [22].

We have shown that the condition (3.5) is necessary to the existence of a solution to (3.2)–(3.3)
on S, and in what follows we prove that it is also sufficient.

To formulate the problem into a variational structure, we set

f = U, h = U + 2V, or U = f, V = h − f

2
. (4.1)

Hence we rewrite equations (3.13)–(3.14) equivalently as

�f = 4
(

eu1
0+f − 1

)
− 2

(
ev1

0+ h−f
2 − 1

)
+ 4πN1

|S| , (4.2)

�h = 2
(

ev1
0+ h−f

2 − 1
)

+ 4π(N1 + 2N2)

|S| . (4.3)

Then we directly check that equations (4.2)–(4.3) are the Euler–Lagrange equations of the 
following functional

I (f,h) = 1

2

(
‖∇f ‖2

2 + ‖∇h‖2
2

)
+ 4

∫
S

(
eu1

0+f − f + ev1
0+ h−f

2 − h − f

2

)
d	g

+ 4πN1

|S|
∫

f d	g + 4π(N1 + 2N2)

|S|
∫

hd	g. (4.4)
S S
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Here and in what follows we use the following notation

‖∇w‖2
2 =

∫
S

|∇w|2d	g ≡
∫
S

gjk∂jw∂kwd	g. (4.5)

We know that the Sobolev space W 1,2(S) (cf. [4]) can be decomposed as W 1,2(S) =
Ẇ 1,2(S) ⊕R, where

Ẇ 1,2(S) ≡
⎧⎨
⎩w ∈ W 1,2(S)

∣∣∣ ∫
S

w d	g = 0

⎫⎬
⎭ (4.6)

is a closed subspace of W 1,2(S).
To save notation, in the following of this paper we also use W 1,2(S), Ẇ 1,2(S) and Lp(S) to 

denote the spaces of vector-valued functions.
For f, h ∈ W 1,2(S) we decompose them as

f = f ′ + f , h = h′ + h, f ′, h′ ∈ Ẇ 1,2(S), f ,h ∈R. (4.7)

On the subspace Ẇ 1,2(S) there hold the Poincaré inequality∫
S

w2d	g ≡ ‖w‖2
2 ≤ C‖∇w‖2

2, w ∈ Ẇ 1,2(S) (4.8)

and the Moser–Trudinger inequality [4,14]

∫
S

ewd	g ≤ C exp

⎛
⎝ 1

16π

∫
S

|∇w|2dx

⎞
⎠ , w ∈ Ẇ 1,2(S), (4.9)

where C is a generic positive constant. We see from (4.9) that the functional I defined by (4.4)
is a C1-functional.

By the definition of I and the decomposition (4.7) we have

I (f,h) = 1

2
(‖∇f ′‖2

2 + ‖∇h′‖2
2) + 4

⎛
⎝ef

∫
S

eu1
0+f ′

d	g − a1f

⎞
⎠

+ 4

⎛
⎝e

h−f
2

∫
S

ev1
0+ h′−f ′

2 d	g − a2
[h − f ]

2

⎞
⎠ , (4.10)

where a1, a2, defined by (3.15)–(3.16), are positive, as ensured by (3.5).
Hence, by (4.10) and the Jensen inequality, we obtain

I (f,h) − 1

2
(‖∇f ′‖2

2 + ‖∇h′‖2
2) ≥ 4

(
|S|ef − a1f + |S|e h−f

2 − a2
[h − f ]

2

)
. (4.11)

From (4.10)–(4.11) we also see that

I (f,h) ≥ 4

(
ln

|S| + ln
|S|)

, (4.12)

a1 a2



X. Han, Y. Yang / Nuclear Physics B 898 (2015) 605–626 617
which implies the functional I is bounded from below and the minimization problem

a0 ≡ min
{
I (f,h)

