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Let τ = [a0;a1,a2, . . . ], a0 ∈ N, an ∈ Z
+, n ∈ Z

+, be a simple con-
tinued fraction determined by an infinite integer sequence (an).
We are interested in finding an effective irrationality measure as
explicit as possible for the irrational number τ . In particular, our
interest is focused on sequences (an) with an upper bound at
most (ank

), where a > 1 and k > 0. In addition to our main target,
arithmetic of continued fractions, we shall pay special attention to
studying the nature of the inverse function z(y) of y(z) = z log z.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let τ = [a0;a1,a2, . . .], a0 ∈ N, an ∈ Z
+ , n ∈ Z

+ , be a simple continued fraction determined by an
infinite integer sequence (an). For example, set τ = [ f0; f1, f2, . . .], where ( fn) = (0,1,1,2, . . .) is the
Fibonacci sequence. We prove an explicit lower bound∣∣∣∣τ − M

N

∣∣∣∣ >
1

N2( 1+√
5

2 N
D√
log N + 3)

, D = log 3+√
5

2√
log 2

,

valid for every M, N ∈ Z with N � 2.
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In Theorem 2.1 we give a general method which is applied through the rest of the work. First
we consider the case where (an) is bounded by linear functions. Here the applications include the
explicit irrationality measure for the Siegel’s constant [0;1,2,3, . . .] and for the Napier’s constant
e = [2;1,2,1,1,4,1, . . .]. Then we deal with exponential bounds. In this case we obtain explicit ir-
rationality measures for continued fractions determined by the Fibonacci sequence or the sequence
(lcm(1,2, . . . ,n)). Finally we have the case where the sequence (log an) is bounded by polynomials,
say an = n!. If the sequence (log an) grows faster than (K n), K > 1, then the irrationality measure
exponent is at least K + 1 > 2. This case is covered in Hančl, Matala-aho and Pulcerová [9].

By an explicit irrationality measure of an irrational number τ we mean any positive lower bound

∣∣∣∣τ − M

N

∣∣∣∣ >
1

N2 I(N)
= 1

N2+δ(N)
, δ(N) � 0, (1)

satisfied by all M, N ∈ Z, N � N0, where the dependence I(N) on N is explicit and N0 is a given
or at least an effectively computable number. Usually the infimum of 2 + δ(N) is called irrationality
measure of τ .

In the following we would like to give a survey on results considering Diophantine proper-
ties of e. In 1971 Bundschuh [4] proved that formula (1) is valid with I(N) = 18 log 4N

log log 4N and
N0 = 1. Later Davis [6] found an asymptotical result that for every α > 1 there exists N0 such that
I(N) = 2α log 4N

log log 4N is valid for all N > N0. For references on similar results see Borwein and Bor-
wein [3], Fel’dman and Nesterenko [7] and Shiokawa [14]. In 1976 Galochkin [8] showed that we may
take I(N) = 0.001 log(N+2)

log log(N+2)
and N0 = 1. Later Alzer [2] improved the results of Bundschuh [4] and

Galochkin [8] by proving the estimate | e − M
N |> C log log N

N2 log N
for all M, N ∈ Z with N � 2 if and only

if C < 0.386249 . . . . In 2000 Tasoev [17] proved similar result for continued fractions generalizing
the expansion of e. Recently Sondow [16] received a new type of explicit irrationality measure for e,
namely that for all M, N ∈ Z with N � 2 we have | e − M

N |> 1
(S(N)+1)! , where S(N) is the smallest

positive integer such that S(N)! is the multiple of N .
In [17] Tasoev considers also continued fractions of the kind τ = [a0,aλ, . . . ,aλ]∞λ=0, a0,a,m ∈ Z

+
with a � 2 and m � 2. In [17] it is proved that for every α > 1 there exists N0 such that I(N) =
√

aαN

√
2 log a

m log N is valid for every N > N0. However, this does not cover our example τ = [ f0; f1, f2, . . .].
In addition to our main target, arithmetic of continued fractions, we shall pay special attention

to studying the nature of the inverse function z(y) of y(z) = z log z. We obtain a presentation for
z(y) by nested logarithms which besides its own interest is our main tool considering the polynomial
growth cases. Namely, nested logarithm approximations of z(y) give a natural framework considering
e.g. the arithmetic nature of e thus allowing certain generalizations and improvements of the results
of Alzer [2], Bundschuh [4] and Davis [6] for e.

