

Explicit irrationality measures for continued fractions

Jaroslav Hančl ${ }^{\text {a, }}$, Marko Leinonen ${ }^{\text {b,2 }}$, Kalle Leppäää ${ }^{\text {b,3 }}$,
Tapani Matala-aho ${ }^{\text {b,*,4 }}$
${ }^{\text {a }}$ Department of Mathematics and Centre of Excellence IT4Innovation, Division of UO, Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, 30. dubna 22, 70103 Ostrava 1, Czech Republic
${ }^{\text {b }}$ Matematiikan laitos, Oulun Yliopisto, PL 3000, 90014 Oulu, Finland

ARTICLE INFO

Article history:

Received 22 June 2011
Accepted 27 February 2012
Available online 16 April 2012
Communicated by Michael A. Bennett

Keywords:

Measure of irrationality
Napier's constant
Nested logarithm fraction
Simple continued fraction

Abstract

Let $\tau=\left[a_{0} ; a_{1}, a_{2}, \ldots\right], a_{0} \in \mathbb{N}, a_{n} \in \mathbb{Z}^{+}, n \in \mathbb{Z}^{+}$, be a simple continued fraction determined by an infinite integer sequence $\left(a_{n}\right)$. We are interested in finding an effective irrationality measure as explicit as possible for the irrational number τ. In particular, our interest is focused on sequences $\left(a_{n}\right)$ with an upper bound at most $\left(a^{n^{k}}\right)$, where $a>1$ and $k>0$. In addition to our main target, arithmetic of continued fractions, we shall pay special attention to studying the nature of the inverse function $z(y)$ of $y(z)=z \log z$.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let $\tau=\left[a_{0} ; a_{1}, a_{2}, \ldots\right], a_{0} \in \mathbb{N}, a_{n} \in \mathbb{Z}^{+}, n \in \mathbb{Z}^{+}$, be a simple continued fraction determined by an infinite integer sequence $\left(a_{n}\right)$. For example, set $\tau=\left[f_{0} ; f_{1}, f_{2}, \ldots\right]$, where $\left(f_{n}\right)=(0,1,1,2, \ldots)$ is the Fibonacci sequence. We prove an explicit lower bound

$$
\left|\tau-\frac{M}{N}\right|>\frac{1}{N^{2}\left(\frac{1+\sqrt{5}}{2} N^{\frac{D}{\sqrt{\log N}}}+3\right)}, \quad D=\frac{\log \frac{3+\sqrt{5}}{2}}{\sqrt{\log 2}}
$$

valid for every $M, N \in \mathbb{Z}$ with $N \geqslant 2$.

[^0]In Theorem 2.1 we give a general method which is applied through the rest of the work. First we consider the case where $\left(a_{n}\right)$ is bounded by linear functions. Here the applications include the explicit irrationality measure for the Siegel's constant $[0 ; 1,2,3, \ldots]$ and for the Napier's constant $e=[2 ; 1,2,1,1,4,1, \ldots]$. Then we deal with exponential bounds. In this case we obtain explicit irrationality measures for continued fractions determined by the Fibonacci sequence or the sequence $(\operatorname{lcm}(1,2, \ldots, n))$. Finally we have the case where the sequence $\left(\log a_{n}\right)$ is bounded by polynomials, say $a_{n}=n$!. If the sequence $\left(\log a_{n}\right)$ grows faster than $\left(K^{n}\right), K>1$, then the irrationality measure exponent is at least $K+1>2$. This case is covered in Hančl, Matala-aho and Pulcerová [9].

By an explicit irrationality measure of an irrational number τ we mean any positive lower bound

$$
\begin{equation*}
\left|\tau-\frac{M}{N}\right|>\frac{1}{N^{2} I(N)}=\frac{1}{N^{2+\delta(N)}}, \quad \delta(N) \geqslant 0, \tag{1}
\end{equation*}
$$

satisfied by all $M, N \in \mathbb{Z}, N \geqslant N_{0}$, where the dependence $I(N)$ on N is explicit and N_{0} is a given or at least an effectively computable number. Usually the infimum of $2+\delta(N)$ is called irrationality measure of τ.

