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1. INTRODUCTION. FORMULATION AND PRELIMINARY 
ANALYSIS OF THE GOVERNING EQUATIONS 

In this paper we study the multiplicity of equilibrium states of nonlinearly 
elastic strings under central forces. This problem generalizes that studied by 
Joh. Bernoulli in 1728 for an inextensible string. (The theory of elastic 
strings was developed by Jas. Bernoulli in 1691-1704; cf. [ 111.) It is 
technically more difficult than the related problem of the elastic catenary 
studied in [ 2, 4, 81 because it does not have a convenient set of integrals and 
because the central force field may well be infinite at its center. The 
complications due to this singularity are magnified by the requirement that 
the compressive contact force in the string must become infinite where the 
local ratio of deformed to natural length becomes 0. We find that these 
problems have a multiplicity of both regular and singular solutions, with the 
analysis of the latter requiring a careful extension of the governing laws of 
mechanics to handle infinite forces. 

In the rest of this section we formulate the governing equations. Here we 
pay special attention to questions of regularity, which cannot be handled 
routinely in virtue of the singularities in the equations. For a large class of 
problems we obtain detailed global information about the qualitative 
behavior of all regular solutions. In Section 2, we give a full characterization 
of singular solutions. In Section 3 we study purely radial solutions (by means 
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of fixed point theorems). These problems have not only an intrinsic interest, 
but also play a central role in the multiplicity theory developed in Section 4 
for arbitrary solutions. The analysis of Section 4 is based on a combination 
of shooting techniques with the use of the Leray-Schauder degree theory. In 
Section 5 we discuss existence and nonexistence of tensile solutions. 

Let a nonlinearly elastic string have a natural length 1. We identify each 
material point of the string by its coordinate s E [0, 11. Let r(s) represent the 
deformed position in Euclidean 3-space [E3 of the material point s. We 
require r to be absolutely continuous on [0, I]. Let T(S) = Ir(s)l. We assume 
that the string is subjected to a central force field of intensity 

f(s) -f(r(s), s> r(s)/+) (1.1) 

per unit reference length at s. We assume that f(., s) is continuous on 
E3\{0), that f(p, .> . is integrable for each p E E3\(O}, and that f vanishes 
nowhere. The cases of most physical interest are those in which f describes a 
central electrostatic, magnetostatic, or gravitational force so that f is given 
by the inverse square law 

f(r, s) = K(S) r ’ (1.2) 

and that in which f describes the centrifugal force due to the rotation of the 
string with constant angular velocity w about an axis perpendicular to a 
plane in which the string is constrained to lie. In this case 

f(r, s) = w2@A>(s>r, (1.3) 

where @A)(s) is the mass density per unit reference length at s. 
Let n(s) denote the resultant contact force exerted by the material of (s, I] 

on the material of [O, s]. Then the equation of equilibrium for the string has 
the form 

n(s) - n(u) + 1.’ f(t) dt = 0 
‘U 

(1.4) 

for all intervals (a, s) in [0, 11 on which f is integrable. The assumptions 
following (1.1) show that f is integrable on P= (s: r(s) > 0). Since r is 
continuous, P is the union U I,,, of a countable number of disjoint open 
subintervals I, of [0, I]. Equations (1.1) and (1.4) imply that 

n’ +f(r, s)r/T = 0 a.e. on P. (1.5) 

A string has the defining property that 

n = Ne, where e = r’/i r’ I. (1.6) 
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e(s) is the unit tangent to the string at s and N(s) is the tension at s. (e is 
defined a.e. on [0, l] since r is absolutely continuous.) We set 

v(s) SE 1 r’(s)1 (l-7) 
and require that 

v(s) > 0 a.e. on P. (1.8) 

We seek configurations r that satisfy (1.4) and (1.8) wherever r > 0 and that 
satisfy the boundary conditions 

r(O) = To, r(l)=r,, (1.9) 

where r0 and r, are given vectors in E3. 
If we substitute (1.1) and (1.6) into (1.4), we obtain 

N(s) 4s) = N(a) e(a) - 1” [f(r(O, t> r(t)/+)] dt 
.a 

(1.10) 

for (a, s) in a component open interval of P. It follows that if r and N satisfy 
(l.lO), then n = Ne and, therefore, INI = In] are absolutely continuous on P. 
These facts do not ensure that N is itself absolutely continuous on P because 
N and e can have jumps that switch their signs at the same places. To 
exclude pathological configurations with such jumps we shall seek solutions 
for which N is continuous on P. Then (1.10) implies that N and e are 
absolutely continuous on P wherever N does not vanish. 

We assume that the string is nonlinearly elastic so that the tension at s 
depends upon the stretch v(s). Specifically we assume that there is a 
continuously differentiable function (0, co) X [0, 1] 3 (v, s) F+ fi(v, s) E R 
with 

N,.(v, s) > 0, fi( 1, s) = 0, (1.11) 

lqv, s) -+ 03 asv-+03, A$, s) + -co asv-0 (1.12) 

so that 
N(s) = @v(s), s). (1.13) 

Properties (1.11) and (1.12) imply that fi(., s) has an inverse fi(., s) so that 
(1.13) is equivalent to 

v(s) = F(N(s), s). (1.14) 

Our boundary value problem is to find absolutely continuous functions r and 
functions N continuous on P that satisfy (1.4), (1.6), (1.13), and (1.1) 
subject to (1.8) and (1.9). We now obtain some useful properties of this 
system. 
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We operate on (1.5) with r x to obtain 

0 = r x n’ = (r X n)’ (1.15) 

whenever (1.5) holds since P’ x n = 0 by (1.6). For each subinterval I,,, of P 
Eq. (1.15) implies that there is a constant vector c, such that 

rXn=c,, 

r . c,, = 0, 

n.c,=O. 

(1.16a) 

(1.16b) 

(1.16~) 

(Equation (1.16a) is statement of the balance of moments about 0 on any 
subinterval of I, .) 

We now limit our attention to the behavior of r and n on a representative 
subinterval Z of {I,}. (Z would, of course, be the entire interval 10, 11 if r 
does not vanish.) We denote the corresponding constant from (c,} by c. In 
the next section we examine the detailed structure of solutions over all of 
[0, 1 ] when r vanishes at at least one point. 

Equation (1.16a) implies that if r x n should vanish at at least one point s 
in Z, it must vanish for all s E Z. Now (1.6) implies that r(a) x n(u) = 0 only 
if either N(a) = 0 or r(o) x r’(u) = 0. If n and r were known to be 
continuously differentiable on Z, then (1.5) would hold everywhere on I. 
Using (1.6) to write (1.5) as 

N’e + Ne’ -t jir/r = 0 (1.17) 

we see that the nonvanishing of f would then imply that N’(o) # 0 if 
N(a) = 0. Thus, N could vanish only at isolated points of Z whence r X r’ 
would have to vanish at the remaining points of I. Since r X r’ is continuous, 
it would, therefore, have to vanish everywhere. Since v > 0 by (1.8) and Y > 0 
on I, this means that the string would have to lie on a ray from the center. 
(We give a formal proof of this statement below.) In summary, (1.16a) and 
the continuous differentiability of n and r imply that the material of Z must 
either lie on a ray or be nowhere radial. 

We now show that this same conclusion holds when r is merely absolutely 
continuous. We first show that the points of Z where N vanishes must be 
isolated. Suppose that there were a u in Z such that N(u) = 0 and u is not an 
isolated zero of N. Thus, there would be a sequence (sk} of points of Z 
converging to u such that N(s,J = 0 (sk # a). Let us replace a and s in (1.4) 
by u and sk. Then this assumption would reduce (1.4) to 

1.” [f(r(s), s) r(s)/r(s)] ds = 0, k = 1, 2, 3,... . (1.18) 
.o 
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Since r is absolutely continuous and nonzero on Z, 

is absolutely continuous on Z and equals 1 at u. Thus, (1.18) implies that 

.Sk 

( f(r(s), s) R(s) ds = 0, k = 1, 2, 3 ,... . (1.19) 
‘” 

