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This paper presents a combined numerical-theoretical study of the macroscopic behavior and local field
distributions in a special class of two-dimensional periodic composites with viscoplastic phases. The
emphasis is on strongly nonlinear materials containing pores or rigid inclusions. Full-field numerical sim-
ulations are carried out using a fast Fourier transform algorithm [Moulinec, H., Suquet, P., 1994. A fast
numerical method for computing the linear and nonlinear properties of composites. C. R. Acad. Sci. Paris
II 318, 1417–1423.], while the theoretical results are obtained by means of the ‘second-order’ nonlinear
homogenization method [Ponte Castañeda, P., 2002. Second-order homogenization estimates for nonlin-
ear composites incorporating field fluctuations. I. Theory. J. Mech. Phys. Solids 50, 737–757]. The effect of
nonlinearity and inclusion concentration is investigated in the context of power-law (with strain-rate
sensitivity m) behavior for the matrix phase under in-plane shear loadings. Overall, the ‘second-order’
estimates are found to be in good agreement with the numerical simulations, with the best agreement
for the rigidly reinforced materials. For the porous systems, as the nonlinearity increases (m decreases),
the strain field is found to localize along shear bands passing through the voids (the strain fluctuations
becoming unbounded) and the effective stress exhibits a singular behavior in the dilute limit. More spe-
cifically, for small porosities and fixed nonlinearity m > 0, the effective stress decreases linearly with
increasing porosity. However, for ideally plastic behavior ðm ¼ 0Þ, the dependence on porosity becomes
non-analytic. On the other hand, for rigidly-reinforced composites, the strain field adopts a tile pattern
with bounded strain fluctuations, and no singular behavior is observed (to leading order) in the dilute
limit.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The overall (visco-) plastic flow of composites exhibiting strong
constitutive nonlinearities and large heterogeneity contrasts is
particularly difficult to model due to the tendency of the strain
(-rate) field to localize in shear bands running through the compos-
ite along ‘minimal paths’ (Drucker, 1966; Duxbury et al., 2006). As
full-field numerical simulations of such material systems demand
significant computational power, especially when the microstruc-
ture is random, nonlinear effective-medium theories, also known
as homogenization methods, are particularly attractive modeling
tools. Most of the available theories rely on the use of a ‘linear com-
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parison medium’ of one sort or another (see, for instance, reviews
by Ponte Castañeda and Suquet (1998) and Willis (2000)). Two
approximations are typically involved in this class of theories.
The first one consists in linearizing the nonlinear behavior of the
individual constituents following some appropriate linearization
procedure, and the second one consists in estimating the overall
response of the resulting linear comparison medium. For example,
Hill (1965) proposed an incremental procedure making use of the
tangent moduli of the phases evaluated at the average field in
the phases and of the self-consistent linear homogenization meth-
od to estimate the macroscopic response of elastoplastic polycrys-
tals, whereas Hutchinson (1976) proposed the use of the secant
modulus, also evaluated at the phase averages, together with the
self-consistent method to estimate the response of viscoplastic
polycrystals. The linearization schemes in both of these approaches
were physically plausible, but ad hoc. Ponte Castañeda (1992)
introduced new variational principles where the trial field was
the moduli of a suitably chosen ‘linear comparison composite.’ By
choosing constant moduli in the phases, this procedure leads to
improved analytical estimates (Ponte Castañeda, 1991) for
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Fig. 1. Microstructure of the periodic material with reference axes and unit cell,
together with a schematic representation of ‘simple shear’ (SS) and ‘pure shear’ (PS)
macroscopic loadings.
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nonlinear composites, and as shown by Suquet (1995), the result-
ing linearization can be interpreted in terms of the secant moduli
of the phases evaluated at the second moments of the fields in
the phases. A more general procedure, making use of a ‘linear ther-
moelastic composite’ and having the property of delivering esti-
mates that are exact to second order in the contrast, was
developed by Ponte Castañeda (2002a). In addition, a related pro-
cedure, making use of a similar linearization, but exploiting instead
the properties of an assumed Gaussian distributions for the fields,
was advanced by Pellegrini (2001a).

Recent comparisons with numerical simulations for two-phase
materials (Idiart et al., 2006b, 2007b; Rekik et al., 2007) and poly-
crystals (Lebensohn et al., 2004a,b, 2007) indicate that, within that
class of ‘linear comparison’ theories, the so-called ‘second-order’
theory of Ponte Castañeda (2002a) delivers the most accurate pre-
dictions for the macroscopic response as well as for low-order sta-
tistics of the local fields. This theory has been found to capture
some of the essential features associated with strain localization.
For instance, it correctly predicts the anisotropic and unbounded
character of the strain fluctuations in ideally plastic, particle-rein-
forced random composites (Idiart et al., 2006b, 2007b), and the
non-analytic dependence on porosity of the yield stress of random
porous media with vanishingly small porosities (Ponte Castañeda,
2002a; Idiart and Ponte Castañeda, 2007b).

The ‘second-order’ theory makes use of a linear comparison
composite (LCC) with anisotropic phases, where the direction
and strength of anisotropy is determined by the means and vari-
ances of the mechanical fields in each phase, and the constitutive
nonlinearity. This work is aimed at understanding how the ‘sec-
ond-order’ theory – and ‘linear comparison’ theories more gener-
ally – copes with strain localization in nonlinear composites by
exploiting the constitutive anisotropy in the underlying LCC. To
that end, this work focuses on a special class of two-dimensional
periodic composites for which numerical simulations are simple
enough so that a thorough and systematic comparison is feasible.
The paper builds on the recent works of Willot et al. (2008a,b),
which provided similar analyses and comparisons for strongly
anisotropic linear elastic composites. As will be seen below, the
anisotropy of the LCC in the context of the second-order estimates
for the nonlinear composites in some sense plays the role of the
nonlinearity, with strong nonlinearity leading to strong anisotropy
in the LCC. The full-field numerical simulations are carried out
using the fast Fourier transform (FFT) algorithm of Moulinec and
Suquet (1994) in the form recently proposed by Willot and Pelleg-
rini (2008). We focus on porous materials and rigidly-reinforced
composites, which are the cases of extreme heterogeneity contrast,
and therefore good case studies. In addition, particular attention
will be given to the dilute limits, which serve to illustrate the
significant differences in behavior between these two extreme
cases.

2. Preliminaries on periodic composites

2.1. Local and effective behavior

The materials considered are made up of a continuous matrix
phase ðr ¼ 1Þ containing cylindrical inclusions ðr ¼ 2Þwith circular
cross section, aligned with the x3-axis and periodically distributed
in the transverse plane x1—x2, as shown in Fig. 1. The inclusion
phase will be taken as either vacuous or rigid. The constitutive
behavior of the matrix phase is taken to be characterized by an iso-
tropic, incompressible strain potential wð1Þ, such that the stress and
strain tensors are related by

r ¼ owð1Þ

oe
ðeÞ; wð1ÞðeÞ ¼ /ðeeÞ; ð1Þ
where the von Mises equivalent strain is defined in terms of the
deviatoric part of the strain tensor by ee ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þed � ed

p
, and

tr ðeÞ ¼ 0. This constitutive relation can be used within the context
of the deformation theory of plasticity, where e and r represent the
infinitesimal strain and stress, respectively. Relation (1) applies
equally well to viscoplastic materials, in which case e and r repre-
sent the Eulerian strain rate and Cauchy stress, respectively. A rela-
tion completely equivalent to (3) results from a dual formulation,
which makes use of a stress potential uð1Þ, such that

e ¼ ouð1Þ

or
ðrÞ; uð1ÞðrÞ ¼ wðreÞ; ð2Þ

where the von Mises equivalent stress is given in terms of the devi-
atoric stress tensor by re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þrd : rd

p
.

Let h�i denote the volume average over the composite. The effec-
tive behavior of the composite is defined as the relation between
the average stress �r ¼ hri and the average strain �e ¼ hei. When
the ratio between the characteristic length scale of the unit cell
to that of the specimen tends to zero, there exists (under certain
technical assumptions) a homogenized behavior, which can be
characterized by

�r ¼ o~w
o�e

�eð Þ; �e ¼ o~u
o�r

�rð Þ; ð3Þ

where ~w and ~u are the effective strain and stress potentials, defined
by

~w �eð Þ ¼ min
e2K �eð Þ

hwðx; eÞi; ~u �rð Þ ¼ min
r2S �rð Þ

huðx;rÞi; ð4Þ

with K �eð Þ and S �rð Þ denoting the set of ‘kinematically admissible’
strain and ‘statically admissible’ fields (see Ponte Castañeda and Su-
quet (1998) for details). Thus, the problem of finding the effective
behavior of the composite reduces to that of computing the effec-
tive potential ~w or ~u.