In the following we would like to give a survey on results considering Diophantine properties of e. In 1971 Bundschuh [4] proved that formula (1) is valid with $I(N)=18 \frac{\log 4 N}{\log \log 4 N}$ and $N_{0}=1$. Later Davis [6] found an asymptotical result that for every $\alpha>1$ there exists N_{0} such that $I(N)=2 \alpha \frac{\log 4 N}{\log \log 4 N}$ is valid for all $N>N_{0}$. For references on similar results see Borwein and Borwein [3], Fel'dman and Nesterenko [7] and Shiokawa [14]. In 1976 Galochkin [8] showed that we may take $I(N)=0.001 \frac{\log (N+2)}{\log \log (N+2)}$ and $N_{0}=1$. Later Alzer [2] improved the results of Bundschuh [4] and Galochkin [8] by proving the estimate $\left|e-\frac{M}{N}\right|>\frac{C \log \log N}{N^{2} \log N}$ for all $M, N \in \mathbb{Z}$ with $N \geqslant 2$ if and only if $C<0.386249 \ldots$. In 2000 Tasoev [17] proved similar result for continued fractions generalizing the expansion of e. Recently Sondow [16] received a new type of explicit irrationality measure for e, namely that for all $M, N \in \mathbb{Z}$ with $N \geqslant 2$ we have $\left|e-\frac{M}{N}\right|>\frac{1}{(S(N)+1)!}$, where $S(N)$ is the smallest positive integer such that $S(N)$! is the multiple of N.

In [17] Tasoev considers also continued fractions of the kind $\tau=\left[a_{0}, \overline{a^{\lambda}, \ldots, a^{\lambda}}\right]_{\lambda=0}^{\infty}, a_{0}, a, m \in \mathbb{Z}^{+}$ with $a \geqslant 2$ and $m \geqslant 2$. In [17] it is proved that for every $\alpha>1$ there exists N_{0} such that $I(N)=$ $\sqrt{a} \alpha N^{\sqrt{\frac{2 \log a}{m \log N}}}$ is valid for every $N>N_{0}$. However, this does not cover our example $\tau=\left[f_{0} ; f_{1}, f_{2}, \ldots\right]$.

In addition to our main target, arithmetic of continued fractions, we shall pay special attention to studying the nature of the inverse function $z(y)$ of $y(z)=z \log z$. We obtain a presentation for $z(y)$ by nested logarithms which besides its own interest is our main tool considering the polynomial growth cases. Namely, nested logarithm approximations of $z(y)$ give a natural framework considering e.g. the arithmetic nature of e thus allowing certain generalizations and improvements of the results of Alzer [2], Bundschuh [4] and Davis [6] for e.

2. Results

Throughout the whole paper we use the notations \mathbb{N} and \mathbb{Z}^{+}for the sets of non-negative and positive integers, respectively. In the following

$$
\frac{p_{n}}{q_{n}}=\left[a_{0} ; a_{1}, \ldots, a_{n}\right]
$$

denotes the nth convergent of $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$.
Theorem 2.1. Let $g_{1}(x), g_{2}(x): \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be increasing functions such that

$$
a_{n} \leqslant g_{1}(n), \quad g_{2}(n) \leqslant q_{n}
$$

for every $n \in \mathbb{Z}^{+}$and let $g_{2}^{-1}(x)$ denote the inverse function of $g_{2}(x)$. Then

$$
\begin{equation*}
\left|\tau-\frac{M}{N}\right|>\frac{1}{N^{2}\left(g_{1}\left(g_{2}^{-1}(N)+1\right)+3\right)} \tag{2}
\end{equation*}
$$

for all $M \in \mathbb{Z}, N \in \mathbb{Z}^{+}$.
Define $z(y)$ to be the inverse function of the function $y(z)=z \log z$ when $z \geqslant 1 / e$.
Theorem 2.2. The inverse function $z(y)$ of the function

$$
\begin{equation*}
y(z)=z \log z, \quad z \geqslant \frac{1}{e}, \tag{3}
\end{equation*}
$$

is strictly increasing. When $y>e$ the inverse function may be given by the infinite nested logarithm fraction

$$
\begin{equation*}
z(y)=\frac{y}{\log \frac{y}{\log \frac{y}{\log +.1}}} . \tag{4}
\end{equation*}
$$