But R is positive on [a, s,J if k is sufficiently large and f vanishes nowhere. 
Thus, the integrand of (1.19) has one sign for k suffkiently large so that 
(1.19) is impossible. Thus, the zeros of N on Z must be isolated. (This 
conclusion does not prevent these zeros from accumulating at an end point 
of I.) Hence r x r’, which is defined almost everywhere on I, must vanish 
almost everywhere on I. Since neither r nor r’ can vanish on Z because r and 
v are positive, r and r’ must be parallel on 1. Thus, there must be a 
nonvanishing locally integrable function g on Z such that 

r’(s) = g(s) r(s) (1.20) 

almost everywhere on I. The vector equation (1.20) is equivalent to an 
uncoupled system of three scalar, linear equations. Its solution is 

r(s) = r(a) exp 1.’ g(t) dt, 
(1 

(1.21) 

where a is any point of I. This means that r lies on a ray. 
Similarly if r x r’ should vanish at a point in Z, then (1.16a) would imply 

that c = 0. By our preceding argument, r and n must again be radial. Thus, 
we find that the material of Z must either lie on a ray or else be nowhere 
radial. The latter case occurs if and only if c # 0. When this happens N 
cannot vanish on Z (by (1.16a)) so that the configuration of the material of Z 
can be characterized either as tensile (N > 0) or as compressive (N < 0). 
Moreover, if c # 0, Eqs. (1.16b) and (1.16~) imply that r and, hence, n = Ne 
lie in the plane perpendicular to c for s in I. Since e is absolutely continuous 
on Z where N does not vanish, it follows that if c # 0, then e is absolutely 
continuous on all of I. We summarize these results: 

1.22. PROPOSITION. Let r be an absolutely continuous function, let N be 
continuous on P, and let r and N satisfy (1.10) on an open interval Z on 
which r > 0, v > 0. Then N, which can vanish only at isolated points of I, is 
absolutely continuous on Z and e is absolutely continuous on each open subin- 
terval of Z on which N does not vanish. Zf N vanishes anywhere on Z or if the 
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tangent to the string is radial at a point of I, then the configuration of I is 
radial. Otherwise the configuration is a plane curve that is nowhere radial 
and this configuration is everywhere in tension or else everywhere in 
compression. 

By introducing our constitutive assumptions (1.1 l)-( 1.14) we can 
strengthen the regularity theory of Proposition 1.22: 

1.23. PROPOSITION. Suppose that r and N satisfy the hypotheses of 
Proposition 1.22 and satisfy (1.13) and (1.14). Then P’ is absolutely 
continuous on every open subinterval of I on which N does not vanish. Iff is 
continuous on (E3\(0)) x I, then r is twice continuously differentiable on 
ever-v subinterval of I on which N does not vanish. 

Proof Since v^ is continuously differentiable the function s F+ v(s) = 
C(N(s), s) is absolutely continuous on I since N is. We multiply (1.10) by 
v(s)/N(s) to obtain a representation for r’. This representation yields the 
conclusion. 1 

The analysis leading to Proposition 1.22 shows that when c # 0, the string 
is confined to a plane curve perpendicular to c. Let us take the plane perpen- 
dicular to c to be spanned by the orthonormal pair {i, j}. We can accordingly 
locate r(s) by polar coordinates r and 6”: 

r = r(cos (oi + sin fpj). (1.24) 

Thus, 

v* = (r’)* + (r-q’)‘. (1.25) 

If we substitute (1.6) and (1.24) into (1.16a) and take the dot product of the 
resulting expression with k = i x j, we find 

r*p’ = c - kv/N. (1.26) 

Since r, v, N, and c do not vanish, (1.26) implies that the sign of q’ is that of 
c . k/N. Since the sign of c . k depends only on whether the parallel vectors k 
and c have the same or opposite sense, we can make 9’ positive by choosing 
the basis {i, j, k} so that c . k has the same sign as N. Now c = ICI = /c . kl. 
Thus, c . k = fc = sign(N)c and (1.26) reduces to 

r*q’ = fcv/N = sign(N) cv/N = cv/l Nl. (1.27) 

When (1.13) holds, 10’ is an absolutely continuous function on I by 
Proposition 1.22. 
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FIG. 1.30. Relationship of angles cp and 8. Here I = 10, 11. The lightface arrows indicate 
an attractive central force. In this figure, 0’ > 0, cp’ > 0. 

To analyze the shape of the curves described by the restriction of r to I we 
represent e by 

e(s) = cos B(s)i + sin O(s)j, (1.28) 

whence 

e’(s) = [k x e(s)] O’(s). (1.29) 

(See Fig. 1.30.) If we substitute these expressions into (1.17) and then take 
the dot product of (1.17) with k x e(s), we find that 

Ne, =.fk . (r x e) . 
r 

(1.31) 

From (1.24) and (1.28) we get 

r x e = r sin(8 - (o)k. (1.32) 

If we differentiate (1.24), use (1.6) and (1.7), and equate the result with 
(1.28) we find 

I 

cos 0 = cos cp - F sin p, 
I 

sin 13 = sin cp + 5 cos rp, (1.33) 

whence 

v’ - = sin(8 - q). 
v 

Finally, if we combine (1.31), (1.32) and (1.34), we get 

(1.34) 

(1.35) 
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If c # 0, then cp’ is positive on I and N does not vanish on I. Then I?, which 
does not vanish on Z, has the same sign as Nf: 8’ is not the curvature of r 
because the prime represents the derivative with respect to the reference 
length variable s and not the actual arc length parameter. The curvature is 
B’/v and has the same sign as 8’. Note that this curvature is defined almost 
everywhere on Z by virtue of Proposition 1.22 and Eq. (1.31). We say that 
the curve r is bowed out on Z if 8’ > 0 on I as in Fig. 1.30 and bowed in if 
8’ < 0 in I. Hence, we have 

1.36. PROPOSITION. Let the hypothesis of Proposition 1.22 hold. If c # 0, 
then the restriction of r to I is bowed-out if Nf > 0 and bowed-in if Nf < 0. 
(There are no other possibilities.) In particular, iff is attractive so that f < 0, 
then each bowed-out configuration of I is compressive and each bowed-in 
configuration of Z is tensile, etc. 

Since (D’ is positive on I when c # 0, the map I3 s w (D(S) has an inverse 
3, which is continuously differentiable when (1.13) holds. We set 

4(P) = Mv)). (1.37) 

Let us denote derivatives with respect to v, by a superposed dot. We now 
substitute (1.24) and (1.37) into (1.17), use the chain rule, and substitute 
(1.27) into the radial component of the resulting equation to find that q and 
u = l/q satisfy 

(d/q’)’ - l/q + Nqzflc’v = 0, (1.38a) 

ti + u - Nf/c’vu* = 0 (1.38b) 

almost everywhere on Z and everywhere on I that f and v are continuous. 
Equation (1.38a) implies that if Nf < 0, then 6 > 0. This reinforces the 

conclusions of Proposition 1.36. Thus, a tensile configuration under an 
attracting force field has the expected U-shape. 

We now obtain a specific ordinary differential equation for q or u when 
the string satisfies (1.13) or (1.14). The substitution of (1.27) and (1.37) into 
(1.25) yields 

N* = c*(q* + g2)/q4 = c’(u’ + ti’). (1.39) 

Then (1.14) yields 

v(s^(rp)) = q*c Ju(q>’ + 4v))2, @co)>. (1.40) 

The substitution of (1.39) and (1.40) into (1.38b) and (1.27) yields the 
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following coupled semilinear system of ordinary differential equations for u 
and s^: 

ti’ + u = dmf((cos rpi + sin qj)/u, 2) 

cq*c~7T2,qu2 ’ 
(1.41’) 

s”‘= $rz 

lq fC ~iFTz>, s”) u2 . 
(1.42) 

These equations are valid almost everywhere on I. Iff is continuous, they are 
valid everywhere on 1. In the important case that I = 10, 1 ] (by virtue of the 
positivity of r), these equations are to be supplemented by boundary 
conditions equivalent to (1.9), namely, 

u(O)=u,, (1.43a) 

u(v,) = UI 9 (1.43b) 

s^(O) = 0, ( 1.43c) 

s^(ql,) = 1. (1.43d) 

Here we have taken 

v(O) = 0, dl)=P! (1.44) 

without loss of generality. q( 1) is determined from (1.9). The four conditions 
of (1.43) correspond to the three constants of integration for (1.41) and 
(1.42) and the parameter c. 

If f depends only on Y and s, then (1.41) and (1.42) reduce to an 
autonomous system for u and S: If, furthermore, the string and force field are 
uniform so that v^ is independent of s and iff(r, s) = g(u) u’, then (1.41) and 
(1.42) uncouple with the former reducing to the autonomous equation 

u must satisfy (1.43a) and (1.43b) and the auxiliary condition 

(1.45*) 

(1.46) 

coming from (1.42), (1.43c), (1.43d), and (1.44). By multiplying (1.45) by zi 
and then rearranging and integrating the resulting equation we find that 
(1.45) possesses the integral 

J* (u, ti) = H(fc v%%?) - G(u) = E(const), (1.47’) 
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where 

.N 

H(N) = 1 C(n) dn, 
.O 

G(u) 5 1” g(v) do. 
- I 

(1.48) 

Equation (1.47) is the equation of the phase-plane trajectories for (1.45). 
From the phase portraits further detailed information on the nature of 
solutions of (1.45) can be deduced. 

