
A diffusion-neural-network for learning
from small samples q

Chongfu Huang a,*, Claudio Moraga b

a Institute of Resources Science, Beijing Normal University, 19, Xinjiekouwai Street, Beijing 100875,

China
b Department of Computer Science, Computer Engineering and Computing Education,

University of Dortmund, 44221 Dortmund, Germany

Received 1 June 2003; accepted 1 June 2003

Abstract

Neural information processing models largely assume that the patterns for training a

neural network are sufficient. Otherwise, there must exist a non-negligible error between

the real function and the estimated function from a trained network. To reduce the

error, in this paper, we suggest a diffusion-neural-network (DNN) to learn from a small

sample consisting of only a few patterns. A DNN with more nodes in the input and

layers is trained by using the deriving patterns instead of original patterns. In this paper,

we give an example to show how to construct a DNN for recognizing a non-linear

function. In our case, the DNN’s error is less than the error of the conventional BP

network, about 48%. To substantiate the special case arguments, we also study other

two non-linear functions with simulation technology. The results show that the DNN

model is very effective in the case where the target function has a strong non-linearity or

a given sample is very small.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Neural network; Non-linear function; Fuzzy information; Information

diffusion

qProject supported by a Mercator Visiting Professorship of the German Research Society DFG,

granted to Prof. Chongfu Huang at the University of Dortmund.
*
Corresponding author. Fax: 86-10-62208178.

E-mail addresses: nortzw@irs.bnu.edu.cn, hchongfu@bnu.edu.cn (C. Huang).

0888-613X/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.ijar.2003.06.001

www.elsevier.com/locate/ijar

International Journal of Approximate Reasoning 35 (2004) 137–161

1. Introduction

Artificial neural networks have received extensive attention during the last

two decades. It is well known that they can solve many practical problems as

pattern recognition [21], function approximation [24], system identification

[17], time series forecasting, etc. [5,20].

Neuro-fuzzy modeling is concerned with the extraction of models from

numerical data representing the behaviour of a system. The models in this case

are rule-based and use the formalism of fuzzy logic, i.e. they consists of sets of

fuzzy ‘‘if-then’’ rules with possibly several premises [18].
Neural information processing models largely assume that: (i) the patterns

are compatible; (ii) the learning patterns for training a neural network are

sufficient.

If the patterns are contradictory, the neural network does not converge

because the adjustments of weights and thresholds do not know where to turn.

In 1996, Huang and Ruan [13] used the information diffusion method [7,8] and

the falling shadow theory [25] to construct an information diffusion network

(IDN) based on BP algorithm to solve the problem of contradictory patterns.
An IDN always converges. For every result of IDN method, its reliability can

be analysed conveniently. In 1999, Huang and Leung [12] suggested a hybrid

fuzzy-neural-network to estimate the relationship between isoseismal area and

earthquake magnitude. In the model, the information diffusion method is

employed to construct fuzzy ‘‘if-then’’ rules as many as the given observations.

Integrating the rules to form an information-diffusion-approximate-reasoning

estimator (IDAR), we can change contradictory patterns to be compatible for

training a BP network. The hybrid-model estimator is more precise than the
linear-regression estimator, and more stable than the conventional BP-neural-

network estimator. These two hybrid models put forward the case that con-

tradictory patterns can be learned by neural networks. In other words, with the

help of the information diffusion technique [10,14], we have resolved the

problem related to contradictory patterns.

If the learning patterns are insufficient, it is impossible to recognize a non-

linear system, i.e, there must exist a non-negligible error between the real

function and the estimated function from a trained network. Developing the
information diffusion technique, in this paper, we suggest another hybrid

model to reduce the error of estimated function from a BP network trained by

a small sample.

2. Conventional BP networks trained by small samples

A neural network can be understood [16] as a mapping f : Rp ! Rq, defined

by

138 C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161

y ¼ f ðxÞ ¼ uðWxÞ;

where x 2 Rp (Rp ¼ Rp, R is the set of real numbers) is the input vector, y 2 Rq is

the output vector. The weight matrix W is a p � q matrix and u is a non-linear

function that is often referred to as the activation function. The typical acti-

vation function is the Sigmoid function

uðxÞ ¼ 1

1þ e�ax
; a > 0:

The mapping f can be decomposed into a chaining of mappings; the result is a

multi-layer network

Rp ! Rm ! � � � ! Rn ! Rq:

The algorithm for computing W is often called the training algorithm. The

most popular neural networks are the multi-layer back-propagation networks

whose training algorithm is the well-known gradient descent method. Such
networks are called BP networks.

A conventional BP network (CBPN) consists of an input layer (the first

layer), an output layer (the last layer), and some hidden layers. To recognize a

function with p input variables and q output variable, in general, we set p nodes
in the input layer and q nodes in the output layer. In other words, the number

of nodes in the first and last layer is just equal to the number of input and

output variables, respectively.

Relationships between variables are most often recognized by learning
neural networks with data or patterns collected. The approach is also called

adaptive pattern recognition [19]. For the majority of cases, the applied neural

networks, from a statistical point of view, solve conditional estimation prob-

lems [15]. The celebrated back propagation error algorithm used for training

feed forward neural networks is shown to be a special case of gradient opti-

mization in the sense of mean squared error [22]. Feed forward neural networks

are analyzed in [27] for consistent estimation of conditional expectation

functions, which optimize the expected squared error.
In the learning phase of training such a network, we present the pattern

xp ¼ fipig as input and ask that the network adjust the set of weights in all the

connecting links and also all the thresholds in the nodes such that the desired

outputs y
p
¼ ftpkg are obtained at the output nodes. Once this adjustment is

made, we present another pair of xp ¼ fipig and y
p
¼ ftpkg, and ask that the

network learn that association also. In fact, we ask that the network find a

single set of weights and biases that will satisfy all the (input, output) pairs

presented to do it. This process can pose a very strenuous learning task and is
not always readily accomplished.

In general, the outputs fopkg of the network will not be the same as the

target or desired values ftpkg. For each pattern, the square of the error is

C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161 139

Ep ¼
1

2

X
k

ðtpk � opkÞ2

and the average system error is

E ¼ 1

2P

X
p

X
k

ðtpk � opkÞ2; ð1Þ

where P is the sample size and the one-half scaling factor is inserted for

mathematical convenience. A true gradient search for minimum system error

should be based on the minimization of expression (1).