Let $z_{0}(y)=y$ and $z_{n}(y)=\frac{y}{\log z_{n-1}}$ for all $n \in \mathbb{Z}^{+}$. Then we also have

$$
z_{1}<z_{3}<\cdots<z<\cdots<z_{2}<z_{0}
$$

Theorem 2.3. Let $a, B, c>0$ be given and suppose

$$
a_{n} \leqslant a n, \quad(B n)^{c n} \leqslant q_{n}
$$

for all $n \in \mathbb{Z}^{+}$. Then

$$
\begin{equation*}
\left|\tau-\frac{M}{N}\right|>\frac{1}{N^{2}\left(\frac{a}{B} z\left(\frac{B}{c} \log N\right)+a+3\right)} \tag{5}
\end{equation*}
$$

for all $M, N \in \mathbb{Z}$ with $N \geqslant 1$.
When $N>e^{\frac{c e}{B}}$, then we have a nested logarithm representation (4) of $z\left(\frac{B}{c} \log N\right)$. By Theorem 2.2 we get

$$
\begin{equation*}
z\left(\frac{B}{c} \log N\right)<z_{2}\left(\frac{B}{c} \log N\right)=\frac{\frac{B}{c} \log N}{E(N)}, \tag{6}
\end{equation*}
$$

where

$$
E(N)=\log \frac{\frac{B}{c} \log N}{\log \frac{B}{c} \log N}
$$

By using estimates (5) and (6) we get

$$
\begin{equation*}
\left|\tau-\frac{M}{N}\right|>\left(\frac{c}{a}-\epsilon(N)\right) \frac{E(N)}{N^{2} \log N}, \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\epsilon(N)=\frac{c^{2}(a+3)}{a\left(\frac{a \log N}{E(N)}+c(a+3)\right)} \xrightarrow[N \rightarrow \infty]{\rightarrow} 0 \tag{8}
\end{equation*}
$$

From our result (7) we could deduce

$$
\begin{equation*}
\left|\tau-\frac{M}{N}\right|>\frac{C \log \log N}{N^{2} \log N} \tag{9}
\end{equation*}
$$

with an explicit $C=C(N)$. However, bound (9) would not be as sharp as (7). To obtain a sharper bound let $B, c>0$ be given. Define w as the solution (larger solution if $B>c$) of the equation

$$
\begin{equation*}
\left(\frac{w}{d e}\right)^{\frac{w}{d e}}=e^{\frac{-\log d}{d e}}, \tag{10}
\end{equation*}
$$

where $d=B / c$.
Corollary 2.4. Let $a, B, c>0$ be given and suppose

$$
a_{n} \leqslant a n, \quad(B n)^{c n} \leqslant q_{n}
$$

for all $n \in \mathbb{Z}^{+}$. Then

$$
\begin{equation*}
\left|\tau-\frac{M}{N}\right|>\left(\frac{c}{a}-\epsilon(N)\right)\left(1-\frac{1}{w}\right) \frac{\log \log N}{N^{2} \log N}, \tag{11}
\end{equation*}
$$

where $\epsilon(N)$ is defined as in (8) and w as in (10), for all $M, N \in \mathbb{Z}$ with $N>e^{\frac{c e}{B}}$.
Note that w in bound (11) is absolute for all N. If we want a better dependence, then $C(N)$ will be rather complicated function of N and we prefer to use bound (7).

Corollary 2.5. Let $a, b>0$ be given and suppose

$$
b n \leqslant a_{n} \leqslant a n
$$

for all $n \in \mathbb{Z}^{+}$. Then

$$
\left|\tau-\frac{M}{N}\right|>\frac{1}{N^{2}\left(\frac{a e}{b} z\left(\frac{b}{e} \log N\right)+a+3\right)}
$$

for all $M, N \in \mathbb{Z}$ with $N \geqslant 1$.
Theorem 2.3 can be generalized as follows.
Theorem 2.6. Let $a, b, l>0$ be given and suppose

$$
a_{n} \leqslant a n^{l}, \quad(B n)^{c n} \leqslant q_{n}
$$

for all $n \in \mathbb{Z}^{+}$. Then

$$
\left|\tau-\frac{M}{N}\right|>\frac{1}{N^{2}\left(a\left(\frac{1}{B} z\left(\frac{B}{C} \log N\right)+1\right)^{l}+3\right)}
$$

for all $M, N \in \mathbb{Z}$ with $N \geqslant 1$.
Corollary 2.7. Let $a, b, h, l>0$ be given and suppose