2. Results

Throughout the whole paper we use the notations N and Z
+ for the sets of non-negative and

positive integers, respectively. In the following

pn

qn
= [a0;a1, . . . ,an]

denotes the nth convergent of [a0;a1,a2, . . .].

Theorem 2.1. Let g1(x), g2(x):R+ →R
+ be increasing functions such that

an � g1(n), g2(n) � qn
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for every n ∈ Z
+ and let g−1

2 (x) denote the inverse function of g2(x). Then

∣∣∣∣τ − M

N

∣∣∣∣ >
1

N2(g1(g−1
2 (N) + 1) + 3)

(2)

for all M ∈ Z, N ∈ Z
+ .

Define z(y) to be the inverse function of the function y(z) = z log z when z � 1/e.

Theorem 2.2. The inverse function z(y) of the function

y(z) = z log z, z � 1

e
, (3)

is strictly increasing. When y > e the inverse function may be given by the infinite nested logarithm fraction

z(y) = y

log y
log y

log···

. (4)

Let z0(y) = y and zn(y) = y
log zn−1

for all n ∈ Z
+ . Then we also have

z1 < z3 < · · · < z < · · · < z2 < z0.

Theorem 2.3. Let a, B, c > 0 be given and suppose

an � an, (Bn)cn � qn

for all n ∈ Z
+ . Then

∣∣∣∣τ − M

N

∣∣∣∣ >
1

N2( a
B z( B

c log N) + a + 3)
(5)

for all M, N ∈ Z with N � 1.

When N > e
ce
B , then we have a nested logarithm representation (4) of z( B

c log N). By Theorem 2.2
we get

z

(
B

c
log N

)
< z2

(
B

c
log N

)
=

B
c log N

E(N)
, (6)

where

E(N) = log
B
c log N

log B
c log N

.

By using estimates (5) and (6) we get

∣∣∣∣τ − M

N

∣∣∣∣ >

(
c

a
− ε(N)

)
E(N)

N2 log N
, (7)
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where

ε(N) = c2(a + 3)

a(
a log N
E(N)

+ c(a + 3))
→

N→∞ 0. (8)

From our result (7) we could deduce

∣∣∣∣τ − M

N

∣∣∣∣ >
C log log N

N2 log N
(9)

with an explicit C = C(N). However, bound (9) would not be as sharp as (7). To obtain a sharper
bound let B, c > 0 be given. Define w as the solution (larger solution if B > c) of the equation

(
w

de

) w
de = e

− log d
de , (10)

where d = B/c.

Corollary 2.4. Let a, B, c > 0 be given and suppose

an � an, (Bn)cn � qn

for all n ∈ Z
+ . Then

∣∣∣∣τ − M

N

∣∣∣∣ >

(
c

a
− ε(N)

)(
1 − 1

w

)
log log N

N2 log N
, (11)

where ε(N) is defined as in (8) and w as in (10), for all M, N ∈ Z with N > e
ce
B .

Note that w in bound (11) is absolute for all N . If we want a better dependence, then C(N) will
be rather complicated function of N and we prefer to use bound (7).

Corollary 2.5. Let a,b > 0 be given and suppose

bn � an � an

for all n ∈ Z
+ . Then

∣∣∣∣τ − M

N

∣∣∣∣ >
1

N2(ae
b z( b

e log N) + a + 3)

for all M, N ∈ Z with N � 1.

Theorem 2.3 can be generalized as follows.