For definiteness, it is assumed that the behavior of the matrix
follows a power law of the form

/ðeeÞ ¼
r0e0

1þm
ee

e0

� �1þm

; wðreÞ ¼
r0e0

1þ n
re

r0

� �1þn

; ð5Þ

where r0 and e0 are the flow stress and the reference strain, respec-
tively, n ¼ 1=m denotes the nonlinearity, and m denotes the so-
called strain-rate sensitivity, and is such that 0 6 m 6 1. This model
is particularly appropriate to study a wide range of material behav-
iors, such as the time-independent plastic deformation of metals as
well as their time-dependent viscous deformation (i.e., high tem-
perature creep). The limiting values m ¼ 1 and m ¼ 0 correspond
to linear and rigid-ideally plastic behaviors, respectively.

We restrict the analysis to isochoric, plane-strain macroscopic
deformations (or purely deviatoric stress). Because of the intrinsic
anisotropy of its microstructure, the effective behavior of the



Table 1
Duality relations between power-law, two-dimensional materials with pores and
rigid inclusions. The tensor Q represents a p=4 counterclockwise rotation in the plane.

Porous 1/m ~r�1=m
0 Q T � e � Q Q T � r � Q

Rigidly-reinforced m ~r0 r e

M.I. Idiart et al. / International Journal of Solids and Structures 46 (2009) 3365–3382 3367
composite material will depend on the loading angles �h and �w that
are defined by the orientation of the principal axes of the deforma-
tion and loading, respectively, with the symmetry axes of the
microstructure. We will focus on the two ‘‘extreme” cases of load-
ing orientation: (i) ‘pure shear’ (PS) corresponding to the case
where the principal axes of �e and �r coincide with the Cartesian
axes introduced in Fig. 1, and (ii) ‘simple shear’ (SS) corresponding
to the case where the principal axes of these tensors form 45� with
respect to the Cartesian axes, as depicted in Fig. 1. It then follows
from the homogeneity of the potentials (5) that, for these specific
macroscopic loadings, the effective potentials (3) can be written as

~w �eð Þ ¼
~r0e0

1þm
�ee

e0

� �1þm

; ~u �rð Þ ¼
~r0e0

1þ n
�re

~r0

� �1þn

; ð6Þ

where �ee ¼ ð2=
ffiffiffi
3
p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�e2

12 þ ð1=4Þðe11 � e22Þ2
q

and �re ¼ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�r2
12 þ ð1=4Þ �r11 � �r22ð Þ2

q
are the macroscopic equivalent strain

and stress, respectively, and ~r0 denotes the effective flow stress of
the material, which depends on the specific macroscopic loading
(SS or PS), the strain-rate sensitivity m and the inclusion volume
fraction f.

2.2. Statistics of the local fields

In addition to the effective behavior, homogenization methods
can deliver useful information about the field distributions in the
form of low-order statistics such as the first and second moments
of the fields in each constituent phase (Idiart and Ponte Castañeda,
2007a). For the macroscopic loadings considered here, it is natural
to express the deviatoric parts of the local fields as

ed ¼
ffiffiffi
3
p

2
ðePS ePS þ eSS eSSÞ; rd ¼

1ffiffiffi
3
p ðrPS ePS þ rSS eSSÞ; ð7Þ

where the unit second-order tensors ePS and eSS are given in terms
of the Cartesian axes of Fig. 1 by

eSS ¼ e1 � e2 þ e2 � e1; ePS ¼ e1 � e1 � e2 � e2: ð8Þ

The prefactors in (7) are such that e2
e ¼ e2

SS þ e2
PS and similarly for the

stress. We also introduce the fourth-order projection tensors (see
Willot et al. (2008a)):

ESS ¼ 1
2

eSS � eSS; EPS ¼ 1
2

ePS � ePS: ð9Þ

Let h�iðrÞ denote the volume average over phase r. We are interested in
the first moments (phase averages), denoted by �eðrÞ ¼ heiðrÞ and
�rðrÞ ¼ hriðrÞ, and the second moments he� eiðrÞ and hr� riðrÞ of the
field distributions. A measure of the field fluctuations within each
phase is given by the phase covariance tensors

CðrÞe ¼ he� eiðrÞ � �eðrÞ � �eðrÞ; ð10Þ

and similarly for the stress. For power-law composites like the ones
considered here, it can be shown that the local strain and stress
fields are homogeneous functions of degree 1 in �ee and �re, respec-
tively. In addition, it follows from symmetry considerations that,
for ‘aligned’ loadings in the sense described above, the phase aver-
ages of the local fields should be co-axial with the macroscopic
averages. Then, the deviatoric part of the phase averages can be
written as

�eðrÞd ¼
�eðrÞe

�ee
�ed; �r

ðrÞ
d ¼

�rðrÞe

�re
�rd; ð11Þ

where the ratios �eðrÞe =�ee and �rðrÞe =�re depend on the strain-rate sensi-
tivity, the porosity, and the loading direction (PS or SS). In turn, it
also follows from symmetry considerations that the corresponding
second moments should be ‘aligned’ with the macroscopic averages,
in the sense that one of their eigentensors is co-axial with �e and �r.

Then, the standard deviations ðSDðrÞð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�Þ2iðrÞ � ðh�iðrÞÞ2

q
Þ of the

field components defined in (7) are obtained by projecting the
covariance tensors (10) onto the tensors (9):

SDðrÞðeSSÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

ESS :: CðrÞe

r
; SDðrÞðrSSÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

ESS :: CðrÞr

r
; ð12Þ

and similarly for the PS components. For convenience, when dis-
cussing the results, we will refer to the SS and PS components of
the strain/stress tensors as ‘parallel’ and ‘perpendicular’ to the mac-
roscopic strain/stress tensors in the case of SS loadings, and con-
versely in the case of PS loadings.

2.3. Duality between porous materials and rigidly-reinforced composites

The methods to be described in Sections 2.4 and 2.5 are general
and can be directly applied to porous materials and rigidly-rein-
forced composites. In this work, however, we exploit the duality
relations of Francfort and Suquet (2001) for incompressible, non-
linear, two-dimensional elasticity (see Proposition 5.3 in Francfort
and Suquet (2001)), which allow us to obtain results for rigidly-
reinforced materials directly from corresponding results for porous
materials. In the case of a power-law matrix, results for a rigidly-
reinforced composite with a strain-rate sensitivity m can be ob-
tained from corresponding results for a porous material with
strain-rate sensitivity 1/m using the relations given in Table 1. Note
that we are therefore required to solve for porous materials with
strain-rate sensitivities larger than 1. Thus, the methods need to
be implemented for porous materials only.

2.4. Second-order variational method

The so-called ‘second-order’ method is a fairly general method
for estimating the effective potentials of nonlinear composites,
introduced by Ponte Castañeda (2002a), which delivers estimates
that are exact to second order in the heterogeneity contrast. The
central idea of this method is to introduce a linear comparison com-
posite (LCC), with the same microstructure as the nonlinear com-
posite, whose constituent phases are identified with appropriate
linearizations of the given nonlinear phases, determined through
a variational procedure. This allows the use of the many different
methods already available to estimate the effective potentials of
linear composites to generate corresponding estimates for the
effective potentials of nonlinear composites. Estimates for the
effective behavior then follow from relations (3), and estimates
for the field statistics follow from similar identities (Pellegrini,
2001b; Idiart and Ponte Castañeda, 2007a).

The ‘second-order’ method makes use of a LCC with local elas-
ticity tensors given by generalized secant moduli that are interme-
diate between the standard secant and tangent moduli of the
nonlinear phases, employed in earlier methods. In general, these
elasticity tensors are anisotropic, even if the nonlinear phases are
isotropic. The direction and strength of anisotropy are determined
by the means and variances of the mechanical fields in the LCC, and
the constitutive nonlinearity. For the particular class of material
systems and loading conditions considered in this work, the matrix
phase in the LCC is incompressible and characterized by two differ-
ent shear moduli k and l, one for each of the shear deformation
modes defined in (8). The degree of anisotropy is thus given by



Table 2
Maps of the ‘parallel’ ðkÞ and ‘perpendicular’ ð?Þ components of the shear strain and stress fields, in porous and rigidly-reinforced power-law materials under simple shear and
pure shear loadings, for f ¼ 0:1 and several values of the strain-rate sensitivity ðm ¼ 0;0:2; 1Þ. The strain and stress fields are normalized by the equivalent macroscopic strain �ee

and stress �re , respectively.
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the ratio k ¼ k=l between the two moduli, with the extreme values
k ¼ 1 and k ¼ 0 corresponding to isotropic and strongly aniso-
tropic phases, respectively. Linear materials of this type have been
studied in detail in Willot et al. (2008a). The linear estimates of the
Hashin–Shtrikman type derived in that paper were found to be
very accurate, relative to FFT simulations, for all values of k and
inclusion concentrations in the range 0 6 f 6 0:3. Those estimates
are used here to determine the effective behavior of the LCC.
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The emphasis in this paper, however, is on the results rather
than the methodology. For this reason, the details of the ‘second-
order’ method, which has already been discussed in some detail
in the context of composites with random microstructures (Ponte
Castañeda, 2002a; Idiart and Ponte Castañeda, 2007a), are summa-
rized together with the resulting estimates in Appendix A. In view
of the high accuracy of the linear estimates utilized, any discrepan-
cies between the ‘second-order’ estimates and the numerical
simulations observed in Sections 3 and 4 below, in the range
0 6 f 6 0:3, can be mostly attributed to the error introduced in
the linearization.