$$
b n^{h} \leqslant a_{n} \leqslant a n^{l}
$$

for all $n \in \mathbb{Z}^{+}$. Then

$$
\left|\tau-\frac{M}{N}\right|>\frac{1}{N^{2}\left(a\left(\frac{e}{\sqrt[h]{b}} z\left(\frac{\sqrt[h]{b}}{h e} \log N\right)+1\right)^{l}+3\right)}
$$

for all $M, N \in \mathbb{Z}$ with $N \geqslant 1$.
Theorem 2.8. Let $a, B>1, h, l>0$ be given. Suppose

$$
a_{n} \leqslant a^{n^{l}}, \quad B^{n^{h+1}} \leqslant q_{n}
$$

for all $n \in \mathbb{Z}^{+}$. Then

$$
\left.\left|\tau-\frac{M}{N}\right|>\frac{1}{N^{2}\left(N^{\frac{\log a}{\log N}(h+1} \sqrt\left[\left(\frac{\log N}{\log B}\right]{\log }\right)^{l}\right.}+3\right)
$$

for all $M, N \in \mathbb{Z}$ with $N \geqslant 2$.
Corollary 2.9. Let $a, b>1, h, l>0$ be given and suppose

$$
b^{n^{h}} \leqslant a_{n} \leqslant a^{n^{l}}
$$

for all $n \in \mathbb{Z}^{+}$. Then

$$
\left|\tau-\frac{M}{N}\right|>\frac{1}{N^{2}(N \sqrt[{\frac{\log a}{\log N}\left(\sqrt[h+1]{\frac{(h+1) \log N}{\log b}}+1\right)^{l}}]{ }+3)}
$$

for all $M, N \in \mathbb{Z}$ with $N \geqslant 2$.

3. Proofs

Let $\left(a_{n}\right)$ be an integer sequence with $a_{n} \geqslant 1$, when $n \geqslant 1$. Consider the irrational value τ of the simple continued fraction

$$
\tau=\left[a_{0} ; a_{1}, a_{2}, \ldots\right] .
$$

From the theory of continued fractions we know the recurrence formulas

$$
\begin{equation*}
p_{n+2}=a_{n+2} p_{n+1}+p_{n}, \quad q_{n+2}=a_{n+2} q_{n+1}+q_{n} \tag{12}
\end{equation*}
$$

for all $n \in \mathbb{N}$ with the initial values

$$
p_{0}=a_{0}, \quad q_{0}=1, \quad p_{1}=a_{0} a_{1}+1, \quad q_{1}=a_{1}
$$

and the estimates

$$
\begin{equation*}
\frac{a_{n+2}}{q_{n} q_{n+2}}<\left|\tau-\frac{p_{n}}{q_{n}}\right|<\frac{1}{q_{n} q_{n+1}} \tag{13}
\end{equation*}
$$

for all $n \in \mathbb{N}$, see e.g. Hardy and Wright [10]. By denoting $r_{n}=q_{n} \tau-p_{n}$ we have

$$
\begin{equation*}
\frac{1}{q_{n+2}}<\left|r_{n}\right|<\frac{1}{q_{n+1}} \tag{14}
\end{equation*}
$$

Let $M \in \mathbb{Z}$ and $N \in \mathbb{Z}^{+}$be given. Write

$$
\Lambda=N \tau-M, \quad \Delta=p_{n} N-q_{n} M
$$

which gives

$$
\Delta=q_{n} \Lambda-r_{n} N
$$

1. Suppose that

$$
\frac{M}{N} \neq \frac{p_{n}}{q_{n}}
$$

for all $n \in \mathbb{N}$. Thus

$$
\begin{equation*}
1 \leqslant|\Delta|=\left|p_{n} N-q_{n} M\right| \leqslant q_{n}|\Lambda|+\left|r_{n}\right| N \tag{15}
\end{equation*}
$$

By (14) there exists a positive integer h such that

$$
\left|r_{h}\right|<\frac{1}{q_{h+1}}<\frac{1}{2 N}<\frac{1}{q_{h}}
$$

which gives

$$
\begin{equation*}
\left|r_{h}\right| N<\frac{1}{2}, \quad q_{h}<2 N \tag{16}
\end{equation*}
$$