∣∣ (f,h) ∈ W 1,2(S)
}

(4.13)

is well-defined.
Let {(fk, hk)} be a minimizing sequence. Noting that the function m(t) = αet − β , α, β > 0

satisfies m(t) → +∞ as t → ±∞, we see from (4.11) that f k, 
hk−f k

2 must be bounded for 
all k, which implies {(f k, hk)} are bounded for all k. And (4.11) also implies {(∇f ′

k , ∇h′
k)} are 

bounded in L2(S) for all k. Then by the Poincaré inequality (4.8), we conclude that {(f ′
k, h

′
k)}

are bounded in Ẇ 1,2(S), which with the boundedness of {(f k, hk)} imply that {(fk, hk)} are 
bounded in W 1,2(S) for all k. Hence, there exits a subsequence of {(fk, hk)}, still denoted by 
{(fk, hk)}, such that {(fk, hk)} converges weakly to some (f∞, h∞) ∈ W 1,2(S).

It is easy to see that the functional I is also weakly lower semi-continuous. Then the limit 
(f∞, h∞) ∈ W 1,2(S) is a critical point of I . Of course, it gives a solution for the system 
(4.2)–(4.3), and hence for (3.13)–(3.14). So the sufficiency of (3.5) follows.

We directly see that the functional I is strictly convex. Therefore the functional I admits at 
most one critical point. That is to say, a solution of (3.13)–(3.14) must be unique.

Therefore we have completed the proof of Theorem 3.1.

5. Proof of existence for the vortex and anti-vortex system

In this section, we prove that the condition comprised of (2.46) and (2.47) is also sufficient for 
the existence of a solution of the coupled equations (3.8) and (3.9). We will extend a fixed-point 
theorem argument used in [44] when treating a single equation.

To do so, it is convenient to rewrite equations (3.17) and (3.18) equivalently as

�U = 8
(
f (u1

0, u
2
0,U) − a

)
− 4

(
f (v1

0, v2
0,V ) − b

)
, (5.1)

�V = −4
(
f (u1

0, u
2
0,U) − a

)
+ 4

(
f (v1

0, v2
0,V ) − b

)
, (5.2)

where a, b are defined by (3.23)–(3.24).
We begin with the following lemma.

Lemma 5.1. For any (U ′, V ′) ∈ Ẇ 1,2(S), there exists a unique pair (c1(U
′), c2(V

′)) ∈ R
2 such 

that ∫
S

f (u1
0, u

2
0,U

′ + c1(U
′))d	g = a|S|, (5.3)

∫
S

f (v1
0, v2

0,V ′ + c2(V
′))d	g = b|S|, (5.4)

where a, b are defined by (3.23)–(3.24).

Proof. Under the condition consisting of (2.46) and (2.47), we easily see that

−1 < a,b < 1. (5.5)

Noting the expression (3.19), for any (U ′, V ′) ∈ Ẇ 1,2(S), we have
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∫
S

f (u1
0, u

2
0,U

′ + t)d	g,

∫
S

f (v1
0, v2

0,V ′ + t)d	g → |S| as t → ∞ (5.6)

and ∫
S

f (u1
0, u

2
0,U

′ + t)d	g,

∫
S

f (v1
0, v2

0,V ′ + t)d	g → −|S| as t → −∞. (5.7)

Then, for any (U ′, V ′) ∈ Ẇ 1,2(S), we conclude from (5.5), (5.6) and (5.7) that there exists a 
point (c1(U

′), c2(V
′)) ∈ R

2 such that (5.3) and (5.4) hold.
The uniqueness of (c1(U

′), c2(V
′)) follows from the strict monotonicity of f (s1, s2, t) with 

respect to t (see (3.20)). �
Lemma 5.2. For any (U ′, V ′) ∈ Ẇ 1,2(S), let (c1(U

′), c2(V
′)) be defined in Lemma 5.1. Then, 

the mapping (c1(·), c2(·)) : Ẇ 1,2(S) → R
2, is continuous with respect to the weak topology of 

Ẇ 1,2(S).