A number of authors have discussed the property of universal approxima-
tion with respect to neural networks. For example, in 1989 Cybenko [2] and

Funahashi [4] showed that any continuous function can be approximated by a

neural network with one internal hidden layer using sigmoidal non-linearities.

Also in 1989 Hornik et al. [6] proved that multi-layer networks using arbitrary

Squashing functions can approximate any continuous function to any degree

of accuracy, provided enough hidden units are available. However, in 1995,

Wray and Green [28] proved that, due to the fact that networks are imple-

mented on computers, the property of universal approximation (to any degree
of accuracy) does not hold in practice.

Their results come from an assume that we can get patterns as many as we

need to train networks. Otherwise, what will happen? Let us consider a simple

non-linear function

y ¼ x2; x 2 ½0; 1�: ð2Þ

Our task is to learn the function with the following sample:

A ¼ fðxp; ypÞ jp ¼ 1; 2; 3; 4; 5g

¼ fð0; 0Þ; ð1=4; 1=16Þ; ð1=2; 1=4Þ; ð3=4; 9=16Þ; ð1; 1Þg: ð3Þ

A conventional BP network (Fig. 1) with one input node, and one output

node can be used to learn from this small sample. The number of input and

output nodes correspond to the number of input and output dimensions, re-

spectively.

It is acknowledged that is difficult to determine the number of hidden nodes.

That is why numerous algorithms can be found [1,3,11,26]. Many have believed

that a network with the minimum number of hidden nodes is the best gener-

alizing network. This is not true. It is quite easy to show by example that
sometimes a network with more than the minimum number of hidden nodes

generalizes better. Our interest of this paper is not this topic. The approach we

use to find the number of hidden nodes is to start with a few numbers of nodes,

140 C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161

then slightly increase the number, until no significant improvement is noted. In

our case, the result of this approach reveals: the number of hidden nodes is 15.

Let the momentum rate be g ¼ 0:9 and the learning rate be a ¼ 0:7. After

6 000 000 iterations, the normalized system error is 0.0000000773. Fig. 2 shows

the real function y ¼ x2 in the thick curve and the estimated function of trained

BP network in the thin curve. We could get the result that the estimated one is
not close to the real one for many values of x in ½0; 1�.

We may increase the sample size, which must always be of benefit, but it

may imply more expense if data collection is costly, as when, for example,

dangerous real measurements or complex technical experiments have to be

performed. In this situation we would like a new viewpoint which would help

us to improve estimated functions of trained BP networks on a small sample.

Fig. 1. The architecture of a conventional BP network to learn with the sample in (3). It is a to-

pology 1–K–1 BP network.

0.2 0.4 0.6 0.8 1 1.2
X

0.2

0.4

0.6

0.8

1

Y

estimated curve

real function

patterns

Fig. 2. Comparison between the real function (thick curve) and the estimated function (thin curve)

from a BP network with topology 1–15–1.

C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161 141

3. Small-sample problem and information diffusion techniques

From a small sample, any classical network cannot recognize a non-linear

function. Is there any techniques to ease the problem? The answer is positive.

The principle of information diffusion [14] asserts that, when we use an in-

complete-data set to estimate a relationship, there must exist reasonable dif-

fusion means to change observations into fuzzy sets to partly fill the gap caused

by incompleteness and improve non-diffusion estimate.

The information diffusion techniques were suggested to deal with so-called

small-sample problem by fuzzy set theory.
Let X ¼ fx1; x2; . . . ; xng be a given sample, called a data set, drawn from a

population X. We assume that X will be employed to estimate a relation R in X.

Definition 1. Give a sample X . Let R be the real relation we want to know. X is

called a correct-data set to R if and only if there exists a model c in which we

can obtain an estimate Rc
X such that Rc

X ¼ R.
Let the size of X be n. Let U be the universe of the relation R described by X.

For example, the universe of the relation y ¼ 1:5x is R� R, i.e., U ¼ R2.
The set of all random samples with size n drawn from X is called the

n-sample space of X, denoted by Xn. The set of all models by which we can

estimate R with a given sample is called the operator space, denoted by C.
8X 2 Xn, 8c 2 C, we use rcX ðuÞ to denote the estimate of R at a point u 2 U with

X by c.

Definition 2. Let X 2 Xn. X is called a handicapped sample if and only if 8cC,
9u 2 U , such that

jrcX ðuÞ � rðuÞj > 0: ð4Þ

Definition 3. Xn is called an incomplete sample space of X if and only if 9X 2 Xn

and X is handicapped.

Definition 4. X 2 Xn is called an incomplete-data set if and only if Xn is in-
complete.

An incomplete-data set X is called an incomplete sample. In a situation with

an incomplete sample, we say that we face a small-sample problem.

Definition 5. Let X be a sample and V be a subset of U . A mapping from X � V
to ½0; 1�

l : X � V ! ½0; 1�;
ðx; vÞ 7! lðx; vÞ 8ðx; vÞ 2 X � V

ð5Þ

142 C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161

is called an information diffusion of X on V if it is decreasing: 8x 2 X ,

8v0; v00 2 V , if kv0 � xk6 kv00 � xk then lðx; v0ÞP lðx; v00Þ. l is called a diffusion
function and V is called a monitoring space.

Definition 6. The trivial diffusion is defined by

lðx; uÞ ¼ 1; if u ¼ x;
0; otherwise:

�
ð6Þ

Definition 7. DðX Þ ¼ flðx; uÞ jx 2 X ; u 2 Ug is called the sample of fuzzy sets
(FS) derived from X on U by information diffusion.

Definition 8. Let X be a given sample which can be used to estimate a rela-

tionship R by the operator c. If the estimate is calculated by using the FS DðX Þ,
the estimate is called the diffusion estimate of R, denoted by

eRðc;DðX ÞÞ ¼ fcðlðxi; uÞÞ jxi 2 X ; u 2 Ug; ð7Þ

where lðxi; uÞ is a diffusion function of X on U .

Correspondingly, the estimated relationship bR that directly comes from a

given sample X by an operator c is denoted as bRðc;X Þ. It is called the non-
diffusion estimate of R.

Corollary 1. A trivial diffusion estimate is a non-diffusion estimate.

One easily verifies any kernel function KðxÞ [23] as a diffusion function is

sufficient and conservative.