Now (15) and (16) imply

$$
\frac{1}{2}<q_{h}|\Lambda|<2 N|N \tau-M|
$$

or

$$
\left|\tau-\frac{M}{N}\right|>\frac{1}{4 N^{2}}
$$

2. Suppose that

$$
\frac{M}{N}=\frac{p_{n}}{q_{n}}
$$

for some $n \in \mathbb{N}$. By (13) we get

$$
\begin{equation*}
\left|\tau-\frac{M}{N}\right|=\left|\tau-\frac{p_{n}}{q_{n}}\right|>\frac{a_{n+2}}{q_{n} q_{n+2}}>\frac{1}{\left(a_{n+1}+2\right) q_{n}^{2}}>\frac{1}{\left(a_{n+1}+3\right) N^{2}} \tag{17}
\end{equation*}
$$

The constant 2 is increased to 3 in (17) to ensure

$$
\frac{1}{4 N^{2}} \geqslant \frac{1}{\left(a_{n+1}+3\right) N^{2}}
$$

Proof of Theorem 2.1. All we need to do is to estimate a_{n+1} in (17). Denoting $q_{n}=N$ we have

$$
a_{n+1} \leqslant g_{1}(n+1) \leqslant g_{1}\left(g_{2}^{-1}(N)+1\right)
$$

and (2) follows.
Proof of Theorem 2.2. In the following we suppose $y>e$. Note that

$$
z=\frac{y}{\log z}=\frac{y}{\log \frac{y}{\log z}}=\cdots
$$

Eq. (3) has a unique solution z for a fixed y and thus the equation

$$
\begin{equation*}
z=\frac{y}{\log \frac{y}{\log z}} \tag{18}
\end{equation*}
$$

has the same unique solution $z=z(y)$, too.
Let us define a function

$$
l(x)=\frac{y}{\log x}, \quad x>1
$$

and set $l^{n}(y)=z_{n}(y)$ for all $n \in \mathbb{N}$. Note that $l^{2 k}(x)$ is increasing and $l^{2 k+1}(x)$ is decreasing for all $k \in \mathbb{N}$. From $y>e$ we get $l(y)>e$. Since $l(e)=y$ we have

$$
\begin{gathered}
z_{2 k+1}=l^{2 k+1}(y)=l^{2 k+2}(e)<l^{2 k+2}(l(y))=l^{2 k+3}(y)=z_{2 k+3} \\
z_{2 k}=l^{2 k}(y)=l^{2 k+1}(e)>l^{2 k+1}(l(y))=l^{2 k+2}(y)=z_{2 k+2}
\end{gathered}
$$

and

$$
z_{2 k}=l^{2 k}(y)=l^{2 k+1}(e)>l^{2 k+1}(y)=z_{2 k+1}
$$

for all $k \in \mathbb{N}$. Therefore

$$
z_{1}<z_{3}<\cdots<z_{2}<z_{0}
$$

Hence the limits

$$
\lim _{k \rightarrow \infty} z_{2 k+1}=A \quad \text { and } \quad \lim _{k \rightarrow \infty} z_{2 k}=B
$$

exist and by applying the function $l^{2}(x)$ we see that they satisfy

$$
A=\frac{y}{\log \frac{y}{\log A}} \quad \text { and } \quad B=\frac{y}{\log \frac{y}{\log B}} .
$$

By the uniqueness of the solution of (18) we get $A=B=z(y)$ and thus

$$
z(y)=l^{\infty}(y)=\frac{y}{\log \frac{y}{\log \frac{y}{\log \ldots}}} .
$$

Proof of Theorem 2.3. We shall estimate a_{n+1} in (17). Denoting $q_{n}=N$ and using Theorem 2.2 we have

$$
y(B n)=B n \log B n \leqslant \frac{B}{C} \log N,
$$

so

$$
B n \leqslant z\left(\frac{B}{C} \log N\right)
$$

because $z(y)$ is strictly increasing. Note that if $B n<1 / e$ then we have $B n \leqslant z(y(B n))$ too. Now

$$
a_{n+1} \leqslant a(n+1) \leqslant \frac{a}{B} z\left(\frac{B}{c} \log N\right)+a
$$