Theorem 2.6. Let a,b, l > 0 be given and suppose

an � anl, (Bn)cn � qn
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for all n ∈ Z
+ . Then ∣∣∣∣τ − M

N

∣∣∣∣ >
1

N2(a( 1
B z( B

c log N) + 1)l + 3)

for all M, N ∈ Z with N � 1.

Corollary 2.7. Let a,b,h, l > 0 be given and suppose

bnh � an � anl

for all n ∈ Z
+ . Then ∣∣∣∣τ − M

N

∣∣∣∣ >
1

N2(a( e
h√b

z(
h√b
he log N) + 1)l + 3)

for all M, N ∈ Z with N � 1.

Theorem 2.8. Let a, B > 1, h, l > 0 be given. Suppose

an � anl
, Bnh+1 � qn

for all n ∈ Z
+ . Then ∣∣∣∣τ − M

N

∣∣∣∣ >
1

N2(N
log a
log N ( h+1

√
log N
log B +1)l + 3)

for all M, N ∈ Z with N � 2.

Corollary 2.9. Let a,b > 1, h, l > 0 be given and suppose

bnh � an � anl

for all n ∈ Z
+ . Then ∣∣∣∣τ − M

N

∣∣∣∣ >
1

N2(N
log a
log N ( h+1

√
(h+1) log N

log b +1)l + 3)

for all M, N ∈ Z with N � 2.

3. Proofs

Let (an) be an integer sequence with an � 1, when n � 1. Consider the irrational value τ of the
simple continued fraction

τ = [a0;a1,a2, . . .].
From the theory of continued fractions we know the recurrence formulas

pn+2 = an+2 pn+1 + pn, qn+2 = an+2qn+1 + qn (12)
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for all n ∈ N with the initial values

p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1,

and the estimates

an+2

qnqn+2
<

∣∣∣∣τ − pn

qn

∣∣∣∣ <
1

qnqn+1
(13)

for all n ∈ N, see e.g. Hardy and Wright [10]. By denoting rn = qnτ − pn we have

1

qn+2
< |rn| < 1

qn+1
. (14)

Let M ∈ Z and N ∈ Z
+ be given. Write

Λ = Nτ − M, � = pn N − qn M,

which gives

� = qnΛ − rn N.

1. Suppose that

M

N
�= pn

qn

for all n ∈ N. Thus

1 � |�| = |pn N − qn M|� qn|Λ| + |rn|N. (15)

By (14) there exists a positive integer h such that

|rh| < 1

qh+1
<

1

2N
<

1

qh
,

which gives

|rh|N <
1

2
, qh < 2N. (16)

Now (15) and (16) imply

1

2
< qh|Λ| < 2N|Nτ − M|

or

∣∣∣∣τ − M

N

∣∣∣∣ >
1

4N2
.
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2. Suppose that

M

N
= pn

qn

for some n ∈ N. By (13) we get

∣∣∣∣τ − M

N

∣∣∣∣ =
∣∣∣∣τ − pn

qn

∣∣∣∣ >
an+2

qnqn+2
>

1

(an+1 + 2)q2
n

>
1

(an+1 + 3)N2
. (17)

The constant 2 is increased to 3 in (17) to ensure

1

4N2
� 1

(an+1 + 3)N2
.

Proof of Theorem 2.1. All we need to do is to estimate an+1 in (17). Denoting qn = N we have

an+1 � g1(n + 1) � g1
(

g−1
2 (N) + 1

)
and (2) follows. �
Proof of Theorem 2.2. In the following we suppose y > e. Note that

z = y

log z
= y

log y
log z

= · · · .