1.49. Remark. Iff satisfies the inverse square law (1.2) with K constant, 
then g(u) = K. In this case (1.45) and (1.47) become simpler. If, furthermore, 
the string is inextensible (so that v^= 1 and H(N) = N), then the integration 
of (1.47) is elementary. (This problem was treated by Joh. Bernoulli.) 

Thus, the problem of determining the number of equilibrium states for 
elastic strings under central forces under the best of circumstances leads to 
the study of boundary value problems for the second-order semilinear 
equation (1.45) with the auxiliary condition (1.46). The technical difficulties 
connected with this problem are considerable. Moreover, we must contend 
with singular solutions for which r can vanish. We study the multiplicity of 
regular solutions in subsequent sections where we employ several techniques, 
both classical and modern, to handle this problem. We study the form of 
singular solutions in the next section. 

2. SINGULAR SOLUTIONS 

We now study the nature of those solutions r that vanish somewhere and 
are thereby subjected to forces of possibly infinite intensity. We must not 
only resort to the underlying physics in order to define such solutions, which 
we term singular, but must also generalize the physical principles themselves 
(in an admittedly ad hoc way). To see the basic issues, we first study some 
simple physical situations. 

We first ask whether it is possible to suspend the string from a point r,) (to 
be determined) so that the end s = 1 is free and has prescribed position. 
Thus, we would consider the problem of finding an r,, such that 

r(l) = r,, (2.la) 

N(l)=O, (2.lb) 

where r, is given. Let us seek a straight (unfolded) configuration in which 
) r. / > / r, /. In this case (1.10) would reduce to 

N(s) = N(O) + fs f(r(t), t) dt. 
-0 

(2.2) 
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Now suppose that 

ff(r, (t), t) df -+ --oo as s + 1. (2.3) 
.O 

We now show that (2.lb) is inappropriate if r, = 0. In this case (2.lb)-(2.3) 
would imply that N(0) = co. Then (2.2) would imply that N(s) = co and, 
therefore, that V(S) = co whenever T(S) > 0. This would mean that the 
deformed length of the string would be 03, in contradiction to the fact that 
the deformed length is ]ro]. The message in these remarks is simply this. The 
presence of infinitely large body forces may cause the distinction between the 
roles of body forces and contact forces to disappear. In the present example 
the body force is so dominant that we cannot afford the luxury of prescribing 
N( 1) to be anything other than -co when ri = 0. Indeed, the body force is so 
strong that it constrains the end s = 1 to remain at 0. Consequently, a more 
fitting boundary condition than (2.1) when rl = 0 is just 

r(1) = 0. (2.4) 

The constraint force maintaining (2.4) is infinite and corresponds to the limit 
that N+ -co as s + 1 as given by (2.2) with N(0) finite. These observations 
seem unremarkable. But their natural corollaries are critical in enabling us to 
avoid paradoxes in more complicated situations. 

To clarify these issues we study the existence of singular radial solutions 
for a uniform string subject to a uniform attractive force field obeying the 
inverse square law (1.2) with K(S) = --(r. We take as our boundary con- 
ditions 

r(0) = r-0 > 0, r(s,) = 0 for some s, E (0, 11. (2.5) 

We seek radial solutions with T(S) < y. for s E (0, s,]. (We ignore for the 
moment the behavior of the material of (s, , 11.) Then v = -r’, e = -r/r so 
that (1.16) reduces to 

$ ti(-r!(s)) + -“? 
0) 

=o for s E (0, s,). 

We multiply this equation by r’(s) and integrate the resulting expression to 
obtain 

u’(v) = h - a/r, (2.7) 

where 

Y(V) = d(v) - 1.” J+(U) da = A(v) + 1.” [Ii+) - fi(o)] du 
. I 1 I 

(2.8) 
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and 

h = Y(v(0)) + a/r,. (2.9) 

The integral (2.7) implies that singular solutions occur only if 

Y(v) --t -al as r+ 0. (2,lO) 

Now (1.11) (1.12), and (2.8) imply that YL, > 0 and Y(V)+ co as v-+ co. If 
(2.10) holds, then Y has an inverse v#: R + (0, co) with v$(!F) > 0. Then 
(2.7) implies that (2.6) has a solution satisfying (2.5) if and only if there is a 
number h such that 

I 

.ro dr 
s, = 

F. @(h-a/r) =.-= 
- j.h-o’rn a dr = S(h; r”). 

v#(t)(h - t)* - 
(2.11) 

It is clear that the existence of such an h devolves upon the behavior of V# 
near --oo or the behavior of Y near 0. It is illuminating to study the example 
in which 

13(v) = A(!JP - v-4) with A > 0,~ > 0, q > 0. (2.12) 

Then (2.10) does not hold for q < 1, (2.10) holds but S(h; rO) does not 
converge for q < 2 (so that (2.9) is not sufficient for existence), and (2.11) 
has a solution h if q > 2. 

Now suppose that for a given r0 and s, a string has a singular solution 
satisfying (2.5). We now show that this string has such a solution for all rO’s 
and s,‘s. This means that one end of the string can be placed anywhere in 
space, any point s, of the string can be placed at the origin, and the string 
will have a straight equilibrium state joining these ends. (This means that a 
given string will have either no such equilibrium states or else all such 
states.) 

2.13. PROPOSITION. Let (2.6) have a singular solution satisfying (2.5). 
Then given any r$ > 0 and any ST E (0, 11, there is a solution of (2.5), (2.6) 
on 10, ST) with r(0) = r$ and with r(s) + 0 as s \ s,*. 

Proof The second integral for S(h; rO) in (2.11) shows that if S(h, rO) 
converges for a given (h*, r,f), then it converges for all (h, rO). Since our 
hypotheses imply that there is an (h*, r,f) satisfying (2.1 l), S(h, r,) 
converges for all (h, r,,). This fact and the properties of V# ensure that S(., rO) 
is a continuous, decreasing map from R onto (0, co), so that (2.11) must 
have a solution. 1 
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This result depends critically upon hypothesis (1.12). Suppose that the 
string is exceedingly weak in tension with A bounded above; e.g., take 

i(v) = A( 1 - P). (2.14) 

(In this case v# can be found explicitly.) Then S(h, r,,) converges only for 
q > 2 (as for (2.12)). But S(h, rO) is bounded below. Thus, (2.11) has a 
solution if and only if r0 is sufficiently small. In particular if q = 3, then 
S(h, rJ can be found explicitly and (2.11) has a solution if and only if 

3?ar, < 8As,. (2.15) 

We now study the equilibrium of an elastic string satisfying (1.9) with 
r,, X ri # 0 under a force system that permits singular solutions. Suppose that 
a material point u E (0, 1) is brought to the origin. Then it seems likely that 
there is a V-shaped equilibrium state (see Fig. 2.16) with N(0) and N( 1) 
finite. If we routinely regard all the forces acting on the string as being 
accounted for by the contact forces n(0) and n( 1) acting at the ends and by 
the body force jA[f(r(s), s) r(s)/r(s)] d s and if we assume that f satisfies 
conditions analogous to (2.3), then we would find that the resultant force on 
the string would not be zero. Thus, Fig. 2.16 could not represent an 
equilibrium state, in deliance of our intuition. If we insist on having 
equilibrium states like Fig. 2.16 we must call upon the interpretation made in 
the first example. We regard the force intensity as so strong that it effectively 
constrains r(o) to remain at 0. The infinite reactions enforcing this constraint 
balance the forces already described. An effect of this interpretation is that 
there is no interaction or coupling between the equilibrium equations for the 
material segments [0, u) and (a, l]. 

We can now contemplate situations in which a closed interval [a,, a,] of 
material with cr, < csz is pushed into the origin and kept there by the infinite 
forces that reduce the stretch v to 0. More generally, we could contemplate 
the situation in which any closed subset of 10, 1] is constrained to remain at 
0. By our interpretation of such configurations being maintained by induced 
constraint forces we need only show that the classical equilibrium equations 
are satisfied on each complementary open interval Z. 

rl 

r(c)=0 iii ‘0 

FIGURE 2.16 
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FIG. 2.17. Forces acting on curved segment of string passing through 0 

We now inquire into the form of solutions on an interval I for which Y 
vanishes at at least one end. So far we have only considered cases in which r 
describes a straight line. Must every solution be straight? To answer this 
question we first attempt a purely formal analysis. In Fig. 2.17 we show a 
free body diagram of a curved configuration of I = (<, 7) with r(T) # 0, 
r(r) = 0. The forces acting on this segment are the central body forces, the 
tangential contact force -n(T) and the possibly infinite reaction at 0 
tangential to the string. Since all these forces except -n(r) pass through 0, 
the moment of this force system about 0 is -r(l) x n(r). Thus, the string 
cannot be in equilibrium unless r(t) X n(t) = 0. Since r(t) f 0, 
Proposition 1.22 would imply that r(1) must be radial. Unfortunately this 
argument, based on geometry and simple physical reasoning, is inadequate. 
This becomes apparent when we try to give an analytic justification of it. 
Now the summation of moments in the subinterval (<, s) of I is readily 
shown to yield 

r(t) X 40 = r(s) X 4s) for s E I. (2.18) 

This is equivalent to (1.16a). We recover the requirement that the 
configuration of r be straight from (2.18) whenever 

?‘y r(s) X n(s) = f: T(s) N(s) (2.19) 

In the examples we have just considered, T(S) --) 0 but N(s) + -co as s + q. 
For the segment shown in Fig. 2.16, [r(s)/r(s)] x e(s) --t 0 as s + ‘I, but there 
is no a priori reason to exclude other possibilities such as that allowing the 
curve r to spiral into 0. Thus, we cannot conclude that (2.19) holds without 
further argument based upon the full boundary value problem. Indeed, the 
work of Devaney 16, 71 indicates that there can be nonradial singular 
solutions. 