Proof. Take a weakly convergent sequence {(U ′
k, V

′
k)} in Ẇ 1,2(S) such that (U ′

k, V
′
k) → (U ′

0, V
′
0)

weakly in Ẇ 1,2(S). Then we see that

(U ′
k,V

′
k) → (U ′

0,V
′
0) strongly in Lp(S) for any p ≥ 1, (5.8)

by the compact embedding W 1,2(S) ↪→ Lp(S) (p ≥ 1). We aim to prove that (c1(U
′
k), c2(V

′
k)) →

(c1(U
′
0), c2(V

′
0)) as k → ∞.

Claim: The sequence {(c1(U
′
k), c2(V

′
k))} is bounded.

To show this claim we first prove that {(c1(U
′
k), c2(V

′
k))} is bounded from above. We argue 

by contradiction. Without loss of generality, assume c1(U
′
k) → ∞ as k → ∞. Noting (5.8) and 

using the Egorov theorem, we see that for any ε > 0, there is a large constant Kε > 0 and a subset 
Sε ⊂ S such that

|U ′
k| ≤ Kε, x ∈ S \ Sε, |Sε| < ε, ∀ k. (5.9)

Then by (5.9) and (3.25) we have

|a||S| =

∣∣∣∣∣∣∣
∫

S\Sε

f (u1
0, u

2
0,U

′
k + c1(U

′
k))d	g +

∫
Sε

f (u1
0, u

2
0,U

′
k + c1(U

′
k))d	g

∣∣∣∣∣∣∣
≥

∣∣∣∣∣∣∣
∫

S\Sε

f (u1
0, u

2
0,U

′
k + c1(U

′
k))d	g

∣∣∣∣∣∣∣ −

∣∣∣∣∣∣∣
∫
Sε

f (u1
0, u

2
0,U

′
k + c1(U

′
k))d	g

∣∣∣∣∣∣∣
≥

∫
S\Sε

f (u1
0, u

2
0, c1(U

′
k) − Kε)d	g − ε. (5.10)

Hence taking k → ∞ in (5.10) we get

|a||S| ≥ |S \ Sε| − ε ≥ |S| − 2ε.

Noting that ε is arbitrary, we obtain

|a| ≥ 1,
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which contradicts the condition (2.46) (|a| < 1). Hence the sequence {(c1(U
′
k), c2(V

′
k))} is 

bounded from above.
Now we show that {(c1(U

′
k), c2(V

′
k))} is also bounded from below. In fact, we may suppose 

c1(U
′
k) → −∞ as k → ∞. Using (5.9) and (3.25), we have

a|S| =
∫

S\Sε

f (u1
0, u

2
0,U

′
k + c1(U

′
k))d	g +

∫
Sε

f (u1
0, u

2
0,U

′
k + c1(U

′
k))d	g

≤
∫

S\Sε

f (u1
0, u

2
0, c1(U

′
k) + Kε)d	g + ε. (5.11)

Then letting k → ∞ in (5.11), we obtain

a|S| ≤ −|S \ Sε| + ε ≤ −|S| + 2ε,

which implies a ≤ −1 since ε > 0 is arbitrary. Hence we get a contradiction with the condition 
(2.46) again. So the sequence {(c1(U

′
k), c2(V

′
k))} is bounded from below. Therefore the claim 

follows.
By the claim above, up to a subsequence, we may assume that

(c1(U
′
k), c2(V

′
k)) → (c′

1, c
′
2) as k → ∞ for some (c′

1, c
′
2) ∈R

2. (5.12)

Then, using (3.20), the Schwartz inequality, (5.8) and (5.12) we have∣∣∣∣∣∣
∫
S

f (u1
0, u

2
0,U

′
k + c1(U

′
k))d	g −

∫
S

f (u1
0, u

2
0,U

′
0 + c′

1)d	g

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
S

ft (u
1
0, u

2
0, θ [U ′

k + c1(U
′
k)] + [1 − θ ][U ′

0 + c′
1])(U ′

k − U ′
0 + c1(U

′
k) − c′

1)d	g

∣∣∣∣∣∣
≤ 1

2

∫
S

∣∣U ′
k − U ′

0 + c1(U
′
k) − c′

1

∣∣ d	g

≤ 1

2

(
|S| 1

2 ‖U ′
k − U ′

0‖2 + |S||c1(U
′
k) − c′

1|
)