Eq. (3) has a unique solution z for a fixed y and thus the equation

z = y

log y
log z

(18)

has the same unique solution z = z(y), too.
Let us define a function

l(x) = y

log x
, x > 1,

and set ln(y) = zn(y) for all n ∈ N. Note that l2k(x) is increasing and l2k+1(x) is decreasing for all
k ∈ N. From y > e we get l(y) > e. Since l(e) = y we have

z2k+1 = l2k+1(y) = l2k+2(e) < l2k+2(l(y)
) = l2k+3(y) = z2k+3,

z2k = l2k(y) = l2k+1(e) > l2k+1(l(y)
) = l2k+2(y) = z2k+2

and

z2k = l2k(y) = l2k+1(e) > l2k+1(y) = z2k+1

for all k ∈N. Therefore

z1 < z3 < · · · < z2 < z0.
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Hence the limits

lim
k→∞

z2k+1 = A and lim
k→∞

z2k = B

exist and by applying the function l2(x) we see that they satisfy

A = y

log y
log A

and B = y

log y
log B

.

By the uniqueness of the solution of (18) we get A = B = z(y) and thus

z(y) = l∞(y) = y

log y
log y

log···

. �

Proof of Theorem 2.3. We shall estimate an+1 in (17). Denoting qn = N and using Theorem 2.2 we
have

y(Bn) = Bn log Bn � B

c
log N,

so

Bn � z

(
B

c
log N

)

because z(y) is strictly increasing. Note that if Bn < 1/e then we have Bn � z(y(Bn)) too. Now

an+1 � a(n + 1)� a

B
z

(
B

c
log N

)
+ a. �

Proof of Corollary 2.4. Denote d = B/c and x = log log N . The function

f (x) = log(log d + x) − log d

x
(19)

will obtain its maximum 1/w on the positive real axis at w − log d, where w is the solution of Eq. (10)
(larger solution if d > 1). Now the result follows from (7) as

E(N) = log
d log N

log d log N
= log d + log log N − log(log d + log log N) �

(
1 − 1

w

)
log log N. �

Proof of Corollary 2.5. Recurrence (12) implies

bnn! � qn. (20)

Using Stirling’s formula (see e.g. [1])

n! = √
2πnn+ 1

2 e−n+ θ(n)
12n , 0 < θ(n) < 1,
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with (20) we get

(
bn

e

)n

� qn.

Now we use Theorem 2.3 with B = b/e and c = 1. �
Proof of Theorem 2.6. From the proof of Theorem 2.3 we get

Bn � z

(
B

c
log N

)

and so

an+1 � a(n + 1)l � a

(
1

B
z

(
B

c
log N

)
+ 1

)l

. �

Proof of Corollary 2.7. Similarly to (20) we have

bn(n!)h � qn.

Again, Stirling’s formula implies

( h
√

bn

e

)hn

� qn.

Now we use Theorem 2.6 with B = h
√

b/e and c = h. �
Proof of Theorem 2.8. Here

n � h+1

√
log N

log B
,

and thus

an+1 � a(n+1)l � a
( h+1

√
log N
log B +1)l

. �
Proof of Corollary 2.9. By recurrence (12) we get

b1h+2h+···+nh � qn.

Now we use Theorem 2.8 with B = h+1
√

b. �
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4. Applications

First we consider Siegel’s continued fraction

τ = [0;1,2, . . .],
which is transcendental by Siegel’s theory of E-functions [15]. Now an = n for all n ∈ Z

+ . Using
Theorem 2.3 with a = 1, B = 1/e and c = 1 (see the proof of Corollary 2.5) we obtain∣∣∣∣τ − M

N

∣∣∣∣ >
1

N2(ez( 1
e log N) + 4)

for all M, N ∈ Z with N � 1.
Now Eq. (10) has the form

w w = e,

which has a unique solution w , where 1/w = 0.567143 . . . . Using (11) we can write the lower bound
as ∣∣∣∣τ − M

N

∣∣∣∣ >
(
1 − ε(N)

)(
1 − 1

w

)
log log N

N2 log N

for all M, N ∈ Z with N � 1619, where

ε(N) = 4
log N

log log N
log log N−1 −1

+ 4
.