If, however, we know that N is bounded as T(S) + 0 or, more generally, 
that rN is bounded as r(s) + 0, then (2.19) holds and we can conclude that 
r(l) is radial. The properties off themselves may enable us to show that rN 
is bounded as T(S) --t 0; e.g., (2.2) implies 

2.20. PROPOSITION. If r w f(r, s) is bounded for r near 0 and if there is 
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I- (7)=0 

r(<)=O @2 
FIG. 2.21. Possible configuralions of subintervals of I that have 0 as a limit point. The 

arrows indicate the direction of increasing S. Note that both cp’ and 0’ are positive. 

a u E [0, 1 ] such that r(o) = 0, then N is bounded and r(Z) is radial for every 
interval I on which r > 0. 

Note that when the hypotheses of Proposition 2.20 hold, the ray on which 
r(Z) lies may differ with I. Since {s E [0, 11: r(s) > O} = lJ Z,,, , where (Z, } is 
a countable collection of disjoint open intervals, r could represent a curve 
containing a countable number of radial pieces r(Z,), each of which may 
point in a different direction in E3. There are at most two intervals of (I,} 
that contain at least one of the points 0 and 1. On the other intervals I, r(Z) 
is doubly-covered, i.e., r(Z) has exactly one fold (provided the hypotheses of 
Proposition 2.20 hold). We discuss folded solutions in the next section. 

We now develop some machinery to get further precise information. First 
we note that if the restriction of r to Z= (6, r~) is positive but either r(5) or 
r(q) vanishes, then Proposition 1.36 and the positivity of 9’ require that the 
configuration of Z be bowed out, i.e., that 8’ be positive on I. We sketch 
possible configurations of subintervals of Z that have 0 as a limit point in 
Fig. 2.21. In the two cases on the left of Fig. 2.21 the positivity of 8’ follows 
from geometric considerations. In the two cases on the right a free body 
diagram of a half-loop of the spiral shows that we must have Nf > 0 and, 
thus, 0’ > 0 by (1.35). Iff is attractive and if Jr(n) - r(r)\ > VZ - & then r(Z) 
must be straight because otherwise N would be compressive and this would 
be incompatible with (1.11) and the hypothesis that the deformed length of Z 
is not less than I. 

Henceforth we restrict our attention to uniform strings acted on by 
uniform central force fields in which case (1.47) holds. Combining (1.39) 
and (1.47) yields 

N(f(.)) = H-‘(E + G(u)). (2.22) 

This implies that rN --, 0 as r(s) -+ 0 if and only if 

,im H-‘(E + G(u)) = lim g(u) (2.23) 
u-m U u-00 C((H-‘(E + G(u))) = ” 
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The first equality in (2.23) follows from I’Hopital’s rule and (1.48). Thus, we 
have 

2.24. PROPOSITION. Zf (2.23) holds and if there is a u E [0, 1 ] such that 
r(u) = 0, then r(Z) is radial for every interval Z on which r > 0. 

We now seek further criteria ensuring that solutions are radial that can 
handle the case r(s) N(s) -+ 0 as r(s) 40. We assume that (1.47) holds. If 
c = 0, the argument leading to Proposition 1.22 implies that the 
configuration of an open interval Z on which r > 0 and v > 0 is radial. To 
study the possibility of the existence of curved states we accordingly take 
c > 0. Now the level curves of the graph of J*, which is defined in (1.47), 
are the phase-plane trajectories for (1.45 * ). If a nonradial configuration of Z 
were to approach 0, then there would have to be a phase-plane trajectory in 
(0, co) x R on which u + co. Since .Z* is continuous, we can demonstrate the 
nonexistence of such a trajectory by showing that IJ* (u, zi)l -+ co as u --t co 
for all ti E R, for then there can be no level curve of the graph of J* on 
which u + co. Since Nf must be positive for singular solutions, since H has 
the same sign as N, and since G has the same sign as (U - 1) g(u), we readily 
obtain 

2.25. PROPOSITION. Zf for each c > 0 and for each zi E R 

JJ* (u, zq -+ co as u-tco (2.26) 

and zf there is a CJ E [0, 1 ] such that r(o) = 0, then r(Z) is radial for every 
interval Z on which r > 0. The following results give readily verifiable 
sufficient conditions for (2.26): 

(i) J’(u, ti)-+ co as u-+ co if lim,,, G(u) < co (because 
H(c~KLF)>coasu+~). 

(ii) Zf v^ is integrable on (--co, 0) and if lim,,, G(u) = -co, then 
J-(u, ti) + co as u --f 03 (because lim,,, H(-c dm) > --0~) in view of 
(1.48)). 

(iii) Zf v” is not integrable on (--co, 0) and if-co < lim,,, G(u) < co, 
then J- (u, ti) + --oo. 

(iv) If(H(*c d?XF)I + 03, zf]G(u)]- 00 as u+ 00, and zf 

G(u) 
2% H(*c diFq> 

= lim g@) =o 
“‘co fd(fC @-q) 

or a, 

(2.27) 

then ]J*(u, zi)] + CO as u + CD. (The first equality in (2.27) follows from 
PH@itaZs rule.) 
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2.28. COROLLARY. Zf f satisfies the inverse square law f(r, s) = Icrp2 

where K E R\{O} and if there is a o E [0, 1 ] such that r(u) = 0, then r(Z) is 
radial for every interval Z on which r > 0. 

ProoJ: The case for J’ is covered by (iv). To treat J- we first observe 
that K > 0 since Nf> 0. Then this case is covered by (i) or (ii) according to 
whether or not v^ is integrable. 1 

3. STRAIGHT AND FOLDED RADIAL CONFIGURATIONS 

In this section we study the existence of straight and folded nonsingular 
radial configurations. Our results play a central role in the general treatment 
of existence in the next section. For simplicity of exposition we assume that 
the force is an attractive inverse square law force given by (1.2) with K 
negative and continuous. For radial solutions, (1.17) can then be reduced to 
the system 

/ r’ 1 = C(N, s), N’ = --K(s)/r'. (3.1) 

We require that r satisfy the boundary conditions 

r(O) = ro, r( 1) = r, with O<r,<r,. (3.2) 

We first seek straight configurations corresponding to solutions with r’ > 0. 

3.3. PROPOSITION. For K negative and continuous problem (3.1) (3.2) 
has a solution r E C’([O, 11) with r’ > 0. 

Proof: The initial value problem for (3.1) subject to r(0) = r(, and 
N(0) = A has a unique solution in a neighborhood of s = 0 that satisfies 

r(s) = r0 + 1.’ $(N(t), t) dt, (3.4a) 
.’ 0 

N(s) = A - 1” K(t) r(t)-’ dt. 
-0 

(3.4b) 

From (3.4) we obtain 

r. < r(s) < 1’ $(A + max IK( r;*, t) dt, A <N(s)<A +rnaxl~(r;~. (3.5) 
-0 

Thus, the continuation theory of ordinary differential equations implies that 
the solution of the initial value problem is defined for all s in (0, 11. This 
solution is a twice continuously differentiable solution of the boundary value 
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problem (3.1), (3.2) if A can be chosen so that r(1) = rl. Equations (3.4) 
imply that this can be done if A can be chosen such that 

I r(f)-* dt, s ds = R(A). (3.6) 

Now the properties of v^ imply that 

(‘$(A.s)ds<R(A)< \.‘v^(A +max/KIT;*,S)ds 
.o .O 

(3.7) 

so that R is a continuous function from R onto (0, co). (Note that Y itself 
depends continuously on A.) Thus, (3.6) has a solution. (This same 
conclusion could have been obtained by means of the Schauder Fixed Point 
Theorem.) 1 

By using (3.4) and the properties of v^ we could show that if (3.1) and 
(3.2) with K negative and continuous has two distinct solutions r and J with 
r” > 0, Y’ > 0 and with Y(O) > r(O), say, then J(s) > T(S) for all s in (0, 1). We 
can obtain a uniqueness theorem for solutions of Proposition 3.3 if we 
assume that the string is uniform so that 

K(S)= -Cl, a>0 and qfv, s) = v^(N). (3.8) 

We adhere to (3.8) in the rest of this section since this policy renders much 
of our ensuing development much more transparent, yields stronger results, 
and enables us to avoid a variety of technical difficulties. 