Proof of Corollary 2.4. Denote $d=B / c$ and $x=\log \log N$. The function

$$
\begin{equation*}
f(x)=\frac{\log (\log d+x)-\log d}{x} \tag{19}
\end{equation*}
$$

will obtain its maximum $1 / w$ on the positive real axis at $w-\log d$, where w is the solution of Eq. (10) (larger solution if $d>1$). Now the result follows from (7) as

$$
E(N)=\log \frac{d \log N}{\log d \log N}=\log d+\log \log N-\log (\log d+\log \log N) \geqslant\left(1-\frac{1}{w}\right) \log \log N
$$

Proof of Corollary 2.5. Recurrence (12) implies

$$
\begin{equation*}
b^{n} n!\leqslant q_{n} . \tag{20}
\end{equation*}
$$

Using Stirling's formula (see e.g. [1])

$$
n!=\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n+\frac{\theta(n)}{12 n}}, \quad 0<\theta(n)<1
$$

with (20) we get

$$
\left(\frac{b n}{e}\right)^{n} \leqslant q_{n}
$$

Now we use Theorem 2.3 with $B=b / e$ and $c=1$.

Proof of Theorem 2.6. From the proof of Theorem 2.3 we get

$$
B n \leqslant z\left(\frac{B}{c} \log N\right)
$$

and so

$$
a_{n+1} \leqslant a(n+1)^{l} \leqslant a\left(\frac{1}{B} z\left(\frac{B}{c} \log N\right)+1\right)^{l} .
$$

Proof of Corollary 2.7. Similarly to (20) we have

$$
b^{n}(n!)^{h} \leqslant q_{n}
$$

Again, Stirling's formula implies

$$
\left(\frac{\sqrt[h]{b} n}{e}\right)^{h n} \leqslant q_{n}
$$

Now we use Theorem 2.6 with $B=\sqrt[h]{b} / e$ and $c=h$.

Proof of Theorem 2.8. Here

$$
n \leqslant \sqrt[h+1]{\frac{\log N}{\log B}}
$$

and thus

$$
\left.a_{n+1} \leqslant a^{(n+1)^{l}} \leqslant a^{\left(h+1 / \frac{\log N}{\log B}\right.}+1\right)^{l}
$$

Proof of Corollary 2.9. By recurrence (12) we get

$$
b^{1^{h}+2^{h}+\cdots+n^{h}} \leqslant q_{n}
$$

Now we use Theorem 2.8 with $B=\sqrt[h+1]{\bar{b}}$.

4. Applications

First we consider Siegel's continued fraction

$$
\tau=[0 ; 1,2, \ldots]
$$

which is transcendental by Siegel's theory of E-functions [15]. Now $a_{n}=n$ for all $n \in \mathbb{Z}^{+}$. Using Theorem 2.3 with $a=1, B=1 / e$ and $c=1$ (see the proof of Corollary 2.5) we obtain

$$
\left|\tau-\frac{M}{N}\right|>\frac{1}{N^{2}\left(e z\left(\frac{1}{e} \log N\right)+4\right)}
$$

for all $M, N \in \mathbb{Z}$ with $N \geqslant 1$.
Now Eq. (10) has the form

$$
w^{w}=e
$$

which has a unique solution w, where $1 / w=0.567143 \ldots$ Using (11) we can write the lower bound as

$$
\left|\tau-\frac{M}{N}\right|>(1-\epsilon(N))\left(1-\frac{1}{w}\right) \frac{\log \log N}{N^{2} \log N}
$$

for all $M, N \in \mathbb{Z}$ with $N \geqslant 1619$, where

$$
\epsilon(N)=\frac{4}{\frac{\log N}{\log \frac{\log N}{\log \log N-1}-1}+4}
$$

In the next example we consider the Napier's constant

$$
e=[2 ; 1,2,1,1,4,1, \ldots]
$$

For the proof see e.g. Perron [12] or Cohn [5]. Now we are looking for the lower bound of q_{n}. We have $a_{0}=2$ and

$$
a_{n}= \begin{cases}\frac{2 n+2}{3}, & n \equiv 2(\bmod 3) \\ 1, & n \neq 2(\bmod 3)\end{cases}
$$

when $n \in \mathbb{Z}^{+}$. From recurrence formula (12) we obtain

$$
\begin{equation*}
q_{n+2}=\left(a_{n} a_{n+1} a_{n+2}+a_{n}+a_{n+2}\right) q_{n-1}+\left(a_{n+1} a_{n+2}+1\right) q_{n-2} \tag{21}
\end{equation*}
$$

for all $n \geqslant 2$.
When $n \equiv 0(\bmod 3)$ and $n \geqslant 3$ then we have $a_{n}=1, a_{n+1}=1$ and $a_{n+2}=(2 n+6) / 3$. By recurrence (21)

$$
\begin{equation*}
q_{n+2}=\frac{4 n+15}{3} q_{n-1}+\frac{2 n+9}{3} q_{n-2} \tag{22}
\end{equation*}
$$