Finally, it is noted that the strain and stress formulations of the
‘second-order’ method – based on linearizations of (1) and (2),
respectively – deliver different predictions: the estimates exhibit
a duality gap (see Ponte Castañeda (2002a) and Idiart et al.
(2006a)). Thus, two different sets of ‘second-order’ estimates will
be reported, based on the strain (W) and stress (U) formulations.

2.5. Numerical fast Fourier transform method

The FFT approach used in this work is well-known (Michel et al.,
2001; Moulinec and Suquet, 2003; Moulinec et al., 2004). For this
reason, we shall limit ourselves here to a few remarks. The need
to deal with cases of infinite contrast and strongly nonlinear
behavior (small or zero nonlinearity exponent, m� 1) prompted
us, mainly for convenience, to consider the modified version of
the augmented Lagrangian method (Michel et al., 2001) proposed
by Willot and Pellegrini (2008).

The L� L pixel medium is discretized with resolutions L = 256,
512 and 1024. The incompressibility of the material is approached
by a bulk compressibility modulus j ¼ 1000, with elastic shear
modulus l ¼ 1. The plastic yield stress was r0 ¼ 1. Loading is car-
ried out by increasing the driving overall deformation in steps of
approximately Dheki ¼ 0:1, up to heki ¼ 2 to 4. Such high values
were found necessary to obtain reliable averages and second mo-
ments of the strain. The quantity g2 � hkr � rk2i=�r : �r! 0 is used
to monitor convergence at each loading step, where iterations
are stopped for g of order 10�4 (or even 10�5 for the smallest inclu-
sion volume fractions in the stiffest cases) and/or when no notable
progress occurs in the decrease of g. In the process, records are
made of the iteration number n, and of the fields of interest, xðnÞ.
From three such records (including the most converged one), the-
oretical converged limits xð1Þ are estimated by a power-law extrap-
olation of the type xðnÞðLÞ ¼ xð1ÞðLÞ þ aðLÞn�bðLÞ from which a, b, and
xð1Þ are determined. A similar extrapolation procedure on L is then
used to deduce the infinite-resolution limit xð1ÞðL!1Þ from the
converged results at the three resolutions.

The modified version of the method alluded to above, detailed
in Willot and Pellegrini (2008), consists in replacing the continuum
Green function by a discrete counterpart. The discretization
scheme enforces compatibility and equilibrium at each pixel, con-
sistently with the system discreteness. Probably for this reason, the
modified algorithm was observed to enjoy faster convergence
rates, especially for the stiffest cases.2 No specific investigation of
convergence properties was carried out in the present work, but
the typical number of iterations needed here per loading step is of
order 103, except when m� 1 where it can climb up to 106. It is
noted, however, that in terms of CPU, solving problems with m > 0
is much more time-consuming than with m ¼ 0. We refer the reader
to Eq. (42) in Michel et al. (2001), which has no analytical solution
for m > 0. As a consequence, it has to be solved numerically at each
2 For instance, with the above convergence criterion, and in the more demanding
situation of a pixelwise disordered medium, as was considered in Willot and
Pellegrini (2008), the number of iterations to convergence is roughly proportional to
g�0:7 with the discretized Green function, and to g�1 with the continuous one.
material point and each iteration, whereas an analytical solution is
directly implemented for perfectly plastic materials.

A few cases were checked by comparing to calculations using
the continuous Green function. Quite generally, excellent agree-
ment was found between both methods save in one remarkable
case: in the perfectly-plastic limit with rigid inclusions, markedly
different solutions are obtained. This difference in behavior pre-
sumably originates from the short-range spatially-dispersive
(‘‘smoothing”) features of the discretized Green function (Willot
and Pellegrini, 2008), though the precise mechanism at play
remains to been investigated. More importantly, the solutions
from the modified approach turn out to be the most relevant ones
to the present theoretical study. This point is further discussed in
Section 4.1.
3. Results for porous materials

3.1. Field maps

Full-field distributions in porous materials under pure shear
(PS) and simple shear (SS) loadings have been obtained by the
FFT method described in Section 2.5. For porosities f K 0:3, the
simulations show that the reduced displacement u� ¼ u� �e � x
within the unit cell organizes in a periodic array of counter-rotat-
ing vortices or convection cells. For the case of a linear matrix
ðm ¼ 1Þ, the patterns can be found in Table 1 of Willot et al.
(2008a) (maps B and E). As the nonlinearity increases, the patterns
remain similar in character but exhibit stronger displacement gra-
dients, and therefore more localized strains.

The corresponding strain and stress distributions are shown in
Table 2, respectively, normalized by the equivalent macroscopic
strain �ee and stress �re. Maps of the ‘parallel’ (k) and ‘perpendicu-
lar’ (\) components (see end of Section 2.2 for definition) are dis-
played for f ¼ 0:1 and several values of the strain-rate sensitivity.
Each map is labelled by a number (1–20), and goes along its own
field scale on its right, in correspondance with the color scale at
the extreme right of the rows. As anticipated above, the distribu-
tions of both components of the strain (maps 1–10) exhibit
smooth variations in the linear case but become progressively
more localized in bands as the nonlinearity increases. Across such
bands, the tangential component of the displacement field varies
significantly. More precisely, if the vectors t and n denote, respec-
tively, the directions tangential and normal to the band, then etn

increases with decreasing band width, but not ðenn � ettÞ=2.
Indeed, the maps show that the deformation tends to localize in
bands running across the specimen along directions that are par-
allel to those of maximum macroscopic shear: 0�–90� and ±45�
with respect to the reference axes of Fig. 1, under SS (maps 2
and 7) and PS (maps 4 and 9) loading, respectively. As will be
seen in the next subsection, the fact that these bands have some
preferential orientation dictated by the macroscopic loading leads
to a strong anisotropy of the strain fluctuations with increasing
nonlinearity.

In the strongly nonlinear ideally plastic limit ðm! 0Þ, the vari-
ation of the tangential displacement across the localization bands
becomes discontinuous, and consequently the ‘parallel’ strain be-
comes unbounded along well-defined straight shear bands (maps
1 and 5). The paths followed by these shear bands are such that
the macroscopic (dissipation) strain energy is minimal (Duxbury
et al., 2006). However, equilibrium in ideally plastic materials re-
quires that shear bands meet free boundaries at ±45� with respect
to the normal to the boundary (Kachanov, 2004). Consequently, the
bands have to bend in regions sufficiently close to the boundary of
the pores (see insert in map 1), which causes the ‘perpendicular’
component of the strain (maps 6 and 10) to become very large in



Table 3
Change of shear band patterns with concentration f in porous and rigidly-reinforced ideally plastic materials under pure shear (PS) loading. The strain field is normalized by the
equivalent macroscopic strain �ee .
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those regions.3 A closer look at the shear bands reveals a certain
structure of finite width set by the diameter of the pores, but further
work is required to estimate this width. Interestingly, while in the SS
case the two orthogonal families of bands intersect each other ‘in-
side’ the pores (map 1), in the PS case they do so at the corners of
the unit cell (map 5). These are points where the ‘parallel’ strain
takes the highest values. In fact, these are points in the matrix phase
where four displacement vortices meet, leading to large and highly
localized displacement gradients, which are strongly enhanced by
the constitutive nonlinearity.

On the other hand, the stress field (maps 11–20) exhibits smooth
variations for all m. In the ideally plastic limit, the ‘parallel’ compo-
nent of the stress (maps 11 and 15) takes the highest values in the re-
gions where the above-mentioned shear bands develop, as expected.

Finally, it is noted that the ‘minimal paths’ followed by shear
bands in PS change their configuration for porosities f > fc 	
0:52, see maps 1–6 in Table 3. While for f < fc the two families
of shear bands intersect at the corners of the unit cell, for f > fc

they intersect at the mid-edge points of the unit cell. This is be-
cause the (dissipation) strain energy, and consequently the total
length of the shear bands, must go to zero as f approaches the
close-packing threshold fcp. Only the latter configuration satisfies
this requirement. As will be seen in the next subsection, this
change in shear band pattern is manifested at the macroscopic
3 In the simulations, the strain values within the shear bands are large but finite;
however, these values are found to increase with increasing mesh resolution, which
indicates that the exact solution involves unbounded strains.
level as an inflexion point (or kink) in the effective flow stress for
PS as a function of f (see Fig. 3a).