→ 0 as k → ∞, (5.13)

where θ ∈ (0, 1). Noting (5.13) and∫
S

f (u1
0, u

2
0,U

′
k + c1(U

′
k))d	g = a|S|, (5.14)

we have∫
S

f (u1
0, u

2
0,U

′
0 + c′

1)d	g = a|S|. (5.15)

Similarly, we get∫
f (v1

0, v2
0,V ′

0 + c′
2)d	g = b|S|. (5.16)
S
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Hence from Lemma 5.1 we see that (c′
1, c

′
2) = (c1(U

′
0), c2(V

′
0)). Then Lemma 5.2 follows.

At this point we can define an operator

T : Ẇ 1,2(S) → Ẇ 1,2(S)

as follows. For (U ′, V ′) ∈ Ẇ 1,2(S), let (c1(U
′), c2(V

′)) be defined by Lemma 5.1. Define 
(Ũ ′, Ṽ ′) = T (U ′, V ′) where Ũ ′ and Ṽ ′ are the unique solutions of

�Ũ ′ = 8
(
f (u1

0, u
2
0,U

′ + c1(U
′)) − a

)
− 4

(
f (v1

0, v2
0,V ′ + c2(V

′)) − b
)

, (5.17)

�Ṽ ′ = −4
(
f (u1

0, u
2
0,U

′ + c1(U
′)) − a

)
+ 4

(
f (v1

0, v2
0,V ′ + c2(V

′)) − b
)

, (5.18)

respectively. In fact, for any (U ′, V ′) ∈ Ẇ 1,2(S), since the right-hand sides of (5.17) and (5.18)
have zero averages, the solutions Ũ ′ and Ṽ ′ of (5.17) and (5.18), respectively, are unique (cf. 
[4]). �

Next we show that the operator T admits a fixed point in Ẇ 1,2(S). To this end, we first 
establish the following lemma.

Lemma 5.3. The above operator T : Ẇ 1,2(S) → Ẇ 1,2(S) is completely continuous.

Proof. Assume (U ′
k, V

′
k) → (U ′

0, V
′
0) weakly in Ẇ 1,2(S). Hence by the compact embedding the-

orem we see that (5.8) holds.
Denote

(Ũ ′
k, Ṽ

′
k) = T (U ′

k,V
′
k) and (Ũ ′

0, Ṽ
′
0) = T (U ′

0,V
′
0). (5.19)

Therefore we have

�(Ũ ′
k − Ũ ′

0) = 8
(
f (u1

0, u
2
0,U

′
k + c1(U

′
k)) − f (u1

0, u
2
0,U

′
0 + c1(U

′
0))

)
− 4

(
f (v1

0, v2
0,V ′

k + c2(V
′
k)) − f (v1

0, v2
0,V ′

0 + c2(V
′
0))

)
= 8ft (u

1
0, u

2
0, Û

′ + ĉ1)
(
U ′

k − U ′
0 + c1(U

′
k) − c1(U

′
0)

)
− 4ft (v

1
0, v2

0, V̂ ′ + ĉ2)
(
V ′

k − V ′
0 + c2(V

′
k) − c2(V

′
0)

)
, (5.20)

�(Ṽ ′
k − Ṽ ′

0) = −4
(
f (u1

0, u
2
0,U

′
k + c1(U

′
k)) − f (u1

0, u
2
0,U

′
0 + c1(U

′
0))

)
+ 4

(
f (v1

0, v2
0,V ′

k + c2(V
′
k)) − f (v1

0, v2
0,V ′

0 + c2(V
′
0))

)
= −4ft (u

1
0, u

2
0, Û

′ + ĉ1)
(
U ′

k − U ′
0 + c1(U

′
k) − c1(U

′
0)

)
+ 4ft (v

1
0, v2

0, V̂ ′ + ĉ2)
(
V ′

k − V ′
0 + c2(V

′
k) − c2(V

′
0)

)
, (5.21)

where Û ′
k lies between U ′

k and U ′
0, V̂ ′

k between V ′
k and V ′

0, ĉ1 between c1(U
′
k) and c1(U

′
0), and 

ĉ2 between c2(V
′
k) and c2(V

′
0).