The principle of information diffusion. Let X ¼ fx1; x2; . . . ; xng be a given

sample which can be used to estimate a relationship R on universe U . If and

only if X is incomplete, there must exist a diffusion function lðxi; uÞ and a

corresponding operator c that leads to a diffusion estimate eRðc;DðX ÞÞ such

that it is nearer to the real R than any non-diffusion estimate.
The principle of information diffusion guarantees the existence of reasonable

diffusion functions to improve the non-diffusion estimates when the given

samples are incomplete. In other words, when X is incomplete, there must exist

some approach to pick up fuzzy information of X for more precisely estimating

a relationship as function approximation. However, the principle does not

provide any indication on how to find the diffusion functions.

Although the principle is given as an assertion, it holds, at least, in the case

of estimating a probability density function (pdf), as proven in [7].
After researching the similarities of information and molecules in diffusion

action, we can obtain a partial differential equation [7] to represent the infor-

mation diffusion. Solving the equation, we obtain a diffusion function

C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161 143

lðx; uÞ ¼ 1

h
ffiffiffiffiffiffi
2p

p exp

"
� ðx� uÞ2

2h2

#
ð8Þ

named normal diffusion, because the function is just the same as the normal

pdf.
According to computer simulation test results, we suggest the following

formula to calculate h

h ¼

0:6841ðb� aÞ for n ¼ 5;
0:5404ðb� aÞ for n ¼ 6;
0:4482ðb� aÞ for n ¼ 7;
0:3839ðb� aÞ for n ¼ 8;
2:6851ðb� aÞ=ðn� 1Þ for nP 9;

8>>>><>>>>: ð9Þ

where

b ¼ max
16 i6 n

fxig; a ¼ min
16 i6 n

fxig:

h is called diffusion coefficient.

4. Deriving patterns by information diffusion

Let X ¼ fx1; x2; . . . ; xng be a given sample with input a and output b, i.e.,
xi ¼ ðai; biÞ, that will be used to train a BP network.

That data X is incomplete implies that the patterns are insufficient. In other

words, we need more patterns to train the BP network for obtaining a more

accurate estimate of input–output relation. The new patterns obtained from

this X are called derivative patterns from X .

According to the principle of information diffusion we know that, there

must exist a diffusion function l and a corresponding operator that lead to a
diffusion estimate nearer the real input–output relation.

The simplest model based on this principle to derive patterns is suggested in

[9] where an observation x 2 R is used to derive 10–50 points through a

pseudo-random generator controlled by pdf

pðuÞ ¼ 1

h
ffiffiffiffiffiffi
2p

p exp

"
� ðx� uÞ2

2h2

#
; u 2 R: ð10Þ

By this way, we can reduce the error of estimate of pdf from which X was

drawn.

Developing the above model to be a 2-dimensional model for deriving

patterns from xi ¼ ðai; biÞ is good in theory, but does it work in practice? In the
case of training a BP network, the experiment failed. The reason is that the

deriving patterns may be contradictory. The neural network does not converge.

The more the derivative patterns, the more difficult the training.

144 C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161

The failure of the conventional BP network for a small sample tells us

(1) We need a new model for deriving patterns to improve BP estimate.
(2) We need a new topology BP network to replace the 1–K–1 network for

learning derivative patterns.

Let us consider what we can do with the normal diffusion function shown

in (8). This lðx; uÞ is a membership function of a fuzzy set that can be written

as

lxðuÞ ¼ lðx; uÞ; x 2 X ; u 2 R: ð11Þ
According to the relation between the membership and possibility [29],

lxðu0Þ can be translated to be the possibility that u ¼ u0. Thus, we get a pos-

sibility distribution p0ðuÞ on R associated with variable u from x

p0
xðuÞ ¼ lxðuÞ; u 2 R: ð12Þ

The normal diffusion derives the following possibility distribution

p0
xðuÞ ¼

1

h
ffiffiffiffiffiffi
2p

p exp

"
� ðx� uÞ2

2h2

#
; u 2 R: ð13Þ

The nearer the u is to x, the larger the possibility to be equal to x. The largest
possibility is 1=ðh

ffiffiffiffiffiffi
2p

p
Þ. The corresponding normalized distribution is

pxðuÞ ¼ exp

"
� ðx� uÞ2

2h2

#
; u 2 R; ð14Þ

where the largest possibility is 1.

Recall that our derivation problem is to design a model using the n labeled

patterns ðai; f ðaiÞÞ, i ¼ 1; 2; . . . ; n (n is small as n ¼ 5) to estimate mapping f as

precisely as possible. In general, we use ðxi; yiÞ to denote ðai; f ðaiÞÞ. We want to

find y ¼ f ðxÞ by a BP network on the labeled patterns ðxi; yiÞ.
If the linear correlation coefficient r that measures the strength of the re-

lationship between the paired x and y values in a sample is 1, the function f
must be a line. In other words, for a given sample X with r ¼ 1, it is unnec-

essary to derive any new pattern. It seems fairly obvious that r is an important

information for deriving patterns. It can be calculated by

rxy ¼
lxyffiffiffiffiffiffiffiffiffiffi
lxxlyy

p ; ð15Þ

where

lxx ¼
Xn

i¼1

ðxi � �xÞ2; lyy ¼
Xn

i¼1

ðyi � �yÞ2

C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161 145

and

lxy ¼
Xn

i¼1

ðxi � �xÞðyi � �yÞ;

where

�x ¼ 1

n

Xn

i¼1

xi; �y ¼ 1

n

Xn

i¼1

yi:

For example, using formula (15) on the patterns in (3), we obtain

r ¼ 0:625ffi
0:625� 0:6797

p ¼ 0:9589 � 0:96:

Naturally we let

exp

"
� ðx� uÞ2

2h2

#
¼ 0:96

to find u from x as a derivative point. However, the neural network still does

not converge.

In fact, we never consider the normal diffusion with the coefficient calculated

by formula (9) can fit any case. For our case that a diffusion function is em-

ployed to derive patterns to improve training BP networks, the normal diffu-
sion and its coefficient may not be the best choice. The derivative patterns may

be more contradictory so that they produce convergence problems. However

we know that, the nearer the derived patterns are to the given pattern, the

smaller the contradiction. A linear correlation coefficient r also provides some

information to assign the distance from a given pattern to a derived pattern.