3.2. Effective behavior and field statistics

The effect of strain-rate sensitivity m on the ‘second-order’ (SO)
and FFT predictions is explored in Fig. 2, for a moderate porosity
ðf ¼ 0:1Þ. Fig. 2a and b shows plots for the effective flow stress
~r0 under ‘pure shear’ (PS) and ‘simple shear’ (SS) loadings, respec-
tively, normalized by the flow stress of the matrix r0. As antici-
pated in Section 2.4, the strain (W) and stress (U) versions of the
SO estimates, as given by expressions (46) and (72), are not iden-
tical; however, this duality gap is very small for most values of
m. Good agreement is observed between the SO estimates and
the numerical simulations for all values of m. The predictions are
softer for SS than under PS loading. This anisotropy increases with
increasing nonlinearity and is entirely due to the anisotropic
arrangement of the phases: it reflects the fact that most of the en-
ergy is stored (dissipated) along the localization bands described
above, which are shorter in SS (see maps 1 and 5 in Table 2). The
SO estimates are able to capture this interplay between geometri-
cal arrangement and constitutive nonlinearity of the phases in the
effective behavior, in contrast to the classical Voigt bound, which
depends only on the volume fraction of the phases.

A key improvement in the ‘second-order’ method over earlier
‘linear comparison’ methods is the use in the linearization scheme
of generalized secant moduli whose anisotropy can depend on
microstructural features and loading conditions, in addition to con-
stitutive nonlinearity. Fig. 2c shows the anisotropy ratios k associ-
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ated with the SO estimates for SS, which solve Eqs. (45) and (71).
(The corresponding plots for PS are similar and therefore omitted.)
Indeed, a non-trivial dependence of k on m is observed, such that
the anisotropy strength is increasingly stronger with increasing
nonlinearity, the compliant mode being set by the direction of mac-
roscopic load ðk < 1Þ. In contrast, linearization schemes based on
the secant and tangent moduli restrict the anisotropy to be
k ¼ 1 and k ¼ m, respectively, and as a result lead to predictions
that are less accurate in general, especially for field statistics (see
comparisons in Idiart et al. (2006b) for random composites).

Predictions for the field statistics under SS loading are shown in
Fig. 2d–f. (The corresponding results for PS are similar and there-
fore omitted.) In these plots, the strain and stress quantities are
normalized by the macroscopic equivalent strain �ee and stress �re,
respectively. The FFT results show that as the nonlinearity in-
creases, the pores undergo larger deformations and the strain fluc-
tuations in the matrix increase, while the stress fluctuations
remain fairly constant. The strong anisotropic growth of strain fluc-
tuations is a direct consequence of the strain localizing along bands
with a preferred orientation determined by the loading, as ob-
served in Table 2 (maps 1–10). In the ideally plastic limit, the strain
fluctuations become unbounded.4 The SO estimates, given by
expressions (38)–(39) and (67)–(68), are in good agreement with
4 The FFT results for these quantities are finite, but increase with increasing mesh
resolution.
the numerical results in the range 0:3 K m 6 1. Within that range,
the anisotropy ratios of the LCC matrix lie in the range 0:3 K k 6 1,
see Fig. 2c, and the local fields in the LCCs, reported in Willot et al.
(2008a),5 mimic fairly well the nonlinear fields. For smaller values
of m, however, the linear fields cannot mimic as accurately the local-
ized character of the nonlinear strain field, and the SO predictions for
the field fluctuations deteriorate significantly. In particular, the SO
predictions for the strain fluctuations remain bounded as m! 0.
We note in passing that strain statistics are more accurately pre-
dicted by the strain-based SO(W) estimates, while stress statistics
are more accurately predicted by the stress-based SO(U) estimates.

The effect of porosity in ideally plastic solids ðm ¼ 0Þ is explored
in Fig. 3. Fig. 3a and b show plots for ~r0, and include the rigorous
upper (UB) and lower (LB) bounds derived in Appendix B by limit
analysis (LA). The FFT results lie close to the LA upper bound,
and are consistent with a close-packing threshold given by
fcp ¼ p=4 	 0:785, the porosity at which neighboring pores come
into contact with each other. As anticipated in the previous subsec-
tion, the FFT results for PS exhibit an inflexion point (or a kink) at
fc 	 0:52, as a consequence of a change in the shear band pattern,
see Table 3. The LA upper bound given by (80) also exhibits this
feature. It is quite remarkable that both versions of the SO esti-
mates are able to capture, at least qualitatively, the correct aniso-
tropic dependence of ~r0 on porosity, including the inflexion point
in the PS case. At large porosities, however, both SO estimates be-
5 Table 2 in Willot et al. (2008a) shows stress maps for various values of k; due to
linearity, strain maps are the same up to a change of scale given by the matrix moduli.
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come rather stiff and remain finite at the close-packing threshold.
This inaccuracy is inherited from the linear estimates used for the
LCC, which become inadequate at porosities close to fcp (see Willot
et al. (2008a)). Improved SO estimates for large porosities could
thus be obtained by using more appropriate/accurate linear
estimates.
3.3. Dilute limit

Consider power-law materials with vanishingly small porosity
levels ðf ! 0Þ and fixed rate-sensitivity m > 0. For these materials,
it is widely accepted that the effective behavior is insensitive to the
actual distribution of porosity. Following Duva and Hutchinson
(1984), Fleck and Hutchinson (1986) proposed the ansatz

~r0

r0
	 1� aðmÞf ; ð13Þ

and determined the coefficient aðmÞ numerically by considering an
isolated circular pore in an infinite matrix. The present study con-
firms the ansatz (13): both the FFT results and the SO estimates ex-
hibit a linear correction at vanishingly small porosities. The
predicted behavior is thus isotropic. In particular, the SO estimate
for aðmÞ can be obtained by expanding (46) and (72), see Appendix
A for details; the result is

aðmÞ ¼
1þ

ffiffiffiffiffi
m
p� �2

2
ffiffiffiffiffi
m
p ð14Þ

for both versions. A comparison with the numerical results for a is
shown in Fig. 4a (Fig. 4b will be discussed in Section 4). As can be
seen in the figure, the numerical and theoretical results coincide
for m ¼ 1, agreeing with the classical result of Eshelby (1957),
and are in good agreement for all other values of m. Both the
FFT simulations and the SO estimates predict vanishingly small
strain fluctuations in the matrix phase as f ! 0, which is consis-
tent with non-interacting pores in the dilute limit. As m! 0, how-
ever, aðmÞ becomes unbounded, and the range of validity of (13)
vanishes.

Indeed, for ideally plastic solids ðm! 0Þ with small but fixed
porosity f > 0, the limit analysis bounds derived in Appendix B de-
mand that
~r0

r0
¼ 1� a0f 1=2; ð15Þ

where the coefficient a0 depends on the specific loading condition
(PS or SS), see expressions (79) and (80). Thus, the dependence of
~r0 on f in the dilute limit is now non-analytic, and the behavior is
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anisotropic. This is a consequence of the developing strain localiza-
tion, see maps 1–10 in Table 2, which introduces long-range inter-
actions between pores. As a result, the effect of the actual
distribution of porosity on the effective behavior persists in the di-
lute limit, and a crossover between the regular regime (13) and a
singular regime (15) ensues. One can attempt to estimate the cross-
over threshold fcðmÞ between these regimes by equating expres-
sions (13) and (15), to find

fcðmÞ ¼ a2
0=aðmÞ

2 
 4a2
0m for m� 1: ð16Þ

However, preliminary results for sufficiently small f and m – not
shown here – indicate that the crossover threshold may be much
lower. A detailed study of the crossover will be reported
elsewhere.