Multiplying both sides of (5.20) and (5.21) by Ũ ′
k − Ũ ′

0 and Ṽ ′
k − Ṽ ′

0, respectively, and inte-
grating by parts, we obtain

‖∇(Ũ ′
k − Ũ ′

0)‖2
2 ≤

∫
S

{
4
(|U ′

k − U ′
0| + |c1(U

′
k) − c1(U

′
0)|

)

+ 2
(|V ′

k − V ′
0| + |c2(V

′
k) − c2(V

′
0)|

)}|Ũ ′
k − Ũ ′

0|d	g, (5.22)
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‖∇(Ṽ ′
k − Ṽ ′

0)‖2
2 ≤ 2

∫
S

(
|U ′

k − U ′
0| + |c1(U

′
k) − c1(U

′
0)|

+ |V ′
k − V ′

0| + |c2(V
′
k) − c2(V

′
0)|

)
|Ṽ ′

k − Ṽ ′
0|d	g, (5.23)

where the property (3.20) is used.
Combining (5.22) with (5.23), and using the Poincaré inequality, we arrive at

‖∇(Ũ ′
k − Ũ ′

0)‖2
2 + ‖∇(Ṽ ′

k − Ṽ ′
0)‖2

2 ≤ C
(
‖U ′

k − U ′
0‖2

2 + ‖V ′
k − V ′

0‖2
2

+ |c1(U
′
k) − c1(U

′
0)|2 + |c2(V

′
k) − c2(V

′
0)|2

)
(5.24)

for some C > 0. Then, from (5.8), Lemma 5.2, and (5.24), we see that

(∇Ũ ′
k,∇Ṽ ′

k) → (∇Ũ ′
0,∇Ṽ ′

0) strongly in L2(S) as k → ∞,

which, with (5.8), yields

(Ũ ′
k, Ṽ

′
k) → (Ũ ′

0, Ṽ
′
0) strongly in Ẇ 1,2(S) as k → ∞.

Then the proof of Lemma 5.3 is complete. �
Before applying the Leray–Schauder fixed-point theory, we need to estimate the solution of 

the fixed-point equation,

(U ′
t , V

′
t ) = tT (U ′

t , V
′
t ), 0 ≤ t ≤ 1. (5.25)

Lemma 5.4. For any (U ′
t , V

′
t ) satisfying (5.25), there exists a constant C > 0 independent of 

t ∈ [0, 1] such that

‖U ′
t ‖Ẇ 1,2(S) + ‖V ′

t ‖Ẇ 1,2(S) ≤ C. (5.26)

Proof. From (5.25) we have

�U ′
t = 8t

(
f (u1

0, u
2
0,U

′
t + c1(U

′
t )) − a

)
− 4t

(
f (v1

0, v2
0,V ′

t + c2(V
′
t )) − b

)
, (5.27)

�V ′
t = −4t

(
f (u1

0, u
2
0,U

′
t + c1(U

′
t )) − a

)
+ 4t

(
f (v1

0, v2
0,V ′

t + c2(V
′
t )) − b

)
. (5.28)

Multiplying both sides of (5.27) and (5.28) by U ′
t and V ′

t , respectively, and integrating by 
parts, we see that

‖∇U ′
t ‖2

2 ≤
∫
S

(
8|f (u1

0, u
2
0,U

′
t + c1(U

′
t ))| + 4|f (v1

0, v2
0,V ′

t + c2(V
′
t ))|

)
|U ′

t |d	g

≤ 12
∫
S

|U ′
t |d	g,

‖∇V ′
t ‖2

2 ≤
∫
S

(
4|f (u1

0, u
2
0,U

′
t + c1(U

′
t ))| + 4|f (v1

0, v2
0,V ′

t + c2(V
′
t ))|

)
|V ′

t |d	g

≤ 8
∫
S

|V ′
t |d	g,

where we have used (3.25). Then by the Poincaré inequality, we get the desired estimate (5.26).
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Now using Lemmas 5.3, 5.4, and the Leray–Schauder fixed-point theorem (cf. [17]), we see 
that the operator T admits a fixed point, say (U ′, V ′), in Ẇ 1,2(S). Thus (U ′ + c1(U