When r ¼ 1 we assign value 0 to the distance between a given point x and its

derivative point u. When r ¼ 0:96 we assign 0.999999 to the distance. In this

way, we can avoid convergence problems.
In general, if the linear correlation coefficient of a sample

X ¼ fðx1; y1Þ; ðx2; y2Þ; . . . ; ðxn; ynÞg

is r ¼ 0:9þ m� 10�2, m ¼ 1; 2; . . . ; 9, we can use

exp

"
� ðxi � xÞ2

2h2x

#
¼ 0:9 . . . 9|fflfflfflffl{zfflfflfflffl}

there arem 9s

ð16Þ

and

exp

"
� ðyi � yÞ2

2h2y

#
¼ 0:9 . . . 9|fflfflfflffl{zfflfflfflffl}

there arem 9s

; ð17Þ

146 C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161

where both hx and hy can be obtained by using formula (9), to derive new

pattern ðx; yÞ.
We define a mapping w to represent this change

w : r ! poss ðpossibilityÞ;
wð1Þ 7! 1;

wð0:9þ m� 10�2Þ 7! 0:9 . . . 9|fflfflfflffl{zfflfflfflffl}
m 9s

8r 2 f0:91; 0:92; . . . ; 0:99g:
ð18Þ

Let

exp

"
� ðx� uÞ2

2h2

#
¼ wðrÞ: ð19Þ

We have

u ¼ x�
ffi
�2h2 lnwðrÞ

p
: ð20Þ

Hence, from xi we can derive three points

x0i ¼ xi �
ffi
�2h2x lnwðrÞ

q
with poss ¼ wðrÞ;

xi with poss ¼ 1;

x00i ¼ xi þ
ffi
�2h2x lnwðrÞ

q
with poss ¼ wðrÞ:

ð21Þ

Also from yi we have

y0i ¼ yi �
ffi
�2h2y lnwðrÞ

q
with poss ¼ wðrÞ;

yi with poss ¼ 1;

y00i ¼ yi þ
ffi
�2h2y lnwðrÞ

q
with poss ¼ wðrÞ:

ð22Þ

On the assumption that y ¼ f ðxÞ is increasing, from one pattern ðxi; yiÞ, we
obtain three patterns

ðx0i; y 0iÞ with poss ¼ wðrÞ;
ðxi; yiÞ with poss ¼ 1;

ðx00i ; y 00i Þ with poss ¼ wðrÞ:
ð23Þ

5. Diffusion-neural-network

Using the above deriving model, from a given sample

X ¼ fðxi; yiÞ j i ¼ 1; 2; . . . ; n; xi; yi 2 Rg; ð24Þ

C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161 147

where each pattern has one input value and one output value, on the as-

sumption that y ¼ f ðxÞ is increasing, we obtain 3n derivative patterns so that
we have a new sample

X 0 ¼ fððx01;wðrÞÞ; ðy01;wðrÞÞÞ; ððx1; 1Þ; ðy1; 1ÞÞ; ððx001;wðrÞÞ; ðy 001 ;wðrÞÞÞ; . . . ;
ððx0n;wðrÞÞ; ðy 0n;wðrÞÞÞ; ððxn; 1Þ; ðyn; 1ÞÞ; ððx00n;wðrÞÞ; ðy00n ;wðrÞÞÞg;

where r is calculated by formula (15), w is defined by (18), and x0i, y
0
i , x

00
i , y

00
i ,

i ¼ 1; 2; . . . ; n, are calculated by using (21) and (22). In this new sample each

pattern has two input values and two output values. This sample also can be

written as

X 0 ¼ fððxdj; possjÞ; ðydj; possjÞÞ j j ¼ 1; 2; . . . ; 3ng; ð25Þ

where

xdj ¼
x0i; if j ¼ 3i� 2;

xi; if j ¼ 3i� 1;

x00i if j ¼ 3i;

8><>: i ¼ 1; 2; . . . n;

ydj ¼
y0i ; if j ¼ 3i� 2;

yi; if j ¼ 3i� 1;

y00i if j ¼ 3i;

8><>: i ¼ 1; 2; . . . n

and

possj ¼
wðrÞ; if j ¼ 3i� 2 or j ¼ 3i;
1; if j ¼ 3i� 1;

�
i ¼ 1; 2; . . . n:

Above derivative sample can be used to train a conventional BP-neural-

network with two nodes in the input layer, and two nodes in the output layer.

That is a topology 2–K–2 BP network to replace 1–K–1 network for learning

derivative patterns. Its architecture can be shown by Fig. 3, called diffusion-
neural-network (DNN). In the input layer, one node is for the variable x, an-
other is for the possibility poss. In output layer, one node is for the variable y,
another is for the possibility poss.

We can regard x0 as ðx0; 1Þ to be an input of the trained DNN. If the output

of the DNN is ðy0; zÞ and z is near 1, we say that the estimated value is y0. In
this way, we can get a new estimated function from a given sample X .

Let us define the benefit from the DNN model.

We suppose that the real function is y ¼ f ðxÞ. We use the notation
y ¼ CBPNðxÞ for the input x producing output y calculated by a conventional

BP network. We use y ¼ DNNðxÞ for the input x producing output y calculated
by a DNN.

148 C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161

To measure the error between the real function and an estimated function,

we take some points in domain of the real function to make a set

U ¼ fu1; u2; . . . ; umg: ð26Þ
Let

sCBPN ¼ 1

m

Xm
j¼1

ðf ðujÞ � CBPNðujÞÞ2 ð27Þ

and

sDNN ¼ 1

m

Xm
j¼1

ðf ðujÞ � DNNðujÞÞ2; ð28Þ

called the average square errors.

Obviously, sDNN < sCBPN means the DNN estimate is nearer the real function

than the estimate from the conventional BP network. In this case, the benefit of

DNN is defined by

B ¼ sCBPN � sDNN
sCBPN

� 100%: ð29Þ

It means DNN can reduce the error of CBPN estimate in B.

6. An example

We will study

X ¼ fðxi; yiÞ j i ¼ 1; 2; 3; 4; 5g
¼ fð0; 0Þ; ð1=4; 1=16Þ; ð1=2; 1=4Þ; ð3=4; 9=16Þ; ð1; 1Þg

Fig. 3. The architecture of diffusion-neural-network (DNN) to learn with the derivative sample in

(25). It is a topology 2–K–2 BP network.

C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161 149

to show the advantage of the DNN model. The given sample is the same as the

A in (3).
First, we derive more patterns from the given sample.