The FFT results for dilutely voided ideally plastic materials are
consistent with (15), with the coefficient a0 being very close to that
of the upper bound – a numerical fit to the results yields
a0 ¼ 0:826 and a0 ¼ 1:185 in PS and SS, respectively. The upper
bound coefficient is given in terms of the ratio between the length
of the bands lb and the side length of the unit cell l by
a0 ¼ ð2=

ffiffiffiffi
p
p
Þðlb=lÞ�1. The ratio is lb=l ¼ 1 for SS, and lb=l ¼

ffiffiffi
2
p

for
PS, see Fig. 7a and b. The porous material is thus weaker under
SS than under PS because the underlying shear bands are shorter
in the first case. In turn, the exponent 1/2 in (15) arises because
the energy is dissipated at one-dimensional straight shear bands
running through two-dimensional pores (Drucker, 1966). As a re-
sult, the effective behavior remains anisotropic in the dilute limit.
In addition, the strain fluctuations in the matrix phase remain un-
bounded as f ! 0, which is consistent with a collective behavior of
the pores in the dilute limit.
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‘Second-order’ estimates for dilutely voided ideally plastic
materials are obtained by expanding (46) and (76), resulting in
the expression

~r0

r0
	 1� asof 2=3; ð17Þ

where the coefficient is independent of the loading, and is given by
aso ¼ 1=2 in the strain version and aso ¼ 3=25=3 in the stress version.
In addition, the SO estimates predict non-vanishing strain fluctua-
tions in the matrix phase as f ! 0. Thus, remarkably, the SO esti-
mates also predict a crossover between the regular regime (13)
and the singular regime (17), although the exponent in the singular
regime is incorrect. In this connection, it is recalled that SO esti-
mates for 2D random porous materials exhibit exactly the same di-
lute limit (Ponte Castañeda, 2002b; Pastor and Ponte Castañeda,
2002). The 2/3 exponent thus appears to be independent of the dis-
tribution of porosity.

It is noted, however, that the linearization in both versions of
the SO estimates is such that k! 0 as f ! 0, see insert in Fig. 3c.
In this limit, the LCC effective moduli (40) exhibit a crossover
behavior (see Willot et al. (2008a)): if k Kpf , the medium is
strongly anisotropic, the strain in this linear medium localizes in
bands connecting the pores, and the dilute limit depends on the
distribution of porosity; if on the other hand k Jpf , the anisotropy
is weak and the pores behave as isolated inclusions. Making use of
the asymptotic expansions of Willot et al. (2008a), it is shown in
Appendix A that k 
 f 2=3 for both versions. Thus, the dilute SO esti-
mates (17) do not depend on the actual distribution of porosity be-
cause they make use of the ‘uncorrelated’ regime of the linear
estimates. However, the fact that k! 0 suggests that the ‘corre-
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lated’ regime could be exploited by suitably modifying the linear-
ization scheme. In this connection, it should be noted that the esti-
mates (17) make use of an ad hoc prescription for certain reference
tensors entering in the linearization, see expressions (32) and (61).
The above findings hint that alternative prescriptions may be
developed resulting in dilute SO estimates that depend on the dis-
tribution of porosity (in the singular regime), and that would yield
improved estimates more generally.
6 Table II of Willot et al. (2008a) shows fields for porous materials with a different
definition for k, and require suitable reinterpretation. Thus, maps 3–5 and 8–10 in
that table can be interpreted as strain fields in rigidly-reinforced composites under PS,
while maps 16–18 and 21–23 can be interpreted as corresponding strain fields under
SS.
4. Results for rigidly-reinforced composites

4.1. Field maps

Full-field distributions in rigidly-reinforced materials are
shown in Table 2 (maps 21–40), for three values of the strain-rate
sensitivity ðm ¼ 1; 0:2;0Þ and a moderate reinforcement concen-
tration ðf ¼ 0:1Þ. Unlike in the porous case, the strain does not
localize in shear bands as the nonlinearity increases. Instead, an
inclusion screening effect develops with increasing nonlinearity:
the strain becomes small (compared to �ee) along bands of width
equal to one inclusion diameter, running across the specimen
along the directions of maximum macroscopic shear (0� and 90�
with respect to the Cartesian axes) and seeking out the rigid inclu-
sions, see maps 21–25 in Table 2. Thus, the macroscopic deforma-
tion is mainly accommodated by a fairly uniform strain present in
the remaining regions outside these bands. The corresponding
stress distributions, on the other hand, are seen to become progres-
sively more uniform as the nonlinearity increases, see maps 31–40.
In the ideally plastic limit, both components of the stress are uni-
form almost everywhere, exhibiting variations only in small re-
gions around the inclusions (maps 31, 35, 36, and 40). In fact, the
matrix phase is at yield almost everywhere, and this translates into
no reinforcement effect in the effective behavior due to the rigid
inclusions, as will be seen below.

Under PS loading, the two families of bands intersect each other
not only at inclusion sites but also at regions in the matrix phase
(corners of the unit cell), giving rise to the formation of square re-
gions where the strain is almost null (see map 25). No such regions
develop under SS shear (see map 21). This difference is responsible
for the strong anisotropy in the effective behavior observed in
Fig. 5 below for high reinforcement concentrations. Indeed, while
in the SS case the strain pattern remains essentially unchanged
for any reinforcement concentration below the close-packing
threshold fcp ¼ p=4 	 0:78, in the PS case the strain pattern has
to change abruptly for reinforcement concentrations larger than
f ¼ p=8 	 0:39, the value of f at which the square regions come
into contact with each other. This transition is shown in Table 3,
maps 7–12. For f > 0:4, the strain tends to concentrate in a rim
around the inclusions, being very small in most of the matrix
phase. As will be seen below, this results in a significant increase
in the effective flow stress for that range of reinforcement concen-
trations. See also Willot et al. (2008b) for analogous effects in the
linear anisotropic porous case.

It should be emphasized at this point that, due to the lack of
strict convexity of the potentials (1) and (2) when m ¼ 0, the strain
field in an ideally plastic composite may not be unique (Suquet,
1981) (the effective stress, however, is uniquely defined, Bouchitté
and Suquet, 1991). In fact, it is easy to verify that, since the matrix
of the reinforced materials considered here is at yield almost
everywhere, alternative strain fields to the ‘diffuse’ fields shown
in Table 2 are possible and would consist of infinitely thin straight
shear bands running through the matrix at 0–90� for SS, and ±45�
for PS (provided f < p=8). In this connection, it was found that the
same augmented Lagrangian method, separately applied with the
discretized Green function (see Section 2.5), and with the ‘contin-
uous’ Green function (as used in the original FFT algorithm of Mi-
chel et al. (2001)) converge to completely different ‘diffuse’ and
localized solutions for the strain field, respectively (whereas the
stress field, is independent of the choice of the Green function at
high resolution). With the ‘continuous’ Green function, thin
straight shear bands tangent to the inclusion-matrix interface are
observed (see also Moulinec and Suquet, 1998). In any event, as
will be seen below, the ideally plastic ‘second-order’ estimates de-
rived in this work, which follow from a power-law regularization,
predict strain statistics entirely consistent with the ‘diffuse’ strain
fields of Table 2, and not with the localized solution.

4.2. Effective behavior and field statistics

The effect of matrix nonlinearity m on the ‘second-order’ (SO)
and FFT predictions is explored in Fig. 5 for a moderate reinforce-
ment concentration ðf ¼ 0:1Þ. Fig. 5a and b show plots for the effec-
tive flow stress ~r0 under ‘pure shear’ (PS) and ‘simple shear’ (SS)
loadings, respectively, normalized by the flow stress of the matrix
r0. Both versions of the SO estimates are found to be in good agree-
ment with the FFT results, for all values of the strain-rate sensitiv-
ity m and both loading conditions. The estimates agree with the
FFT results in that ~r0 decreases monotonically with increasing
nonlinearity (i.e., decreasing m), and in that the composite material
is ‘stronger’ under PS than under SS loadings, for all values of m dif-
ferent than zero.

In the ideally plastic limit ðm! 0Þ, the limit analysis upper
bound derived in Appendix B coincides with the classical Reuss
lower bound, and therefore give the exact result which is
~r0=r0 ¼ 1 for both loading conditions. Indeed, this is the result ob-
tained with the FFT calculations. Both versions of the SO estimates
are found to coincide with the exact result in this strongly nonlin-
ear limit, thus predicting no reinforcement effect due the presence
of rigid inclusions. In this connection, it is recalled that this is the
exact result whenever the macroscopic deformation can be accom-
modated by straight shear bands passing through the matrix phase
and avoiding the inclusions (see Drucker (1966) and Taliercio
(1992)). In the SS case, this is possible for any reinforcement con-
centration smaller than the close-packing threshold fcp, while in
the PS case this is not possible for f > p=8 and therefore a finite
reinforcement effect is expected in that case.