3.9. PROPOSITION. Let (3.8) hold. Then (3.1), (3.2) has a unique 
solution rE C*([O, 11) with r’ > 0. 

Proqf: Suppose that there were two solutions r and F with r’(0) < r”(0). 
Then (3.2) and the uniqueness theorem for initial value problems imply that 
there must be an s* E (0, 1 ] such that r(s*) = ?((s*), r’(s*) > F’(s*). Hence 
(2.7) implies that 

Y(r’(0)) - Y(?(O)) = Y(F’(s*)) - Y(F(s*)). (3.10) 

The positivity of Y,, then ensures that the left side of (3.10) is negative while 
the right side is positive, which is absurd. m 

We now study radial configurations that are folded at s = r, where z is to 
be determined. We again take (3.2) as our boundary condition with 
0 < r0 < r, . Now the integral form (1.4) of the equilibrium equation implies 
that 

n(r-) = n(r+) = n(t). (3.11) 
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But 

4s) = N4 WW 
= -N(s) r(s)/?-(s) 

for S E [O, r) 

for s E (5, 11, 
(3.12) 

so (3.11) can hold if and only if 

N(F) = -N(z+) = 0 

or, equivalently, 

v(r-) = v(t+) = 1. (3.13) 

Note that (3.13) implies that no configuration can have more than one fold 
because a segment of the string lying between two folds would be subject to 
zero contact force and to a nonzero resultant body force and so could not 
stay in equilibrium (i.e., (1.4) would not be satisfied). 

We first study the problem in which r(r) > r,,, r, so that 

v(s) = r’(s) 

= -r’(s) 

for s E [0,7) 

for s E (r, 11. 
(3.14) 

(In this case (3.13) reduces to 

r’(z-) = 1 = -r’(r+).) (3.15) 

We are, thus, led to study the two boundary value problems 

[lqr’)]’ = a/r*, r(O) = rg > N(r’(r)) = 0, 

-[&-r-l)]’ = a/r*, r(l)=r,, $(-r’(t)) = 0. 

(3.16a) 

(3.16b) 

If (3.16a) has a solution s ++ R,(s, r) and if (3.16b) has a solution 
s t, R,(s, r), then these two solutions describe a folded configuration of the 
string provided r in (0, 1) can be found so that 

R,(t, r) = R,(G 7). (3.17) 

We now develop the existence and uniqueness theory for (3.16) and (3.17). 

3.18. LEMMA. Problems (3.16a) and (3.16b) respectively have unique 
solutions R,,(., t) and R,(., 5) for r0 > 0, r, > 0. 
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ProoJ: We follow the derivation of (3.4) and (3.5) to show that (3.16a) 
and (3.16b) have solutions R, and R, if and only if 

Rob, r) = r. + 1” v^ (-I.’ aR,(a, T)-~ da) dr 
.O *f 

= V’oRo)(s) for s E [0, r], (3.19a) 

R,(s, t) = r, + f’ v” (i’aR,(a, s)-‘do) dt 

= (T, d I)(s) 

-T 

for s E [r, 11. (3.19b) 

The existence of solutions of (3.19) is ensured by the Schauder Fixed Point 
Theorem, which implies that T, and T, have fixed points in K, = 
{r E C’([O, r]): r0 < r ,< r,, + r} and K, E {r E C”([r, 11): r, < r < r, + 1 - r}, 
respectively. To prove the uniqueness of R, we suppose that (3.16a) or 
(3.19a) has two solutions R and R” with R”‘(O) < R’(0). Then (2.7) implies 
that 

a 
- = T + Y(R’(O)), 
R(t) r. 

(r = 2 + Y@(O)). 
R(s) r. 

(3.20) 

Since Y is strictly increasing, (3.20) implies that g(r) > R(z). Thus, there 
must be an s* in (0, r) such that R(s*) =x(s*) and R’(s*) < l?‘(s*). 
Repeating this argument on [s*, r] we obtain a contradiction. The proof of 
the uniqueness of R, is analogous. 1 

We note that R; > 0 and RI < 0. (Here and below, the prime denotes the 
derivative with respect to the first argument of R, and R, .) To obtain a 
folded configuration, we must show that (3.17) is satisfied. 

3.21. LEMMA. 5 N R,(t, r) is strictly increasing and s H R,(r, r) is 
strictly decreasing. 

ProojI Integral (2.7) implies that 

a 
~ = ?? + !f’(R;(O, t)). 
Ro(T, 5) f-0 

(3.22) 

Let ri < 72. If Rb(O, r,) > RL(O, r2), then (3.22) implies that R,(t,, t,) < 
R,(z,, r2). If RA(O, r,) = R/,(0, r2), then the uniqueness theory for initial value 
problems implies that R,(., r,) = R,(., r2). Since R,(., t) is increasing, we, 
therefore, have that R,(r,, rl) < R,(r,, tl) = R,(s,, Q). If R;(O, 7,) < 

Rh(O, r,), then R,(s, rr) < R,(s, r2) for s in some neighborhood of 0. If this 
last inequality holds for s in [0, r, 1, then the monotonicity of R,(., t2) 
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implies that R,(r,, ri) < R,(r,, rJ. The same conclusion follows if 
R,(t,, r,) < R,(r,, rz). If, however, there is a first s* in [0, ri) such that 
R,(s*, r,) = R,-,(s*, r2), then either RA(s*, t,) = R/,(s*, tz), again implying 
that R,(., r,) =R,,(., rz) and thence the conclusion, or else R;(s*, r,) > 
Rh(s*, rz). In this case (2.7) implies that 

a 

Ro(r,, 5,) 
- Y(R;(s*, 5,)) = a 

Ro(r2 3 r2> 
- Wh(s*, r2)), (3.23) 

whence it follows that R,(r,, r,) < R,(r,, rz). The proof for R, is 
analogous. I 

In view of Lemma 3.21 we see that (3.17) holds for r E (0, 1) if and only 
if the curves r E-+ R,(r, r) and r F+ R,(r, r) cross in (0, 1). This occurs if and 
only if 

and 

r. = R,(O, 0) > R , (0, 0) (3.24a) 

R,(l, 1) > R,(l, 1) = r,. (3.24b) 

Since R,(O, 0) > r, > r,, by (3.19b), inequality (3.24a) is automatically 
satisfied. Now (3.19a) implies that 

r,+v^(-ar;*)<r,+ 1v^(-ar;2(1--1))dt<Ro(l,l) 1 
(3.25) 

0 

1 

< Yo + 1 
v^(-aR,(l, 1)-2(1 - t)) dr < r. + 1. 

0 

Now p tt p - s; C(-ap-*( 1 - t)) dt is a strictly increasing function from 
[0, co) onto [0, co). Let g be its inverse. Then the third inequality of (3.25) 
is equivalent to 

Ro(L 1) < g(r,>. (3.26) 

These results together with the consequences of Lemmas 3.18 and 3.21 yield 

3.27. THEOREM. Let (3.8) hold and let 0 < r. < r, . Then there is at most 
one folded contguration with the fold more remote from the origin than the 
supports. There is such a configuration, which is compressive, tf and only if 
R,(l, 1) > r,. This condition is satisfied if r. + 1: C(-ar;*(l - t)) dt > r, 
and a fortiori tf r. + VI(-art’) > r,. In particular, there is always such a 
folded configuration if r. = r, (in which case the fold is at s = l/2). There is 
no such configuration $g(r,,) < r, and a fortiori if r. + 1 < r, . 
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We now study the existence of regular folded conligurations satisfying 
(3.2) with the fold “below” the supports. By following the development 
centered on (3.12)-(3.19) we show that there is such a solution folded at 
s = r if and only if there are functions P, and P, satisfying 

p,(s, r) = r. - 1.’ v^ (1.’ aP,(a, r)-’ do) dt 
-0 I 

= VoPo)(s) for s E [0, r], (3.28a) 

aP, (a, 5) -’ do 
1 

dt 

for sE 15, 11, (3.28b) 

and (3.17). Let m be the minimum of (0, co) 3 b ++ b + l: v^(tabm2) df. 