Using formula (9), we have diffusion coefficients

hx ¼ 0:6841 max
16 i6 n

fxig
�

� min
16 i6 n

fxig
�

¼ 0:6841;

hy ¼ 0:6841 max
16 i6 n

fyig
�

� min
16 i6 n

fyig
�

¼ 0:6841:

Using formula (15), we obtain linear correlation coefficient r ¼ 0:96.
According to the definition of wðrÞ given by (18) and using formulas (21)

and (22), from one pattern in X we can obtain tree derivative patterns. For

example, from the second pattern ðx2; y2Þ ¼ ð1=4; 1=16Þ, we obtain

x02 ¼ x2 �
ffi
�2h2x lnwðrÞ

q
¼ 1=4�

ffi
�2ð0:6841Þ2 ln 0:999999

q
¼ 0:249026;

x002 ¼ x2 þ
ffi
�2h2x lnwðrÞ

q
¼ 1=4þ

ffi
�2ð0:6841Þ2 ln 0:999999

q
¼ 0:250974;

y 02 ¼ y2 �
ffi
�2h2y lnwðrÞ

q
¼ 1=16�

ffi
�2ð0:6841Þ2 ln 0:999999

q
¼ 0:061526;

y 002 ¼ y2 þ
ffi
�2h2y lnwðrÞ

q
¼ 1=16þ

ffi
�2ð0:6841Þ2 ln 0:999999

q
¼ 0:063473:

Therefore, from pattern ð1=4; 1=16Þ, we obtain three patterns

ð0:249026; 0:061526Þ with poss ¼ 0:999999;

ð0:25; 0:0625Þ with poss ¼ 1;

ð0:250974; 0:063473Þ with poss ¼ 0:999999:

150 C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161

Hence, we obtain a derivative sample

X 0 ¼
fðð�0:000973; 0:999999Þ; ð�0:000973; 0:999999ÞÞ; ðð0; 1Þ; ð0; 1ÞÞ;

ðð0:000973; 0:999999Þ; ð0:000973; 0:999999ÞÞ;
ðð0:249026; 0:999999Þ; ð0:061526; 0:999999ÞÞ;
ðð0:25; 1Þ; ð0:0625; 1ÞÞ; ðð0:250974; 0:999999Þ; ð0:063473; 0:999999ÞÞ;
ðð0:499026; 0:999999Þ; ð0:249026; 0:999999ÞÞ; ðð0:5; 1Þ; ð0:25; 1ÞÞ;
ðð0:500974; 0:999999Þ; ð0:250974; 0:999999ÞÞ;
ðð0:749026; 0:999999Þ; ð0:561526; 0:999999ÞÞ;
ðð0:75; 1Þ; ð0:5625; 1ÞÞ; ðð0:750974; 0:999999Þ; ð0:563474; 0:999999ÞÞ;
ðð0:999026; 0:999999Þ; ð0:999026; 0:999999ÞÞ; ðð1; 1Þ; ð1; 1ÞÞ;
ðð1:000974; 0:999999Þ; ð1:000974; 0:999999ÞÞg:

ð30Þ

Second, we use the derivative sample to train a DNN with two nodes in the

input layer, one hidden layer with 15 nodes, and two nodes in the output layer.

Let the momentum rate be g ¼ 0:9 and the learning rate be a ¼ 0:7. After

6 000 000 iterations, the normalized system error is 0.0000004569. Fig. 4 shows

the real function y ¼ x2 in solid curve and the estimated functions from a

CBPN and a DNN. We could get the result that the estimated function from
the DNN is closer to the real function than the one from the CBPN.

Finally, we study the benefit of DNN model for this calculation case.

We take some points with step t ¼ 0:01 in domain ½0; 1� of the real function
y ¼ x2 to make the following set:

0.2 0.4 0.6 0.8 1 1.2
X

0.2

0.4

0.6

0.8

1

Y

CBPN estimate

real function

patterns

DNN estimate

Fig. 4. Estimating y ¼ x2 by a conventional BP network (CBPN) and a diffusion-neural-network

(DNN).

C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161 151

U ¼ fuj j j ¼ 1; 2; . . . ; 101g ¼ f0; 0:01; . . . ; 1g: ð31Þ

Using the real function, from U we obtain real function values whose form a

set

V ¼ fvj jvj ¼ u2j ; uj 2 Ug ¼ f0; 0:0001; . . . ; 1g:

Using the trained CBPN that gives the CBPN estimate curve of Fig. 4, we

obtain corresponding estimated values

VCBPN ¼ fvj jvj ¼ CBPNðujÞ; uj 2 Ug
¼ f0:000747; 0:000940; . . . ; 0:999538g:

Using the trained DNN that gives the DNN estimate curve of Fig. 4, we obtain

VDNN ¼ fvj jvj ¼ DNNðujÞ; uj 2 Ug ¼ f0:000353; 0:000483; . . . ; 0:999422g:

Using formulas (27) and (28), we have

sCBPN ¼ 0:004528; sDNN ¼ 0:002358:

Therefore

B ¼ 0:004528� 0:002358

0:004528
� 100% ¼ 48%:

It is interesting to note, if we choose the normalized system error the same as

in the trained DNN (that is larger than one in the trained CBPN) to control

training of a conventional BP network, we can get a smaller sCBPN . After

302 792 iterations, it arrives to a system error of 0.0000004569. Now,

sCBPN ¼ 0:003496. That is, a larger learning error leads to a smaller estimate

error. In this case B ¼ 33%.

According to the theory of the artificial neural network, the smaller the

system error, the higher accurate the estimated function. The reason why this
result is in contradiction with the theory is that the given patterns are so few.

However it cannot lead to say that the larger the system error, the smaller the

estimate error. Furthermore, it is more difficult to find a fit system error to

control training. Combining above benefits calculated by different controlling

parameters, roughly speaking, we can reduce the estimate error about 40% with

the DNN model.

Before closing this section we would like to address the issues of scalability

and complexity. Under the scalability of a system, usually its sensitivity to an
(increasing) number of data points is understood. In the present case, we would

have to speak of ‘‘reverse scalability’’, since our concern is the performance of

the proposed system under a decreasing number of data points for training.

The proposed system is robust to sparse training data. As the number of

152 C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161

training data points increases, the performance of the system approaches that

of a classical feed-forward neural network trained by a gradient descend al-
gorithm. Under the complexity of a system, the number of elementary com-

putation steps relative to the size of the sample is understood. Since the

proposed system first generates possible new training points and then trains the

neural network, the computational complexity will be higher than that of a

classical neural network using some form of backpropagation, however, since

the proposed system is meant to work with a small number of training points,

the real increase in computing time will not be of importance in the context of

improved performance.
To substantiate the special case arguments, we need more numerical results

to compare the CBPN model and DNN model. We employ simulation tech-

nology to fulfill it.