Predictions for the field statistics under SS loading are shown in
Fig. 5e and f, normalized by �ee and �re. Unlike in the porous case,
the SO estimates are in good agreement with the FFT results for
all values of m. This is mainly because the strain field in the LCCs
can now mimic fairly well the nonlinear strain field, even in the
ideally plastic limit. Indeed, as m! 0 the anisotropy ratio k! 0,
see Fig. 5c, and the strain distributions in such LCCs, reported in
Willot et al. (2008a),6 are similar to those of maps 21–30 in Table
2. The nonlinear predictions show decreasing inclusion stress con-
centration and matrix stress fluctuations with increasing nonlinear-
ity. This is consistent with the stress field becoming more
homogeneous throughout the composite as m! 0, see maps 31–
40 in Table 2. The small discrepancies between the SO estimates
and the FFT results in the ideally plastic limit are due to the small
local variations of stress around the inclusions observed in the
numerical simulations. The predictions also show that the strain
fluctuations remain bounded in the ideally plastic limit, unlike in
porous materials. This is because the strain distribution is essentially
piecewise uniform rather than localized in shear bands (cf. maps 21–
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30 and maps 1–10 in Table 2). In this connection, it is interesting to
note that recent FFT simulations of rigidly-reinforced composites
with random microstructures (Moulinec and Suquet, 2003; Idiart
et al., 2006b) have shown shear band strain localization and
unbounded ‘parallel’ strain fluctuations as m! 0, in agreement with
the ‘second-order’ predictions for that class of materials (Idiart et al.,
2006b; Idiart and Ponte Castañeda, 2007b). It is thus remarkable that
the ‘second-order’ method, being only a homogenization theory, is
able to correctly predict the completely different character of strain
distribution arising in periodic versus random reinforced compos-
ites, as reflected not in the macroscopic behavior but rather in high-
er-order statistical information.

The effect of reinforcement concentration is explored in Fig. 6,
for a moderate nonlinearity ðm ¼ 0:2Þ. Fig. 6a and b show plots
for ~r0. The FFT results show that the composite becomes ‘stiffer’
as the reinforcement concentration increases, as expected, and
that, for moderate and higher concentrations, this effect becomes
significantly stronger for PS than for SS loadings. As anticipated
in the previous subsection, this nonlinearity-induced anisotropy
in the effective behavior is due to the fact that, as the nonlinearity
increases, the circular inclusions behave progressively more like
square inclusions with an orientation relative to the lattice that de-
pends on the loading orientation (see Table 2). Due to the orienta-
tion of these ‘square’ inclusions, the close-packing effects become
important at lower values of f in PS than in SS loadings. This, to-
gether with the fact that the linear estimates utilized in the context
of the SO estimates become progressively less accurate as the
close-packing effects become more important (see Willot et al.
(2008a)), is the reason why, at large values of f, the SO estimates
are significantly less accurate for PS than for SS loadings. As already
mentioned in the previous section, the SO estimates could be im-
proved for high values of f by using a different linear estimate,
appropriate for reinforcement concentrations near the close-pack-
ing threshold.

4.3. Dilute limit

Consider power-law materials with vanishingly small reinforce-
ment concentrations ðf ! 0Þ and fixed strain-rate sensitivity
m > 0. As already discussed, for these materials, the effective
behavior is expected to be insensitive to the actual distribution
of inclusions, and Lee and Mear (1992) proposed the ansatz

~r0

r0
	 1þ bðmÞf ; ð18Þ
and determined the coefficient bðmÞ numerically by consider-
ing an isolated circular inclusion in an infinite matrix. The
present study confirms the ansatz (18): both the FFT results
and the SO estimates exhibit a linear correction at vanishingly
small f. The predicted behavior is thus isotropic. In particular,
the SO estimate for bðmÞ can be obtained by expanding (46)
and (72), noting that k! m as f ! 0 (see Fig. 6c); the result
is

bðmÞ ¼ 1
2

ffiffiffiffiffi
m
p

1þ
ffiffiffiffiffi
m
p� �2 ð19Þ

for both versions. This result is in exact agreement with that ob-
tained in the context of random rigidly-reinforced composites (Pon-
te Castañeda, 1996, 2002b). A comparison between the SO estimate
and the numerical results for b is given in Fig. 4b. The numerical and
theoretical results coincide for m ¼ 1 with the classical result of
Eshelby (1957), as they should, and are in excellent agreement for
all other values of m. Note that, unlike in the porous case, the coef-
ficient (19) vanishes as m! 0, suggesting an extended range of
validity of (18) in this limit.

Now consider ideally plastic solids ðm! 0Þ with fixed rein-
forcement concentration 0 < f < p=8. As already mentioned in
Section 4.2, the limit analysis bounds derived in Appendix B de-
mand that

~r0

r0
¼ 1; ð20Þ

independent of the value of f, in exact agreement with the corre-
sponding FFT results and SO estimates. The dilute expansion of
(20) is consistent with the ideally plastic limit of (18). Thus, in con-
trast to the porous case, the dilute concentration and small rate-
sensitivity regimes in reinforced composites are consistent, at least
to first order in f. In addition, the FFT simulations and SO estimates
predict vanishingly small strain fluctuations in the matrix phase as
f ! 0 for both regimes. This suggests that, in dilutely reinforced
ideally plastic solids, only weak long-range interactions between
inclusions develop, and the inclusions effectively behave as if they
were isolated at leading order. This in turn may explain why the
‘second-order’ predictions are more accurate for reinforced compos-
ites than for porous materials. It is noted, however, that the present
analysis does not exclude the existence of a crossover behavior at
higher-order corrections. In fact, preliminary results for sufficiently
small f and m do suggest that such a crossover exists, and will be
reported elsewhere.
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5. Concluding remarks

This paper presented a combined numerical-theoretical study
of the macroscopic behavior and local field distributions for a spe-
cial class of two-dimensional periodic composites with viscoplastic
phases, with emphasis on the infinite contrast, strongly nonlinear
case. The comparisons show good overall agreement between the
‘second-order’ (SO) homogenization estimates and the FFT full-
field numerical simulations, not only for the effective behavior
but also for the first- and second-order field statistics of the stress
and strain fields.

More specifically, the strain field for the rigidly-reinforced
materials was found to develop (with decreasing strain-rate sensi-
tivity m) a banding pattern consisting of low-strained bands of fi-
nite width set by the size of the inclusions. For both pure and
simple shear loading, and volume fractions allowing the passage
of straight bands through the matrix, the resulting interaction be-
tween inclusions is not strong, and the effective flow stress tends
to the yield stress of the matrix phase in the ideally plastic limit.
In these cases, the SO estimates are extremely accurate. However,
for pure shear and volume fractions greater than p=8, the inclu-
sions block the straight paths and the deformation mechanism
changes abruptly leading to a finite strengthening effect for larger
volume fractions all the way up to inclusion contact (which the SO
estimates only capture approximately). By contrast, the strain field
in porous materials tends to localize (again with decreasing strain-
rate sensitivity) in bands seeking to pass through the pores in order
to minimize the plastic dissipation. In this case, the interaction be-
tween the pores is obviously quite strong and dependent on the
geometry of the configuration as well as the relative orientation
of the loading (e.g., pure versus simple shear). Again for pure shear,
an abrupt change in deformation mechanism is observed for values
of the porosity near 50%. In this case, the SO estimates are quite
accurate for values of strain-rate sensitivity between 0.2 and 1,
and deteriorate for smaller strain-rate sensitivities (although they
correctly capture the transition).

One of the main findings of this work is the observation of a
crossover-type behavior for the porous case in the dilute concen-
tration (f) and small rate-sensitivity (m) regimes. Indeed, the FFT
simulations show that for finite values of m > 0, the effective flow
stress relative to the flow stress of the matrix is reduced from unity
by a factor proportional to the porosity f (cf. (13)). This is consistent
with the classical dilute limit with non-interacting inhomogenei-
ties. However, the coefficient a (see (14)) blows up as m�1=2 when
m! 0, suggesting that the range of validity of this expansion tends
to zero in the ideally plastic limit. In fact, first taking the limit as
m! 0, and then considering small porosity f leads to a non-ana-
lytic dependence on the porosity (1/2-power dependence on f –
see (15)), together with non-vanishing strain fluctuations in the
matrix phase, which is consistent with a collective-type behavior
induced by the strong interactions among the voids as the develop-
ing shear bands seek to minimize the overall plastic dissipation by
passing through the voids. Between these two asymptotic regimes,
there is an ‘intermediate’ asymptotic (i.e., crossover) regime where
the type of solution transitions from one regime (i.e., ‘strongly di-
lute’) to the other (i.e., ‘strongly nonlinear’). Mathematically, this
phenomenon can be linked to the change of character of the gov-
erning equations – from elliptic to hyperbolic (see Chenchiah and
Bhattacharya (2005) and Willot et al. (2008b) for analogous results
in other systems). In this connection, it should be mentioned that,
remarkably, the SO theory is able to predict a crossover behavior
for the porous materials, with a very good quantitative prediction
in the strongly dilute regime (see Fig. 4a for a), but with the wrong
exponent (2/3 versus 1/2) in the strongly nonlinear regime. How-
ever, the true form of the crossover in this case is still unknown.
For the rigidly-reinforced materials, on the other hand, the two
asymptotic regimes were found to be consistent up to leading or-
der. In this case, the strongly dilute regime is linear in f (cf. (18))
with a coefficient bðmÞ that tends to zero as m! 0, while the
strongly nonlinear regime has a vanishing correction for suffi-
ciently small values of f (cf. (20)). In addition, the strain fluctua-
tions are vanishingly small in this limit. This suggests that the
ideally plastic limit in the case of rigid inclusions is in some sense
less singular, which may help explain why the SO theory is able to
deliver much more accurate predictions in this case. We note, how-
ever, that the analysis provided in this work does not exclude the
possibility of a crossover-type behavior in the higher-order correc-
tions, which will be investigated in future work.