In the next example we consider the Napier’s constant

e = [2;1,2,1,1,4,1, . . .].
For the proof see e.g. Perron [12] or Cohn [5]. Now we are looking for the lower bound of qn . We
have a0 = 2 and

an =
{ 2n+2

3 , n ≡ 2 (mod 3),

1, n �≡ 2 (mod 3)

when n ∈ Z
+ . From recurrence formula (12) we obtain

qn+2 = (anan+1an+2 + an + an+2)qn−1 + (an+1an+2 + 1)qn−2 (21)

for all n � 2.
When n ≡ 0 (mod 3) and n � 3 then we have an = 1, an+1 = 1 and an+2 = (2n + 6)/3. By recur-

rence (21)

qn+2 = 4n + 15

3
qn−1 + 2n + 9

3
qn−2. (22)

When n ≡ 2 (mod 3) then an = (2n + 2)/3, an+1 = 1, an+2 = 1 and

qn+2 = 4n + 7
qn−1 + 2qn−2 �

4n + 7
qn−1. (23)
3 3
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In the case n ≡ 1 (mod 3) and n � 4 we have an+2 = an−1 = 1. So (22) and (23) give

qn+2 = qn+1 + qn �
4n + 11

3
qn−2 + (2n + 2)qn−3 �

4n + 4

3
(qn−2 + qn−3) = 4n + 4

3
qn−1.

Therefore for all n ∈ Z
+ we have a lower bound

qn+2 �
4n + 4

3
qn−1.

Hence

3

√(
4

3

)n

n! � qn

and by Stirling’s formula [1] we get

(
4

3e
n

) 1
3 n

� qn

for all n � 1. Using Theorem 2.3 with a = 1, B = 4/3e and c = 1/3 we obtain

∣∣∣∣e − M

N

∣∣∣∣ >
1

N2( 3e
4 z( 4

e log N) + 4)

for all M, N ∈ Z with N � 1 (naturally any choice of a > 2/3 holds for N big enough, but this one
holds for all N � 1). When N � 7 we can take a = 4/5. So we get 1/w = 0.278383 . . . and thus

∣∣∣∣e − M

N

∣∣∣∣ >

(
5

12
− ε(N)

)(
1 − 1

w

)
log log N

N2 log N

for all M, N ∈ Z with N � 7, where

ε(N) = 95
144 log N

log 4 log N
log 4 log N−1 −1

+ 228
.

For example if N � 7 then C = 0.165684 . . . and for N � 32 we have C = 0.197639 . . . . For N � 39 we
can take a = 3/4 to get larger C and so on. With any constant C < 1/2 the bound can be improved to
C log log N/N2 log N for big enough N , as a → 2/3, ε(N) → 0 and f (x) → 0, f (x) decreasing, see (19).

In the following set an = fn . We choose h = 1, l = 1, B = 4
√

2 and a = 1+√
5

2 . Then Theorem 2.8
gives

∣∣∣∣τ − M

N

∣∣∣∣ >
1

N2( 1+√
5

2 N
D√
log N + 3)

where M, N ∈ Z with N � 2 and D = log 3+√
5

2√
log 2

. This improves considerably the result of Matala-aho

and Merilä [11].
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When an = lcm(1,2, . . . ,n) we choose h = 1, l = 1, b = √
2 and a = e1.030883 (see e.g. Rosser and

Schoenfeld [13]). Then Corollary 2.9 gives

∣∣∣∣τ − M

N

∣∣∣∣ >
1

N2(e1.030883N
D√
log N + 3)

where M, N ∈ Z with N � 2 and D = 2.061766√
log 2

.

In the case an = n! we may choose a = e, b = √
2, l = 1.280678 and h = 1. Then Corollary 2.9 gives

∣∣∣∣τ − M

N

∣∣∣∣ >
1

N2(N
1

log N (2
√

log N
log 2 +1)1.280678 + 3)

for all M, N ∈ Z with N � 2.
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