7. Simulation experiments with small samples

In this section, we use computer simulation to prove that DNN is better

than CBPN when a given sample X ¼ fðxi; yiÞ j i ¼ 1; 2; . . . ; ng of a non-linear

function y ¼ f ðxÞ is small.

As well known, the Sigmoid function used in BP networks as the activation
function has output value belonging to ½0; 1�. To avoid any calculation nor-

malizing X to be in ½0; l� � ½0; 1�, we only consider the X such that

X � ½0; l� � ½0; 1�.

7.1. Model description

Let A be a set consisting of n generated pseudo-random observations xi
(i ¼ 1; 2; . . . ; n) drawn from the uniform distribution Uð0; 1Þ. A is called an

input-sample. For a given function y ¼ f ðxÞ, we can have an output-sample

B ¼ fyi jyi ¼ f ðxiÞ; xi 2 Ag. We use X ¼ fðxi; yiÞ j i ¼ 1; 2; . . . ; ng to recognize

y ¼ f ðxÞ by a CBPN and a DNN, respectively.

We consider the cases that n ¼ 5; 7; 9. We employ a topology 1–15–1 BP
network to be a CBPN, and a topology 2–15–2 BP network to be a DNN. To

train these networks, we use g ¼ 0:9 to be the momentum rate and a ¼ 0:7 to

be the learning rate. For controlling the training, we set the number of itera-

tions to be 600 000 and the normalized system error to be 0.00001. In other

words, a neural network will be regarded as a trained network when it learns

600 000 times or its normalized system error is less or equal to 0.00001.

To reduce the error of the simulation experiments, we do 10 simulation

experiments with different seed numbers (randomly given) for each size n. The
average square error of estimates is a better index to show the quality of a

C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161 153

model. Suppose we have done N simulations, and sðiÞ is the result from the ith
simulation, the average square error is then defined by

s ¼ 1

N

XN
i¼1

sðiÞ: ð32Þ

There are many kinds of non-linear functions. However if a function has

continuous derivatives up to ðnþ 1Þth order, then this function can be ex-

panded in the following fashion:

f ðxÞ ¼ f ðaÞ þ f 0ðaÞðx� aÞ þ f 00ðaÞðx� aÞ2

2!
þ � � � þ f ðnÞðaÞðx� aÞn

n!
þ Rn;

where Rn, called the remainder after nþ 1 terms, is given by

Rn ¼
Z x

a
f ðnþ1ÞðuÞ ðx� uÞn

n!
du ¼ f ðnþ1ÞðnÞðx� aÞnþ1

ðnþ 1Þ! ; a < n < x:

When this expansion converges over a certain range cx, that is, limn!1 Rn ¼ 0,

then the expansion is called the Taylor Series of f ðxÞ expanded about a.
If a ¼ 0 the series is called the MacLaurin Series

f ðxÞ ¼ f ð0Þ þ f 0ð0Þ
1!

xþ f 00ð0Þ
2!

x2 þ � � �

Therefore, strictly speaking, if we want to prove the performance of a model

with respect to all continuous non-linear functions, we have to study its per-

formance for every term. Practically speaking, because limn!1 Rn ¼ 0, the main
part of a function consists of the first four terms. It is enough to study these

terms. According to the definition of the mapping w for deriving patterns, we

know that, for a linear function, DNN performs as CBPN. In last section, we

showed that, DNN is better than CBPN to estimate y ¼ x2. Hence, the next

task is to study y ¼ x3. Then, we can consider the case including x, x2 and x3.
Without loss in generality, we will study

y ¼ f1ðxÞ ¼ 0:01xþ 0:02x2 þ 0:9x3; x 2 ½0; 1�: ð33Þ

Considering the importance of the exponential function for engineering, we

also study

y ¼ f2ðxÞ ¼ 1� e�2x4 ; x 2 ½0; 1�: ð34Þ

In other words, if sDNN < sCBPN holds for both functions, then we almost obtain
the conclusion: DNN is better than CBPN.

We use Program 1 to generate uniform random numbers xi, i ¼ 1; 2; . . . ; n,
based on seed number SEED.

154 C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161

Program 1 (Generator of Random Numbers Obeying Uniform Distribution
Uð0; 1Þ).

PROGRAM MAIN

INTEGER N,SEED

REAL X(9)

READ(*,*)N,SEED

IX¼ SEED

DO 10 I¼ 1,N

K1¼ IX/60466
IX¼ 35515*(IX-K1*60466)-K1*33657

IF(IX.LT.0)IX¼ IX+2147483647

K1¼ IX/102657

IX¼ 20919*(IX-K1*102657)-K1*1864

IF(IX.LT.0)IX¼ IX+2147483647

RANUN¼FLOAT(IX)/2.147483647e9

X(I)¼RANUN

10 CONTINUE
WRITE(*,20)(I,X(I),I¼ 1,N)

20 FORMAT(1X,5(’X(’,I1,’)¼ ’,F5.3,’, ’)))

STOP

END

For example, input N ¼ 5 (sample size) and SEED¼ 37589 (seed number) to

Program 1, it will give X ð1Þ ¼ 0:200, X ð2Þ ¼ 0:521, X ð3Þ ¼ 0:493, X ð4Þ ¼
0:371, X ð5Þ ¼ 0:084. Then, we obtain an input-sample

A ¼ fxi j i ¼ 1; 2; . . . ; 5g ¼ f0:200; 0:521; 0:493; 0:371; 0:084g:
By y ¼ 0:01xþ 0:02x2 þ 0:9x3, we obtain an output-sample

B ¼ fyi j i ¼ 1; 2; . . . ; 5g ¼ f0:010; 0:138; 0:118; 0:052; 0:001g:
We use the set of patterns

X ¼ fðxi; yiÞ j i ¼ 1; 2; . . . ; 5g
¼ fð0:200; 0:010Þ; ð0:521; 0:138Þ; ð0:493; 0:118Þ; ð0:371; 0:052Þ; ð0:084; 0:001Þg

to recognize y ¼ f ðxÞ by a CBPN and a DNN, respectively.

We also use the points of the U given in (31) as inputs to calculate outputs of

function f . The square error s is calculated on these points.

7.2. Estimating y ¼ 0:01xþ 0:02x2 þ 0:9x3

Tables 1–3 show the results of the simulation experiments with N ¼ 10

(number of simulations) for sample size n ¼ 5; 7, and 9, respectively.