It should be emphasized that the combined dilute and ideally
plastic limit for porous media is particularly relevant to the ductile
fracture initiation problem, where the distribution of porosity is
expected to be random. However, for random microstructures,
the corresponding numerical simulations are much more challeng-
ing than for the periodic microstructures discussed in this work.
The only results that the authors are aware of for porous materials
with random microstructures are the numerical results (based on
limit analysis) of Pastor and Ponte Castañeda (2002), which sug-
gest that the dilute exponent in the ‘strongly nonlinear’ regime
should be between 1/2 and 2/3, at least for a class of 2D micro-
structures known as composite cylinders, as well as the FFT results
of Willot (2007) for ‘pixel-type’ 2D random microstructures that
suggest an exponent of 2/3. On the other hand, the SO estimate
of the Hashin–Shtrikman type predicts (Ponte Castañeda, 2002b)
a crossover behavior with an exponent of 2/3 in the strongly non-
linear regime for 2D random microstructures. Although the role of
disorder on the dilute exponent still remains to be investigated in
detail, the relative success – at least in qualitative terms – of the SO
theory for the periodic case suggests that the corresponding pre-
dictions of Ponte Castañeda (2002b) for the random case should
at least be qualitatively correct.

Finally, it should be noted that this study was restricted to iso-
choric loadings ‘aligned’ with the periodic microstructure. It is
emphasized, however, that the homogenization methods utilized
can handle completely general loading conditions (see Bilger
et al. (2005) and Danas et al. (2008)). In particular, porous materi-
als subjected to non-isochoric loadings, where more complicated
localization patterns arise, will be considered elsewhere.
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Appendix A. Second-order estimates for power-law porous
materials

A.1. Strain formulation

When specialized to porous materials with an isotropic matrix
phase characterized by (1), the ‘second-order’ variational estimate
for the effective strain potential is given by (Ponte Castañeda,
2002a; Idiart et al., 2006a)

~w �eð Þ ¼ stat
k;l

~wL �e; �eð1Þ; Lð1Þ
� �

þ ð1� f Þv ð1Þ �eð1Þ;Lð1Þ
� �� �

; ð21Þ

where the stationary operation consists in setting the partial deriv-
ative of the argument with respect to the variable equal to zero. In
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this expression, ~wL is the effective potential of a porous LCC with the
same microstructure as the nonlinear material and with a matrix
characterized by a second-order, Taylor-type expansion of the non-
linear potential (1)2 about a reference strain tensor �eð1Þ, given by

wð1ÞL e; �eð1Þ;Lð1Þ
� �

¼ wð1Þ �eð1Þ
� �

þ owð1Þ

oe
�eð1Þ
� �

: e� �eð1Þ
� �

þ 1
2

e� �eð1Þ
� �

: Lð1Þ : e� �eð1Þ
� �

; ð22Þ

where Lð1Þ is an incompressible, symmetric, fourth-order tensor (of
moduli) of the form

Lð1Þ ¼ 2kEk þ 2lE?; k ¼ k=l: ð23Þ

Here, k and l are two shear moduli, and

Ek ¼
2
3

�eð1Þd

�eð1Þe

�
�eð1Þd

�eð1Þe

; E? ¼ K� Ek; ð24Þ

are two orthogonal, fourth-order, projection tensors with principal
axes ‘aligned’ with �eð1Þ, and K denotes the standard, fourth-order,
shear projection tensor. It should be noted that, even though the
nonlinear potential (1)1 is isotropic, the tensor of moduli (23) is
generally anisotropic. The ratio k constitutes a measure of this
anisotropy.

In turn, the ‘error’ function v ð1Þ in (21), a measure of the degree
of nonlinearity of wð1Þ, is defined as

v ð1Þ �eð1Þ;Lð1Þ
� �

¼ stat
êð1Þ

wð1Þ êð1Þ
� �

�wð1ÞL êð1Þ; �eð1Þ; Lð1Þ
� �n o

: ð25Þ

The nonlinear estimate (21) requires a linear estimate for the effec-
tive potential ~wL of the porous LCC. Noting that the matrix potential
(22) corresponds to a ‘thermoelastic’ material with a ‘thermal
stress’ and a ‘specific heat’ given by

sð1Þ ¼ owð1Þ

oe
�eð1Þ
� �

� Lð1Þ : �eð1Þ; ð26Þ

gð1Þ ¼ wð1Þ �eð1Þ
� �

� sð1Þ : �eð1Þ � 1
2

�eð1Þ : Lð1Þ : �eð1Þ; ð27Þ

the effective potential becomes (Willis, 1981)
~wL �eð Þ ¼ 1
2

�e : ~L : �eþ ~s : �eþ ~g; ð28Þ

with ~s and ~g given in terms of ~L by

~s ¼ ~L : Lð1Þ�1 : sð1Þ; ð29Þ

~g ¼ ð1� f Þgð1Þ � sð1Þ : Lð1Þ�1 : ~L� ð1� f ÞLð1Þ
	 


: Lð1Þ�1 : sð1Þ: ð30Þ

In these expressions, ~L denotes the effective modulus tensor of a
porous material with a purely elastic matrix with modulus tensor
(23), and completely characterizes (28).

For later use, it is recalled that the first and second moments of
the strain field eL in the matrix of the porous LCC, can be extracted
from the potential ~wL by means of the identities (Idiart and Ponte
Castañeda, 2007a)

�eð1ÞL ¼
1

1� f
o ~wL

osð1Þ

����
Lð1Þ ;gð1Þ

; heL � eLið1Þ ¼
2

1� f
o ~wL

oLð1Þ

����
sð1Þ ;gð1Þ

; ð31Þ

where the variables that are held fixed have been emphasized. Thus,
the variational procedure employed to derive the estimate (21) dic-
tates an ‘optimal’ choice for the moduli k and l of the matrix phase
in the LCC, which follows from the stationarity condition in (21). In
addition, the reference strain �eð1Þ must also be specified in order to
characterize the potential wð1ÞL . Unfortunately, it has not yet been
possible to find a similar ‘optimality’ condition for this variable,
and an ad hoc prescription for �eð1Þ is therefore required. Hereafter,
following Idiart et al. (2006a) we identify �eð1Þ with the macroscopic
deviatoric strain, i.e.,

�eð1Þ ¼ �ed: ð32Þ

In addition to giving sensible results in the case of isotropic com-
posites, this prescription has the advantage of simplicity. It is
emphasized, however, that this prescription is probably not
‘optimal’.

Then, the stationarity conditions in (21) and (25) yield a system
of nonlinear algebraic equations for the variables êð1Þ; k and l.
More explicitly, making use of (1)2, (23) and (32), the conditions
resulting from the stationary operation in (25) are

3k êð1Þk � �ee

� 
¼ êð1Þk =ê

ð1Þ
e

� 
/0 êð1Þe

� �
� /0 �eeð Þ; 3l ¼ 1=êð1Þe

� �
/0 êð1Þe

� �
;

ð33Þ

where êð1Þk;? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þêð1Þ : Ek;? : êð1Þ

q
represent the components of êð1Þ

that are ‘parallel’ and ‘perpendicular’ to the macroscopic strain �e.

The equivalent part of êð1Þ is then êð1Þe

� 2
¼ êð1Þk
� 2

þ êð1Þ?
� 2

.

In turn, the conditions resulting from the stationarity operation
in (21) are

êð1Þk ¼ �ee �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1� f
2
3

o ~wL

ok

s
; êð1Þ? ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1� f
2
3

o ~wL

ol

s
; ð34Þ

where a choice of roots has been made (Idiart et al., 2006a). The
arguments inside the square roots in these relations depend on cer-
tain traces of the strain covariance tensor in the matrix phase of the
LCC (Ponte Castañeda, 2002a) as identities (31) show. It then fol-
lows from relations (33) that the moduli k and l depend on the
intraphase field fluctuations (in the LCC). This is one of the main
reasons for the improvement of the ‘second-order’ method over ear-
lier linear comparison methods which made use of only the first or
the second moments of local fields (Ponte Castañeda and Suquet,
1998).