3.29. LEMMA. Let m < r. < r,. Then for each tE [0, 11, Eqs. (3.28a) 
and (3.28b) have continuous solutions. 

Proof: The Schauder Fixed Point Theorem implies that To and T, have 
fixed points on (r E C”([O, t]): m < r < ro} and (r E C”([r, 1 I): m ,< r < r, ) 
respectively. 1 

Note that these solutions are tensile because the arguments of v^ in (3.28) 
are positive except at r. Thus, there cannot be a regular folded configuration 
with the fold below the supports if r. + r, < 1. From (3.28) we find that 
r H P,(r, r) is decreasing and r tt P,(r, r) is increasing on 10, 11. Following 
the arguments for strings folded above the supports we find that (3.17) is 
satisfied for r in (0, 1) if and only if 

We, thus, obtain 

(3.30) 

3.31. THEOREM. Let (3.8) hold and let m < r. < r,. Then there is a 
folded configuration, which is tensile, with the fold closer to the origin than 
the supports if and only if (3.30) holds. This condition is satisfied if 
r, - j”A F(atr;*) dt < r. and a fortiori if r, - r. < 1. 

Note that we do not obtain uniqueness and nonexistence results because 
there is no evidence suggesting that there should be any. The function 
playing the role of g-’ (cf. (3.26)) is just the nonmonotone function b tt b + 
1: C((tab-*) dt. (It is easy to choose reasonable v”s for which this integral can 
be evaluated.) 
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4. EXISTENCE AND CONNECTIVITY OF NONRADIAL 
COMPRESSIVE STATES 

In this section we study the existence and connectivity of nonradial 
compressive configurations under an attractive central force field. For 
simplicity we shall ultimately restrict our attention to the behavior of 
uniform strings under a field satisfying the inverse square law. We show how 
these solutions evolve from the radial solutions treated in the preceding 
section as the supports are moved apart. 

We begin our analysis by studying compressive solutions of 
(1.6)-(1.8), and (1.13) on [0, 11 subject to the initial conditions 

r(O) = ro, n(O) = “0 3 

where r. # 0 and no are prescribed. (We do not yet take the string 
uniform and the force to satisfy the inverse square law.) 

Now (1.4), (1.6), and (4.1) imply that 

n(s) = N(s) e(s) = no - j’” f(r(t), t) dt = n*(r, no)(s). 
.” 

We seek compressive solutions for which N < 0, whence 

N(s) = - I +)I, e(s) = -+>/I +)I. 

In this case (1.7), (1.14), and (4.1) imply that 

r(s) = r. - 1’ 4- I n(Ol, O[n(O/l n(t)1 1 dt. 
-0 

We study the existence of solutions n and r of (4.2) and (4.4) on [0, 1 

(1.4), 

(4.1) 

to be 

(4.2) 

(4.3) 

(4.4) 

] that 
depend continuously on no and ro. That n/l n I need not be continuous means 
that (4.4) does not satisfy the Caratheodory conditions (described in 
standard texts on ordinary differential equations) so that its treatment is not 
routine. 

4.5. PROPOSITION. Let f: (lE3\{O)) x [0, l] -+ E3\(O} be continuous and 
let f(., t) be Lipschitz continuous on compact subsets of E’\{O} uniformly for 
t E 10, 11. (f need not be a central force.) Then for any no E E3 and for any 
r,, E: E’ for which r. = Ir,l > 1, there exists a unique, continuous solution n, r 
of (4.2) and (4.4) on [0, l] that depends continuously on no and ro. 
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Proof: Let 

e*k no> = --n*(r, no)/1 n*(r, nJ. (4.6) 

Then (4.2) and (4.4) are equivalent to 

r(s) = r. + 1: ?(- 1 n” ( rT nobly f> e*(r, no)(t) dt = p(r,, r,,, q,)(s). (4.7) 

Now for r > 0, f(r(.), .) never vanishes. Then the zeros of n*(r, n,) must be 
isolated (cf. Section 1). Thus, e* is defined for continuous nonvanishing r 
everywhere except possibly at a finite set of s’s. Since r0 > 1, (4.7) implies 
that ] p(r, ro, n,,)(s) - r. ] < 1 for such r. Thus, p(., ro, n,) is readily shown to 
be a compact and continuous mapping of the closed convex set 
{r E CO([O, 1 I): I+> - r,l < 1, SE [0, l]} of the Banach space C’([O, 11) 
into itself. The Schauder Fixed Point Theorem, thus, implies that p(., co, no) 
has a fixed point, which is a solution of (4.7). This solution generates a 
solution of (4.2) and (4.4), which we denote by r(+, ro, no), n(., ro, no). We 
now show that this solution is unique. (Uniqueness would follow from the 
continuous dependence of solutions on r. and no. The possible lack of 
continuity of e makes it convenient to prove uniqueness first.) Suppose that 
(4.2) and (4.4) have two continuous solutions (r’, n’) and (r*, n’) with 
Ir’ - ro/ < 1, /r2 - roI < 1. Set 6r = r’ - r2, 6n = n’ - n*. Then the Lipschitz 
continuity of f(., s) and $(e, s) implies that there is a positive constant C 
(depending on the two solutions) such that 

(4.8) 

I h(s)/ < C 1.’ / i%(t)/ dt. 
-0 

(4.9) 

Let us first suppose that no = 0. Then 

ik f(r’(t), t) dt si f(r’(ss), ST) dr 
e*(r” o)(s)s IjS, f(r’(t), t) dtl = II: f(r’(st), st) drl + H 

ass\Ofori=l,2. (4.10) 

Let s, be greater than 0 and smaller than the first positive zero c, of n’. Then 
there is a number C, such that ]I: f(r’(ss), ST) drip’ < C, for s E [0, s,]. Let 
us set 

(4.11) 



204 ANTMAN AND WOLFE 

Then the Lipschitz continuity of f implies that there is a constant C, such 
that 

G C24(s) (4.12) 

for s E [0, s,]. Thus (4.8), (4.9), (4.11) and (4.12) imply that there is a 
C > 0 such that 

“r(s) < c 1‘ A,(t) dt + C 1‘ A,(t) dt, 
0 0 

A,(s) < C IS A,(t) dt 
-0 

for s E [O, s,]. (4.13) 

A standard application of the Gronwall inequality to a certain scalar 
equation obtained from (4.13) shows that d,(s) = 0, d,(s) = 0 for s E [0, s, 1 
and, thus, on [0, t;,]. Since n’ has only a finite number of zeros, the same 
argument can be repeated to show that A,. = 0, A, = 0 on [ 0, 11 and, thus, 
that the solution is unique. 

If no # 0, then there is an interval about s = 0 on which n’ does not 
vanish. A simpler version of the preceding argument yields uniqueness on 
this interval. If this interval is not (0, I], then the preceding argument gives 
the uniqueness on the remainder of [0, 11. Thus, in every case the solutions 
are unique. 

To prove the continuous dependence of solutions on r. and no we let 
{ (rj, n,i)) be a sequence of vectors converging to (ro, no). Then (4.7) implies 
that {r(., rj, nj)) is uniformly bounded and equicontinuous and, therefore, by 
the Arzeli-Ascoli theorem, possesses a subsequence converging uniformly to 
a limit, which we readily show to be the unique solution r(., ro, no) of (4.7). 
The uniqueness of this solution shows that the whole sequence (r( ., r,i, ni)) 
converges to r( ., r. , no). I 

A useful variant of this proposition holds when f is an attractive central 
force, which for simplicity we take to be uniform. 

4.14. PROPOSITION. Let (0, co) 3 r of E (--to, 0) be continuously 
d@rentiable and let f of (4.2) have the form f(r, s) = f (r) rr- ‘. Let the string 
be uniform and let 1 J-(u, ti)l -+ co as u + co. (J- is defined in (1.47).) Then 
for every ro, no for which r. x no # 0, there exists a unique continuously 
differentiable solution (n, r) of (4.2) and (4.4) on (0, 11, which is a 
continuously dtfferentiable function of r. and no for r. X no # 0. For every 
ro, no with r. # 0, there exists a unique continuous solution (n, r) of (4.2) and 
(4.4) on (0, sup{s: r(s) > O}), which depends continuously on r. and no. 
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ProoJ For r0 x no # 0, we obtain the existence and continuous depen- 
dence of solutions for small s by the standard arguments based on the 
Contraction Mapping Principle. This approach is justified by 
Proposition 1.22, which implies that e must be absolutely continuous for 
small s because the solution is not radial at s = 0. (The technical difftculties 
in the proof of Proposition 4.5 were all caused by the possible discontinuity 
of e.) Then the continuation theory for ordinary differential equations 
ensures that solutions exist for all s in [0, 1 ] because (1.477) yields an a 
priori estimate embodied in Proposition 2.25 ensuring that solutions of the 
initial value problem cannot “blow up” for finite s. The last statement of this 
proposition is proved as in Proposition 4.5. I 

Note that the results of Sections 2 and 3 yield sufftcient conditions on 
radial solutions ensuring that sup{s: r(s) > 0) > 0. Below we shall obtain a 
simple condition yielding this inequality. 