C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161 155

Table 2

Using seven random patterns to estimate y ¼ 0:01xþ 0:02x2 þ 0:9x3

Seed number r wðrÞ sCBPN sDNN

452 0.94 0.9999 0.000802205 0.000561230

41 0.95 0.99999 0.000588861 0.000513334

869 403 0.95 0.99999 0.001148254 0.001023722

30 0.95 0.99999 0.000276856 0.000176103

3067 0.95 0.99999 0.000161748 0.000168508

88 0.94 0.9999 0.002691227 0.001866422

4 763 200 0.94 0.9999 0.002037587 0.001560040

90 000 0.94 0.9999 0.000954938 0.000450177

777 758 0.94 0.9999 0.000284984 0.000248202

8977 0.94 0.9999 0.000111734 0.000027444

Average square error 0.000905840 0.000659518

Table 3

Using nine random patterns to estimate y ¼ 0:01xþ 0:02x2 þ 0:9x3

Seed number r wðrÞ sCBPN sDNN

90 0.94 0.9999 0.003694762 0.003432359

666 0.96 0.999999 0.000100587 0.000093889

34 562 0.95 0.99999 0.000023885 0.000020703

789 0.94 0.9999 0.000051348 0.000018279

5555 0.96 0.999999 0.001914853 0.001346447

1132 0.94 0.9999 0.000432030 0.000444494

87 988 0.96 0.999999 0.000136089 0.000139782

2000 0.95 0.99999 0.000126611 0.000125036

3214 0.96 0.999999 0.000209642 0.000201720

5566 0.95 0.99999 0.000134331 0.000126790

Average square error 0.000682414 0.000594950

Table 1

Using five random patterns to estimate y ¼ 0:01xþ 0:02x2 þ 0:9x3

Seed number r wðrÞ sCBPN sDNN

37 589 0.96 0.999999 0.005918892 0.003287310

471 0.95 0.99999 0.000587282 0.000363450

84 378 0.95 0.99999 0.000560380 0.000442065

4 455 556 0.94 0.9999 0.002898453 0.001890389

4 0.95 0.99999 0.004610664 0.003405603

14 0.96 0.999999 0.001247012 0.000741144

123 0.95 0.99999 0.000204686 0.000296314

41 356 0.95 0.99999 0.000254109 0.000199072

70 0.96 0.999999 0.002537641 0.001325982

90 089 0.96 0.999999 0.000120842 0.000030299

Average square error 0.001893996 0.001198163

156 C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161

We use Fig. 5 to show the average square errors of CBPN and DNN.

Obviously, DNN is better than CBPN. Furthermore, Fig. 5 suggests that the

advantage of DNN will disappear as increasing the sample size n.
For n ¼ 5, 7, 9, using formula (29), we obtain the benefit of DNN with

respect to CBPN as the following:

B5 ¼
0:001893996� 0:001198163

0:001893996
� 100% ¼ 37%;

B7 ¼
0:000905840� 0:000659519

0:000905840
� 100% ¼ 27%;

B9 ¼
0:000682414� 0:000594950

0:000682414
� 100% ¼ 13%:

7.3. Estimating y ¼ 1� e�2x4

Tables 4–6 show the results of the simulation experiments with N ¼ 10

(number of simulations) for sample size n ¼ 5; 7, and 9, respectively.

Fig. 6 shows the average square errors of CBPN and DNN to estimate

y ¼ 1� e�2x4 with a small sample, size is n. Here, DNN is also better than

CBPN.

The corresponding benefits are

B5 ¼
0:005474657� 0:004292307

0:005474657
� 100% ¼ 22%;

B7 ¼
0:000111606� 0:000091506

0:000111606
� 100% ¼ 18%;

6 7 8 9
sample size

0.0005

0.001

0.0015

0.002

square error

CBPN’ serror

DNN’ serror

Fig. 5. Square errors of CBPN model and DNN model to estimate y ¼ 0:01xþ 0:02x2 þ 0:9x3 with
a small sample.

C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161 157

Table 4

Using five random patterns to estimate y ¼ 1� e�2x4

Seed number r wðrÞ sCBPN sDNN

112 233 0.95 0.99999 0.000085535 0.000063195

123 0.96 0.99999 0.000014915 0.000014481

10 000 0.96 0.999999 0.000020523 0.000011072

765 0.96 0.999999 0.000133007 0.000120072

45 298 0.96 0.999999 0.000209563 0.000168604

1000 0.96 0.999999 0.000027055 0.000018111

330 0.95 0.99999 0.000039449 0.000028573

56 300 0.94 0.9999 0.000073281 0.000056224

560 0.94 0.9999 0.000056001 0.000001335

89 000 0.96 0.999999 0.054087236 0.042441401

Average square error 0.005474657 0.004292307

Table 5

Using seven random patterns to estimate y ¼ 1� e�2x4

Seed number r wðrÞ sCBPN sDNN

990 0.96 0.999999 0.000074837 0.000044239

444 332 0.94 0.9999 0.000420641 0.000360700

43 000 0.96 0.999999 0.000063083 0.000038376

10 000 0.96 0.999999 0.000024781 0.000018266

33 333 0.96 0.999999 0.000032107 0.000021862

888 888 0.96 0.999999 0.000035635 0.000018213

909 0.94 0.9999 0.000023586 0.000006794

55 221 0.95 0.99999 0.000284857 0.000293719

20 100 0.94 0.9999 0.000119015 0.000099723

2100 0.94 0.9999 0.000037516 0.000013169

Average square error 0.000111606 0.000091506

Table 6

Using nine random patterns to estimate y ¼ 1� e�2x4

Seed number r wðrÞ sCBPN sDNN

5760 0.95 0.99999 0.000037451 0.000028500

33 333 0.95 0.99999 0.000036811 0.000030885

45 673 0.96 0.999999 0.000108590 0.000050375

10 000 0.96 0.999999 0.000024254 0.000022614

7788 0.96 0.999999 0.000198299 0.000210473

70 000 0.94 0.9999 0.000139202 0.000120949

87 0.95 0.99999 0.000022641 0.000017435

6000 0.94 0.9999 0.000102992 0.000036721

640 000 0.96 0.999999 0.000079564 0.000066711

1234 0.95 0.99999 0.000077390 0.000081819

Average square error 0.000082719 0.000066648

158 C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161

B9 ¼
0:000082719� 0:000066648

0:000082719
� 100% ¼ 19%:

8. Conclusion and discussion

This paper shows how the principle of information diffusion can be used to
derive more patterns to partly fill up the gaps in a small sample and then we

can get a better result when we employ a neural network to recognize a

non-linear function. The hybrid model integrating the deriving model and a

corresponding back-propagation neural network is called a diffusion-neural-

network (DNN).