′), V ′ +
c2(V

′)) is a solution of (5.1) and (5.2), i.e. a solution of (3.17) and (3.18).
Hence we have completed the proof of Theorem 3.2. �

6. Explicit calculation of minimum energy

In this section we establish the minimum energy formula (2.48) and show how it is stratified 
topologically.

By equations (2.40)–(2.43), the fact ∗1 = d	g , and (3.10)–(3.11), we see that∫
S

(F̂ − F̃ ) = 4
∫
S

∗1 − eu

eu + 1
− 2

∫
S

∗1 − ev

ev + 1
= 2π(N1 − P1), (6.1)

∫
S

F̃ = −2
∫
S

∗1 − eu

eu + 1
+ 2

∫
S

∗1 − ev

ev + 1
= 2π(N2 − P2), (6.2)

are valid, which give us∫
S

F̂ = 2π(N1 − P1 + N2 − P2). (6.3)

To calculate the lower bound of the energy, we need to compute the fluxes contributed by the 
current densities K(q) and K(p).

Take a coordinate chart {Uj } of S. Assume z′′
1,j ∈ Uj , j = 1, . . . , P1. In local coordinates, we 

have Diq = ∂iq − i(Âi − Ãi)q , i = 1, 2 and the density K(q) in Uj can be written as

K(q) = − 2|q|2
1 + |q|2 (F̂ − F̃ ) + i

DiqDjq − DiqDjq

(1 + |q|2)2
dxi ∧ dxj . (6.4)

Besides, in K(q) = dJ (q), we have

J (q) = i

1 + |q|2 (qDiq − qDiq)dxi. (6.5)

Then it follows from the Stokes formula that∫
S

K(q) =
∫
S

dJ (q) =
P1∑

j=1

lim
r→0

∮
∂B(z′′

1,j ,r)

J (q), (6.6)

where B(z, r) denotes a disc centered at z with radius r > 0 and all the line integrals are taken 
counterclockwise.

Note that near z′′
1,j ∈P(q), the section q has the representation

q(z) = z−1hj (z, z), z = x1 + ix2, x1(z′′
1,j ) = x2(z′′

1,j ) = 0, (6.7)

where hj is a non-vanishing function defined near z′′
1,j .

From equation (2.40) we see that

Â1 − Ã1 = −2Re(i∂ lnu), Â2 − Ã2 = −2Im(i∂ lnu), (6.8)
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which, with u = ln |q|2, implies

D1q = (∂ + ∂)q +
(

∂q

q
− ∂q

q

)
q = q∂u, (6.9)

D2q = i(∂ − ∂)q + i

(
∂q

q
+ ∂q

q

)
q = iq∂u. (6.10)

Then, by (6.6), (6.9), and (6.10), we have

∮
∂B(z′′

1,j ,r)

J (q) = i
∮

∂B(z′′
1,j ,r)

|q|2
1 + |q|2 ([∂ − ∂]udx1 − i[∂ + ∂]udx2)

=
∮

∂B(z′′
1,j ,r)

eu

1 + eu
(∂2udx1 − ∂1udx2). (6.11)

Noting (6.7), near z′′
1,j ∈P(q), we see that

u = −2 ln |z| + wj , (6.12)

where wj is a smooth function. Thus we obtain

lim
r→0

∮
∂B(z′′

1,j ,r)

J (q) = 4π, (6.13)

which, with (6.6), gives∫
S

K(q) = 4πP1. (6.14)

Following a similar procedure, we have∫
S

K(p) = 4πP2. (6.15)

As described in [31], the normalized integrals 1
4π

∫
K(q) and 1

4π

∫
K(p), counting the num-

bers P1, P2 of anti-vortices of the two species, are the Thom classes of the dual bundle L∗ → S, 
of two respective classification (Chern) classes, 1

2π

∫
(F̂ − F̃ ) and 1

2π

∫
F̃ .