Now we restrict our attention to the case in which the string is uniform 
and the force field obeys the inverse square law with f(r) = -arm2. The 
discussion of Section 1 shows that every regular configuration lies in a plane 
spanned by the orthonormal pair {i, j} of vectors. Without loss of generality 
we set 

ro = roJ> r,=ai+bj, no = Ai + pj. (4.15) 

Since we seek regular solutions we take r. > 0 and a2 + b2 > 0. Then 
r(., ro, II,), which we henceforth write as r(., ro, A, ,D), is a compressive 

FIG. 4.18. The function ~(1, rO, 0, .) increases strictly on (-w,R*) from r0 to R,,(l, l), 
which is defined in Proposition 3.18. On I,u*, 01 it decreases from R,( 1, 1) to a value between 
0 and rt,. Its slope has a jump at ,u*. For p < ,u*, r(., r,,, 0, ,u) describes straight compressive 
radial configurations and for ,D* < ,U < 0, r(., rO, 0,~) describes folded radial configurations. 
The smooth continuation C of the left piece of the curve represents (4.19) for ,U > p*. This 
corresponds to a straight configuration that is compressive at the low end and tensile at the 
high end. These solutions which are of physical interest play no role in the construction of 
compressive states (cf. Theorem 3.27). 
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solution of our boundary value problem (1.4), (1.6~( 1.9), (1.13) if and only 
if r(., rO, A, cl) is nonzero on [0, l] and there are numbers A, p satisfying 

r(l,r,,A,p)=ai+bj. (4.16) 

Since regular solutions are either everywhere radial or nowhere radial we 
find that (4.16) has a solution for a = 0 if and only if 

r(l,rO,O,~)-r(l,Yg,O,ill).j=b=r,. (4.17) 

Let us suppose that b > r,,. Then a careful study of (4.7) when A = 0, which 
is essentially carried out in the proofs of Section 3, shows that r( 1, rO, 0, .) 
has the form shown in Fig. 4.18. In particular, (3.4) implies that r( 1, rO, 0, p) 
satisfies 

r(l,r,,0,p)=r,+~d;(/lf~~sar(t.r,,0,p)~2dt)ds (4.19) 
-0 

provided p is such that N(s) is everywhere negative; then (4.19) is valid on 
the interval (-co,p*) where ,u* satisfies 

p*+ j.‘ar(l,r,,O,~*)-‘dl=O. 
-0 

By comparing (4.19) with (3.19a) we find that 

r(l,r,,O,p**)=R,(l, 1). 

From (4.7) we find that 

ar(t, ro, O,P)-~ dt ds 

where the fold point r@) satisfies 

.T(U) 

Iu+Jo 
ar(t,ro,0,,u-2dr=0 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

provided p* < ,u < 0. Now (4.23) implies that r@) \ 0 as P /’ 0 so that 
r( 1, rO, 0, p) falls below r,, as ~1 nears 0. Let p * * be the smallest value of p 
for which r(1, ro, O,,u**)= rO. 

For the ensuing analysis we need to determine the behavior of r( 1, ro, 0, .) 
on (u**, 01. The low point on this curve occurs at p = 0. We ensure that the 
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solution is regular for p < 0 by making r0 so large that r( 1, rO, 0,O) > 0. We 
know that taking r,, > 1 suffices for this purpose. We seek a sharper bound 
for r,,. Now (4.22) and the properties of r(a) say that r( 1, rO, 0,O) > 0 if and 
only if 

.I .s 
r,> v^- 

1 (1 
ar(t, ro, 0,O) - * dr 

1 
ds. (4:24) 

-0 .O 

Since t(0) = 0 we know that r(., ro, 0,O) is an unfolded state that is the limit 
of a sequence of states with folds at r@). Consequently, r(s, ro, 0,O) < r. for 
s > 0. Thus, a sufficient condition for (4.24) is 

dt v^(-asr;*) ds > 0. (4.25) 

Let p. denote the infimum of ro’s that satisfy this condition. We know that 
p. E [0, 11. (Note that the integral on the right can be explicitly evaluated if 
v^(N) = (1 - AN))Y for N < 0 where A > 0, y > 0. Thus, p. can be found in 
terms of aA and y. In some cases p. = 0.) 

Now let us fix a value b, of b to lie in (r,, R,( 1, 1)). Then Fig. 4.18 
implies that (4.17) has exactly two solutions, p,(b,) corresponding to a 
straight compressive state and ,u,(b,) to a folded compressive state. We wish 
to prove that (4.16) has a family of solutions (A, p) “parametrized” by (a, b) 
that connect (O,p,(b,)) to (O,,u*(b,)). Note that we cannot use the classical 
Implicit Function Theorem to prove the existence of solutions near these 
special solutions because r( 1, ro, ., e) is not differentiable for A = 0. Instead, 
we obtain the global existence of solutions by using the homotopy invariance 

FIG. 4.26. Schematic diagram of the vector field 

~(1, ro, ., .) - b,j 
/r(I,r,, , I-b,jI’ 
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of (Brouwer) degree. We now get some preliminary results, which will enable 
us to carry out this theory. 

We first observe that (4.7) implies that rs(O, rO, A, ,u) . i has the sign 
opposite to that of A. Equation (4.7) then implies that the sign of 
r(s, Ye, A, ,u) . i is opposite that of A for all s E (0, 1 ] and, moreover, 
r.(s, To, .> p) . i is odd. Thus, Ar(1, rO, L, ,u) . i < 0 and r( 1, rO, ., ,u) 1 i is odd. 
We use this fact, the results of Fig. 4.18, and the continuity of r( 1, r,,, +, .) to 
sketch the continuous vector field ii + pj tt r( 1, rO, A, ,L) - b, i on the lines 
A=*A,p=---M,p=p*,p=/l** where A is small and positive and where 
-A4 < ~~(6,). See Fig. 4.26. Since (O,,U,(~,)) and (0, ,u&,)) are the only 
singular points of this vector field, we can compute the rotation of these 
vector fields on the rectangles enclosing these singular points to obtain 

ind(r( 1, r,,, ., .> - b,j, (0, P,@))) 

E deg(r( 1, ro, ., -)-b,j, {(~,~):I~I~~,-~~~~~**))= 1, 

ind(r(1, rO, ., .> - b,i (0, Pi@))) 
(4.27) 

= deg(r(L ro, ., .)-b,.i, {(n,~):I~I~~,ill*~~UO})=--1. 

Here “deg” stands for (Brouwer) degree and “ind” stands for (Brouwer) 
index. Compare [9] for a discussion of these notions and the computation 
yielding (4.27). 

Now let r(.) = r(., yo, A, 111) represent a compressive solution of our 
boundary value problem (1.4), (1.6)-( 1.9), (1.13) so that (4.16) holds. Then 

/r,-ro(=dtzZ+(b-r,)*= 1.’ Ido Wds 1 

< j’ v^ ds 
-0 

(4.28) 

where ro, is the distance from 0 to the line joining r. to r, . The last 
inequality of (4.28) is a consequence of Proposition 1.36. If Ir, - roI > 0, 
then (4.28) implies that there is a decreasing function M on (0, m) such that 
;1* + ,u* < M(] r, - r. ]) if (A, p) satisfies (4.16). Moreover, (4.7) and (4.16) 
imply that 

b-r0 =-II: C(- In*(r, no)(s)l) [,u +JI cm(t) . jr(t)m3 dt] 

x I n*(r, n,,)(s)l - ’ ds. 

Then Proposition 1.36 implies that ,u < 0. 

(4.29) 
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FIG. 4.31. Schematic diagram of solutions pairs. A plane perpendicular to the t-axis 
through a small value of t intersects the set of solutions at an even number of points. Note 
that there might be disconnected collections of solutions as well. 

Now let R 3 t b (a(t), b(t)) E R2 be a continuous curve with 
(a(O), b(O)) = (0, b,), with a(t) = 0 if and only if t = 0, and with a(t)* + 
b(t)2 + co as t + fco. Suppose further that there are numbers E > 0, 6 > 0 
such that b(t) > p,, for 1 t 1 < E and / a(t)1 > 6 for ) t) > E. We say that (t, (A, ,u)) 
is a solution pair for (4.16) if (4.16) is satisfied when u and b are replaced 
by u(t) and b(t). We can now state our basic result. 

4.30. THEOREM. Let v^ be independent of s and let f(r) = -ar-2. Let 
r,, > pO, let 6, E (r,,R,(l, l)), and let (a(.), b(.)) have the properties 
described above. Then the set of solution pairs for (4.16) contains a 
connected set joining (0, (0, p,(b,))) to (0, (0, p,(b,))). (See Fig. 4.3 1.) 