This paper gives an example and some simulation results to show that DNN

is better that CBPN (conventional BP network) to estimate a non-linear

function with a small sample consisting of 5–9 patterns. In the case that we use
sample X ¼ fð0; 0Þ; ð1=4; 1=16Þ; ð1=2; 1=4Þ; ð3=4; 9=16Þ; ð1; 1Þg to estimate

y ¼ x2, a DNN can reduce error about 48%.

DNN can be considered as a primary model based on the principle of in-

formation diffusion to improve accuracy of artificial neural networks with re-

spect to small samples. We have shown that, although the performance of the

suggested deriving model satisfied us, this new approach is limited by the

quality of the selected diffusion function. Until now we know little about how

to get a good quality diffusion function to mine fuzzy information in a small
sample. In some sense, the normal diffusion function used in this paper is an

experimental function. The function cannot fit any case. To develop DNN

model to be more powerful, the first we have to do is to discover more diffusion

6 7 8 9
sample size

0.001

0.002

0.003

0.004

0.005

0.006

square error

CBPN’ serror

DNN’ serror

Fig. 6. Square errors of CBPN model and DNN model to estimate y ¼ 1� e�2x4 with a small

sample.

C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161 159

functions for a variety of populations from which patterns are drawn, and

consider other evaluation criteria besides the square error.

Acknowledgements

The first author would like to thank the University of Dortmund, Germany,

for providing an excellent research environment during August of 2000 to
August of 2001, under a Mercator Visiting Professorship of the German Re-

search Society (DFG). The authors thank Mr. Xingguang Yuan who, using

the programs provided by authors, did some simulation experiments in the

Section 7.

References

[1] B. Amirakian, H. Nishimura, What size network is good for generalization of a specific task of

interest? Neural Networks 7 (2) (1994) 321–329.

[2] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of

Control, Signals, and Systems 2 (4) (1989) 303–314.

[3] L. Fletcher, V. Katkovnik, F.E. Steffens, Optimizing the number of hidden nodes of a

feedforward artificial neural network, in: Proceedings of the International Joint Conference on

Neural Networks, Anchorage, USA, 1998, pp. 1608–1612.

[4] K. Funahashi, On the approximate realization of continuous mappings by neural networks,

Neural Networks 2 (3) (1989) 183–192.

[5] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, Englewood Cliffs,

1994.

[6] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal

approximators, Neural Networks 2 (5) (1989) 359–366.

[7] C.F. Huang, The principle of information diffusion and thought computation and their

applications in earthquake engineering, Ph.D. Thesis, Beijing Normal University, Beijing,

1993 (in Chinese).

[8] C.F. Huang, Principle of information diffusion, Fuzzy Sets and Systems 91 (1) (1997) 69–90.

[9] C.F. Huang, Deriving samples from incomplete data, in: Proceedings of FUZZ-IEEE’98,

Anchorage, USA, 1998, pp. 645–650.

[10] C.F. Huang, Information diffusion techniques and small sample problem, International

Journal of Information Technology and Decision Making 1 (2) (2002) 229–249.

[11] S.C. Huang, Y.F. Huang, Bounds on the number of hidden neurons in multilayer perceptrons,

IEEE Transactions of Neural Network 2 (1) (1991) 47–55.

[12] C.F. Huang, Y. Lueng, Estimating the relationship between isoseismal area and earthquake

magnitude by hybrid fuzzy-neural-network method, Fuzzy Sets and Systems 107 (2) (1999)

131–146.

[13] C.F. Huang, D. Ruan, Information diffusion principle and application in fuzzy neuron, in: D.

Ruan (Ed.), Fuzzy Logic Foundations and Industrial Applications, Kluwer Academic

Publishers, Boston, 1996, pp. 165–189.

[14] C.F. Huang, Y. Shi, Towards Efficient Fuzzy Information Processing––Using the Principle of

Information Diffusion, Physica-Verlag, Heidelberg, 2002.

[15] P. Kulczycki, Estimating conditional distributions by neural networks, in: Proceedings of the

International Joint Conference on Neural Networks, Anchorage, USA, 1998, pp. 344–1349.

160 C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161

[16] K. Van Ha, Hierarchical radial basis function networks, in: Proceedings of the International

Joint Conference on Neural Networks, Anchorage, USA, 1998, pp. 1893–1898.

[17] S. Lu, T. Basar, Robust nonlinear system identification using neural network models, IEEE

Transactions of Neural Network 9 (3) (1998) 407–429.

[18] C. Moraga, Neuro-fuzzy modeling of compensating systems, in: P. Sin�c�ak, J. Va�s�c�ak (Eds.),

Quo Vadis Computational Intelligence? Physica-Verlag, Heidelberg, 2000, pp. 385–398.

[19] Y.H. Pao, Adaptive Pattern Recognition and Neural Networks, Addison-Wesley, Reading,

MA, 1989.

[20] K.S. Patrick, Artificial Neural Systems Foundations, Paradigms, Applications, and Imple-

mentations, McGraw-Hill, New York, 1990.

[21] B.D. Ripley, Pattern Recognition and Neural Networks, Cambridge University Press,

Cambridge, 1996.

[22] D.E. Rumelhart, J.L. McClelland, the PDP Research Group, Parallel Distributed Processing:

Explorations in the Microstructure of Cognition, vols. 1&2, MIT Press, Cambridge, MA,

1986.

[23] B.W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall,

London, 1986.

[24] P.P. van der Smagt, Minimisation methods for training feedforward networks, Neural

Networks 7 (1) (1994) 1–11.

[25] P.Z. Wang, Fuzzy Sets and Falling Shadows of Random Sets, Beijing Normal University

Press, Beijing, 1985 (in Chinese).

[26] Z.N. Wang, C. Dimassimo, M.T. Tham, A.J. Morris, A procedure for determining the

topology of multilayer feedforward neural networks, Neural Networks 7 (2) (1994) 291–300.

[27] H. White, Connectionist nonparametric regression: multilayer feedforward network can learn

arbitrary mappings, Neural Networks 3 (5) (1990) 535–549.

[28] J. Wray, G.G.R. Green, Neural networks, approximation theory, and finite precision

computation, Neural Networks 8 (1) (1995) 31–37.

[29] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems 1 (1)

(1978) 3–28.

C. Huang, C. Moraga / Internat. J. Approx. Reason. 35 (2004) 137–161 161