When $n \equiv 2(\bmod 3)$ then $a_{n}=(2 n+2) / 3, a_{n+1}=1, a_{n+2}=1$ and

$$
\begin{equation*}
q_{n+2}=\frac{4 n+7}{3} q_{n-1}+2 q_{n-2} \geqslant \frac{4 n+7}{3} q_{n-1} \tag{23}
\end{equation*}
$$

In the case $n \equiv 1(\bmod 3)$ and $n \geqslant 4$ we have $a_{n+2}=a_{n-1}=1$. So (22) and (23) give

$$
q_{n+2}=q_{n+1}+q_{n} \geqslant \frac{4 n+11}{3} q_{n-2}+(2 n+2) q_{n-3} \geqslant \frac{4 n+4}{3}\left(q_{n-2}+q_{n-3}\right)=\frac{4 n+4}{3} q_{n-1} .
$$

Therefore for all $n \in \mathbb{Z}^{+}$we have a lower bound

$$
q_{n+2} \geqslant \frac{4 n+4}{3} q_{n-1} .
$$

Hence

$$
\sqrt[3]{\left(\frac{4}{3}\right)^{n} n!} \leqslant q_{n}
$$

and by Stirling's formula [1] we get

$$
\left(\frac{4}{3 e} n\right)^{\frac{1}{3} n} \leqslant q_{n}
$$

for all $n \geqslant 1$. Using Theorem 2.3 with $a=1, B=4 / 3 e$ and $c=1 / 3$ we obtain

$$
\left|e-\frac{M}{N}\right|>\frac{1}{N^{2}\left(\frac{3 e}{4} z\left(\frac{4}{e} \log N\right)+4\right)}
$$

for all $M, N \in \mathbb{Z}$ with $N \geqslant 1$ (naturally any choice of $a>2 / 3$ holds for N big enough, but this one holds for all $N \geqslant 1$). When $N \geqslant 7$ we can take $a=4 / 5$. So we get $1 / w=0.278383 \ldots$ and thus

$$
\left|e-\frac{M}{N}\right|>\left(\frac{5}{12}-\epsilon(N)\right)\left(1-\frac{1}{w}\right) \frac{\log \log N}{N^{2} \log N}
$$

for all $M, N \in \mathbb{Z}$ with $N \geqslant 7$, where

$$
\epsilon(N)=\frac{95}{\frac{144 \log N}{\log \frac{\log N}{\log 4 \log N-1}-1}+228}
$$

For example if $N \geqslant 7$ then $C=0.165684 \ldots$ and for $N \geqslant 32$ we have $C=0.197639 \ldots$. For $N \geqslant 39$ we can take $a=3 / 4$ to get larger C and so on. With any constant $C<1 / 2$ the bound can be improved to $C \log \log N / N^{2} \log N$ for big enough N, as $a \rightarrow 2 / 3, \epsilon(N) \rightarrow 0$ and $f(x) \rightarrow 0, f(x)$ decreasing, see (19).

In the following set $a_{n}=f_{n}$. We choose $h=1, l=1, B=\sqrt[4]{2}$ and $a=\frac{1+\sqrt{5}}{2}$. Then Theorem 2.8 gives

$$
\left|\tau-\frac{M}{N}\right|>\frac{1}{N^{2}\left(\frac{1+\sqrt{5}}{2} N^{\frac{D}{\sqrt{\log N}}}+3\right)}
$$

where $M, N \in \mathbb{Z}$ with $N \geqslant 2$ and $D=\frac{\frac{\log \frac{3+\sqrt{5}}{2}}{\sqrt{\log 2}} \text {. This improves considerably the result of Matala-aho }{ }^{2} \text {. }}{}$ and Merilä [11].