Proof: Equations (4.7) and (4.16) imply that 

a(t) = - j,’ G(- In*(r, n,,)(s)i) [ 1 + 1.’ ar(o) . ir(a) ’ do] 
.O 

x / n *(r, no)(s)1 ’ ds. (4.32) 

Proposition 4.14 implies that the right side of (4.32) depends continuously 
on A for d # 0. Moreover, in the development associated with Fig. 4.26 we 
showed that the right side of (4.32) is an odd function of A that does not 
vanish for ,I# 0. Thus, there is a number y > 0 such that IAl > y when 
1 a(t)1 > 6. Let 

U= {(t,;l,~):~’ +p2 <W/r, -r,l>,l4t>l < l}\{(t,~,cl>:Itl~~,~UO, 
IA/ G VI. 

(4.33) 

505 ‘47 ‘2 4 



210 ANTMAN AND WOLFE 

Proposition 4.14 implies that (t, A,,u) b r(1, rO, A,,u) - a( + b(t)j is 
continuous on the closure of U and that (4.16) has no solutions on the 
complement of U. 

Suppose that (0, (O,p,(b,))) and (0, (O,pZ(bO))) were not joined by a 
connected set of solution pairs. Let V be the maximal connected set of 
solution pairs containing (0, (0, ,~i(b,))). The set of all solution pairs is 
closed because it is the inverse image of 0 under the continuous function 
(t, A, ,D) t+ r( 1, r,, , A, ,u) - a( - b(t)j (cf. (4.16)). It is bounded because it 
lies in U. It follows that %Y is also closed and bounded. Moreover, V can be 
enclosed in an open set d whose closure lies in U and contains no solution 
pairs other than those of @. Let @w E {(t, A,,u) E 8: t = w). Then (4.27) 
implies that deg(r( 1, r,,, ., .) - b,j, (t”n) = 1. Now the properties of (a(.), b(.)) 
imply that there is a number < < 0 and a number v > 0 such that /“1 and pV 
contain no solution pairs, whence 

deg(r(L ro, ., .> - 45Y - b(t)j, /“5) 

=O=deg(r(l,r,,., .> - 4v>i - b(rl)j, CJ. 

But this equation is incompatible with the homotopy invariance of degree (cf. 
19, IO], e.g.), which requires these degrees on G and p,, to equal the degree 
on PO. I 

This result tells us that for 1 tl small there are at least two compressive 
solutions of our boundary value problem and that such compressive 
solutions come in pairs. We briefly discuss generalizations of this result in 
Section 6. 

5. TENSILE SOLUTIONS 

In this section we comment briefly on tensile configurations. For 
simplicity we continue to assume that the string is uniform and that 
f(r) = -are2. The initial value problem (1.4), (1.6)-(1.8) (1.13) (4.1) 
describes a tensile configuration if and only if r satisfies 

r(s) = r. + 1' 9(ln*(r, no)(s)l) n*(r, no)(s) in*(r, no>(s>l-' ds, (5.la) 
0 

n*(r, n,)(s) = no + 1.' ar(t) rm3(t) dt. (5.lb) 

(This equation is analogous to (4.7)) Now (2.7) and (2.8) imply that tensile 
solutions cannot be singular. Hence, we can imitate the proof of 
Proposition 4.14 to obtain 
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5.2. PROPOSITION. For every r,,, no for whzch r0 x no # 0, there exists a 
unique continuously d@zrentiable solution r of (5.1) on [0, 11, which is a 
continuously dtflerentiable function of c0 and II,, for r. x n, # 0. For every 
r,,, no with r0 > 0, there exists a unique continuous solution r of (5.1) on 
10, 11, which depends continuously on r. and n,. 

We adhere to the notation of (4.15). We then denote solutions of (5.1) by 
r(., rO, A, p). Such a solution generates a solution of our boundary value 
problem if and only if (4.16) holds. 

Now we can compute the index of r( 1, rO, ., .) - b,j at (0, ,u(b,)) where 
(0, ,u(b,)) is a solution of (4.16) with b = b, > r0 and show that this index is 
not zero for nearly all b,,‘s. (For purely radial configurations it can be shown 
that [O, co) 3 ,D H ]r(l, r,,, O,p)] is strictly increasing in keeping with 
Proposition 3.9.) Let us again introduce a curve R 3 t E+ (a(t), b(t)) E R2 of 
terminal points with (a(O), b(0)) = (0, b,), with a(t) = 0 if and only if t = 0, 
and with a(t)2 + b(t)2 + co as t + +co. Then a simpler version of the proof 
of Theorem 4.30 yields 

5.3. THEOREM. Let b,>r,>O and let ind(r(1, rO, ., .) - b,j, 
(0, ,a(b,))) = 0. Then (4.16) has a connected family g of solution pairs 
(t, (A, ,u)) containing (0, (0, ,u(b,))) that has at least one of the following two 
properties: (i) P is unbounded, (ii) 97 contains another tensile radial solution 
(03 (09 P”)). 

(The difficulty in the proof of Theorem 4.30 was in showing that G? could 
not satisfy a third possibility, namely, that it approach the boundary of the 
set on which r( 1, rO, -, -) is defined.) 

We complement this theorem with a nonexistence theorem generalizing a 
remark following the proof of Lemma 3.29. 

5.4. THEOREM. Let f be an attractive central force (so that it has the 
form (1.1) with f(r,s) < 0). If r,, + r, = lrOl + /rlI < 1, then the boundary 
value problem (1.4), (1.6t(1.9), (1.13) has no tensile solution. 

Proof The proof for radial solutions is a consequence of Lemma 3.29. 
We therefore assume that r0 x rl # 0. Since Propositions 1.22 and 1.36 
imply that the configuration of the string is bowed-in and nowhere radial, it 
follows that r0 + r, exceeds the sum L of the lengths of the tangent lines to 
the curve r at r0 and rI from their points of tangency r0 and r, to their inter- 
section point. The convexity of r, proved in the discussion preceding the 
statement of Proposition 1.36, implies that L exceeds the length of r. But 
Proposition 1.22 then implies that the length of r must exceed 1. I 
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6. CONCLUSION 

Most of our results in Sections 3-5 were stated for uniform strings 
subjected to uniform attractive forces satisfying the inverse square law. All 
these results can be immediately generalized to uniform strings subject to 
uniform attractive forces with f(r) \ -co as r \ 0. At the cost of much 
harder estimates, many of these results can be extended to nonuniform 
strings under nonuniform attractive forces provided the nonuniformity is 
controlled. The resulting theorems have weaker conclusions, however. In 
particular, various uniqueness properties can be lost in the process of 
generalization. A complete theory for repulsive central forces along the lines 
of Sections 3-5 could be easily constructed. The results would differ in minor 
respects from those we obtained and could have obtained for attractive 
forces. A complete theory for central forces that are bounded near r = 0 
could also be obtained. The richness of the theory of radial states under such 
forces can be seen in the analysis of [5] on the effects of centrifugal force in 
a related problem. 

In Sections 4 and 5 we restricted the parameters a and b to lie on a curve 
t H (a(t), b(c)) in R*. This enabled us to treat a one-parameter problem to 
which we could apply the theory of homotopy invariance of degree. This 
restriction of a and b to a curve is somewhat artificial. We could consider 
the union of solution pairs generated by all such curves, but the geometric 
properties of such unions cannot be deduced from degree theory. For this 
purpose the more refined topological methods of [3] are appropriate. When a 
and b are allowed to vary freely the results of [ 3 ] (together with some 
refinements of [ 11) can be used to generalize the results of Section 4 to show 
that the solution pairs ((a, b), (A, P)) = ((0, b,), (0, p,(M)), ((0, b,), (0, p2(bo)) 
of (4.16) are connected by a family of solution pairs each point of which has 
Lebesgue dimension at least 2. If the number of parameters is increased (by 
including r0 and a, say), then an analogous result holds with the connecting 
family of solution pairs having dimension at least equal to the number of 
parameters. The problems we study in Sections 4 and 5 actually have 
infinite-dimensional parameters (a, b, (r, C). Indeed, by replacing the force 
satisfying the inverse square law with an arbitrary central force field f, we 
can take the parameters to be (a, b,J 0). A theory capable of handling this 
case is developed in [2]. This theory shows among other things that the 
connecting family of solution pairs has infinite dimension at each point. 
Fortunately, the use of these more exotic theories depends exactly upon the 
developments we carried out in Sections 4 and 5. 

We have used methods based upon degree theory rather than those based 
on variational methods because the former yield sharp results on connec- 
tivity. Variational methods (cf. [6, 71) yield different kinds of multiplicity 
results; these are related to questions of stability. 
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