Hence, by (2.37)–(2.39), (6.3), (6.14), and (6.15), we obtain the following topologically strat-
ified minimum energy

E =
∫
S

2([F̂ − F̃ ] + F̃ + K(q) + K(p)) = 4π(N1 + P1 + N2 + P2), (6.16)

as stated in Theorem 2.2.
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7. Conclusions and remarks

In this work we have extended the formalism of Tong and Wong [35] of a product Abelian 
Higgs theory describing a coupled vortex system with magnetic impurities to accommodate co-
existing vortices and anti-vortices of two species realized as topological solitons governed by a 
BPS system of equations. In additional to the usual first Chern classes suited over a complex 
Hermitian line bundle, the presence of anti-vortices switches on the Thom classes over the dual 
bundle, as in [31]. When the underlying Riemann surface S where vortices and anti-vortices 
reside is compact, we have established a theorem which spells out a necessary and sufficient 
condition, consisting of two inequalities, (2.46) and (2.47), for prescribed N1, N2 vortices and 
P1, P2 anti-vortices, of two respective species, to exist.

This necessary and sufficient condition contains a few special situations worthy of mentioning.

(i) When N2 = P2 = 0 (only vortices and anti-vortices of the first species are present), the 
condition becomes

|N1 − P1| < |S|
π

. (7.1)

(ii) When N1 = P1 = 0 (only vortices and anti-vortices of the second species are present), the 
condition reads

|N2 − P2| < |S|
2π

. (7.2)

(iii) When N1 = N2 = N and P1 = P2 = P (there are equal numbers of vortices and anti-
vortices, respectively, of two species), the condition is

|N − P | < |S|
3π

. (7.3)

In all these situations, the numbers of vortices and anti-vortices may be arbitrarily large, pro-
vided that the differences of these numbers are kept in suitable ranges as given.

Although the vortices and anti-vortices of the two species do not appear in the model in a sym-
metric manner as seen in the field-theoretical Lagrangian density and the governing equations, 
they make equal contributions to the total topologically stratified minimum energy as stated in 
(2.48) of an elegant form.

Let M(N1, P1, N2, P2) denote the moduli space of solutions of the BPS equations (2.40)–
(2.43) with N1 +N2 and P1 +P2 prescribed vortices and anti-vortices, of two respective species. 
Since these solutions depend on at least 2(N1 + N2 + P1 + P2) continuous parameters which 
specify the locations of zeros and poles of the two sections q , p, respectively, we obtain the 
following lower bound for the dimensionality of M(N1, P1, N2, P2):

dim(M(N1,P1,N2,P2)) ≥ 2(N1 + N2 + P1 + P2). (7.4)

Since we have not established the uniqueness of a solution with N1 +N2 and P1 +P2 prescribed 
vortices and anti-vortices of the two species yet, we do not know whether the inequality (7.4) is 
actually an equality. In this regard, it will be interesting to carry out an investigation along the 
(well-known classical) index theory work of Atiyah, Hitchin, and Singer [2,3] on the Yang–Mills 
instantons, of Weinberg [39] on the BPS system of the Abelian Higgs model, and of Lee [21] on 
supersymmetric domain walls, for our new system of equations (2.40)–(2.43).
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In a sharp contrast, if we use M(N1, N2) to denote the moduli space of the solutions of 
the Tong–Wong equations (2.11)–(2.14) with N1 and N2 prescribed vortices, of two respective 
species, the established uniqueness of the solutions indicates the result

dim(M(N1,N2)) = 2(N1 + N2). (7.5)

See [23] for some recent related work.
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