When $a_{n}=\operatorname{lcm}(1,2, \ldots, n)$ we choose $h=1, l=1, b=\sqrt{2}$ and $a=e^{1.030883}$ (see e.g. Rosser and Schoenfeld [13]). Then Corollary 2.9 gives

$$
\left|\tau-\frac{M}{N}\right|>\frac{1}{N^{2}\left(e^{1.030883} N^{\frac{D}{\sqrt{\log N}}}+3\right)}
$$

where $M, N \in \mathbb{Z}$ with $N \geqslant 2$ and $D=\frac{2.061766}{\sqrt{\log 2}}$.
In the case $a_{n}=n$! we may choose $a=e, b=\sqrt{2}, l=1.280678$ and $h=1$. Then Corollary 2.9 gives

$$
\left.\left|\tau-\frac{M}{N}\right|>\frac{1}{N^{2}\left(N^{\frac{1}{\log N}}\left(2 \sqrt{\frac{\log N}{\log 2}}+1\right)^{1.280678}\right.}+3\right)
$$

for all $M, N \in \mathbb{Z}$ with $N \geqslant 2$.

References

[1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Natl. Bur. Stand., Appl. Math. Ser., vol. 55, 1964, For sale by the Superintendent of Documents, US Goverment Printing Office, Washington, DC.
[2] H. Alzer, On rational approximation to e, J. Number Theory 68 (1) (1998) 57-62.
[3] J.M. Borwein, P.B. Borwein, Pi and the AGM, A Study in Analytic Number Theory and Computational Complexity, Canadian Math. Soc. Ser. Monogr. Adv. Texts, A Wiley-Interscience Publication, John Wiley \& Sons, Inc., New York, 1987.
[4] P. Bundschuh, Irrationalitätsmasse für $e^{a}, a \neq 0$ rational oder Liouville-Zahl, Math. Ann. 192 (1971) 229-242.
[5] H. Cohn, A short proof of the simple continued fraction expansion of e, Amer. Math. Monthly 113 (1) (2006) 57-62.
[6] C.S. Davis, Rational approximations to e, J. Austral. Math. Soc. Ser. A 25 (4) (1978) 497-502.
[7] N.I. Fel'dman, Yu.V. Nesterenko, Transcendental Numbers, Number Theory IV, Encyclopaedia Math. Sci., vol. 44, Springer, Berlin, 1998, pp. 1-345.
[8] A.I. Galochkin, The sharpening of the bounds for certain linear forms, Math. Notes 20 (1) (1976) 35-45.
[9] J. Hančl, T. Matala-aho, S. Pulcerová, Continued fractional measure of irrationality, Kyoto J. Math. 50 (1) (2010) 33-40.
[10] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, sixth edition, Oxford University Press, Oxford, 2008, revised by D.R. Heath-Brown and J.H. Silverman, with a foreword by Andrew Wiles.
[11] T. Matala-aho, V. Merilä, On Diophantine approximations of Ramanujan type q-continued fractions, J. Number Theory 129 (5) (2009) 1044-1055.
[12] O. Perron, Die Lehre von den Kettenbrüchen, second edition, Chelsea Publishing Co., New York, NY, 1950.
[13] J.B. Rosser, L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962) 64-94.
[14] I. Shiokawa, Rational approximations to the values of certain hypergeometric functions, in: Number Theory and Combinatorics, Japan, 1984 (Tokyo, Okayama and Kyoto, 1984), World Sci. Publishing, Singapore, 1985, pp. 353-367.
[15] C.L. Siegel, Transcendental Numbers, Ann. of Math. Stud., vol. 16, Princeton University Press, Princeton, NJ, 1949.
[16] J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (7) (2006) 637-641.
[17] B.G. Tasoev, Rational approximations to certain numbers, Math. Notes 67 (6) (2000) 786-791.

[^0]: * Corresponding author.

 E-mail addresses: hancl@osu.cz (J. Hančl), tapani.matala-aho@oulu.fi (T. Matala-aho).
 ${ }^{1}$ Supported by the European Regional Development Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/ 02.0070) and by the grants P201/12/2351 and ME09017.
 ${ }^{2}$ Supported by Academy of Finland, grant 138522.
 ${ }^{3}$ Supported by Academy of Finland, grant 138522.
 ${ }^{4}$ Supported by Academy of Finland, grant 138522.