Finally, making use of the relations (33), the estimate (21)
reduces to

~w �eð Þ ¼ ð1� f Þ / êð1Þe

� �
� /0 �eeð Þ êð1Þk � �eð1ÞLe

� h i
; ð35Þ

where �eð1ÞLe is the equivalent part of (31)1.
Effective behavior. An estimate for the effective behavior of the

nonlinear porous material is obtained by differentiating expression
(21) with respect to �e. For the specific choice of reference tensor
(32), this yields (Idiart and Ponte Castañeda, 2007a)

�r ¼ o ~w
o�e

�eð Þ ¼ �rL þ ð1� f Þqð1Þ; ð36Þ

where �rL ¼ ~L�eþ ~s is the macroscopic stress in the LCC, and the
(incompressible) tensor qð1Þ is given by

qð1Þ ¼ Lð1Þ � L
ð1Þ
t

h i
: êð1Þ � �eð1ÞL

� 
þ 4

3
k� l

�e2
e
hðeLd

� �edÞ
	

�ðeLd
� �edÞið1Þ � êð1Þd � �ed

� 
� êð1Þd � �ed

� i
: �ed; ð37Þ

where L
ð1Þ
t ¼ o2wð1Þ �eð Þ=oeoe is the tangent modulus tensor of the

matrix phase evaluated at �e. The averaged quantity appearing in
the second term is determined from (31).

Field statistics. In addition to the effective behavior, estimates
for the field statistics can also be extracted from corresponding
estimates for ~w by means of the procedure proposed by Idiart
and Ponte Castañeda (2007a). Applying this procedure in the con-
text of the ‘second-order’ method, the following estimates for the
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first and second moments of the fields in each phase are obtained
(Idiart and Ponte Castañeda, 2007a):

�eðrÞ ¼ �eðrÞL ; �r
ðrÞ ¼ �r

ðrÞ
L þ qðrÞ; ð38Þ

he� eiðrÞ ¼ heL � eLiðrÞ; hr� riðrÞ ¼ hrL � rLiðrÞ þ 2�rðrÞ�sq
ðrÞ; ð39Þ

where �rð1Þ ¼ owð1Þ �eð Þ=oe, in the porous phase �rð2Þ ¼ qð2Þ ¼ 0, and
the subscript s in the tensor product denotes symmetrization.
The strain statistics in the LCC are given by expressions (31),
and the corresponding stress statistics follow from the linear
stress–strain relation associated with (22). Thus, while the non-
linear estimates for the strain statistics in the matrix coincide
with those quantities in the LCC, the estimates for the stress sta-
tistics exhibit certain correction terms which depend on the ma-
trix nonlinearity through the tensor (37).

Expressions for power-law materials under ‘aligned’ loadings.
When the macroscopic loading is ‘aligned’ in the sense described
in Section 2.1 (see Fig. 1), the (compressible) effective tensor ~L

exhibits the same symmetry as the Lð1Þ defined by (23) with (24)
and (32), i.e.,

~L ¼ 2~jJþ 2~kEk þ 2~lE?; ð40Þ

where ~j is a bulk modulus, ~k and ~l are the ‘parallel’ and ‘perpen-
dicular’ shear moduli, and J denotes the standard fourth-order
hydrostatic identity tensor. In this work, the moduli are determined
approximately using the linear estimates of the Hashin–Shtrikman
type derived in Willot et al. (2008a). For SS loadings, Ek;? coincide
with the tensors ESS;PS defined by (9), so that the moduli are given
by expressions (22) of Willot et al. (2008a), with m ¼ ‘ ¼ 0; for PS
loadings, Ek;? coincide with the tensors EPS;SS, so that the moduli
are given by those same expressions with kð~kÞ and l ð~lÞ
interchanged.

Evaluating the derivatives of ~wL in expressions (34) and (31), we
arrive at the following relations:

êð1Þk =�ee ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sð Þ2 r̂k þ ð1� �eð1ÞL e =�eeÞ2

q
;

êð1Þ? =�ee ¼ j1þ sjr̂1=2
? ; �eð1ÞL e =�ee ¼ 1þ ð1þ sÞ�r; ð41Þ

where s ¼ sð1Þ � sð1Þ
� �1=2

=ð3k�eeÞ, and where

r̂k ¼
1

ð1� f Þ2
ð1� f Þ

~k
k
þ

~k
k

 !0
k

" #
�

~k
k

 !2
8<
:

9=
;;

r̂? ¼ �
1

ð1� f Þ
~k
k

 !0
k2
; �r ¼ 1

ð1� f Þ
~k
k
� 1: ð42Þ

Here, the prime denotes differentiation with respect to k. Making
use of (33), one obtains s ¼ ð1=k� 1Þ êð1Þk =�ee

� 
, which, after some

algebraic manipulations, yields

êð1Þk =�ee ¼ 1� r=ð1� kÞ; êð1Þ? =�ee ¼ ½ð1� rÞ=k�r̂1=2
? ;

�eð1ÞL e =�ee ¼ 1þ ½ð1� rÞ=k��r; ð43Þ

where the function r has been defined as

r ¼ 1þ k
1� k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂k þ �r2

p
" #�1

: ð44Þ

Thus, the right-hand sides of expressions (43) are explicit in k. Then,
by taking the ratio of the two conditions (33) with / given by (5)1,
we obtain the relation

ln ð1� kÞ êð1Þk
.

�ee

� 
þ k

h i
ln êð1Þe

.
�ee

�  ¼ 1�m; ð45Þ
where êð1Þe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
êð1Þk
� 2

þ êð1Þ?
� 2

r
. This relation, together with (43),

constitutes a single nonlinear, algebraic equation for the anisot-
ropy ratio k that must be solved numerically. (Alternatively, since
the right-hand side of (45) depends on k but not on m, we can
assign values to k and obtain from (45) the corresponding values
of m.)

Finally, the ‘second-order’ estimate (35) can be written as (6)1

with the effective flow stress given by

~r0

r0
¼ ð1� f Þ êð1Þe

�ee

 !1þm

� ð1þmÞ
êð1Þk
�ee
�

�eð1ÞL e
�ee

 !2
4

3
5; ð46Þ

where êð1Þk ; êð1Þ? and �eð1ÞL e are given in terms of k by relations (43). The
corresponding estimates for the field statistics follow from relations
(38) and (39). Since the phase averages should be of the form (11),
�eð1Þ is completely determined by (41), and �eð2Þ can be readily ob-
tained from the macroscopic balance ð1� f Þ�eð1Þ þ f �eð2Þ ¼ �e. In turn,
the estimates for the standard deviations of the ‘parallel’ and ‘per-
pendicular’ components of the strain in the matrix phase, as defined
by (12), read:

SDð1Þðek;?Þ ¼ j1þ sjr̂1=2
k;? : ð47Þ

In addition, the tensor qð1Þ required to compute the stress statistics
simplifies to

qð1Þ ¼ 2ðk� ktÞ êð1Þk � �eð1ÞLe

� 
�ed=�eeð Þ; ð48Þ

where 2kt ¼ Ek � Lð1Þt ¼ ð2=3Þ/0 �eeð Þ. Since phase 2 is vacuous, the phase
averages of the stress are trivial. On the other hand, the estimates for
the standard deviations of the stress components, which follow from
(39), are rather complicated and are omitted for conciseness.

In the ideally plastic limit ðm! 0Þ, Eq. (45) may admit more
than one solution for k varying with f. The solution of interest is
the positive one (for f > 0) continuously connected to k ¼ 1 for
m ¼ 1, which solves

ð1� kÞ êð1Þk
.

�ee

� 
þ k ¼ êð1Þe =�ee: ð49Þ

The corresponding effective flow stress follows from (46) with m ¼ 0.
Dilute limit. We now evaluate the above expressions as f ! 0.

We begin by noting that from numerical solutions of (45) it can
be inferred that k! m for both PS and SS loadings.

When m > 0, the anisotropy ratio k remains strictly positive. In
this case, Willot et al. (2008a) have shown that the effective mod-
ulus ~k appearing in expressions (42) has an expansion of the form
(see expression (25) in Willot et al., 2008a)

~k=k ¼ 1þ C1ðkÞf þ C2ðkÞf 2 þ � � � ; ð50Þ

where C1ðkÞ ¼ � 1þ
ffiffiffi
k
p� 

, and C2ðkÞ is assumed to have bounded
first derivative and presumably depends on the specific loading.
To first order in f, the strain variables (43) are then

êð1Þk
�ee
¼ 1� 1ffiffiffi

2
p

k3=4 f 1=2 þ 1� k

2k3=2 f ;
êð1Þ?
�ee

 !2

¼ 1

2k1=2 f ;

�eð1ÞL e
�ee
¼ 1� 1

k1=2 f ; ð51Þ

independent of C2ðkÞ. Making use of these expressions, it is easy to
verify that the zeroth-order term of the left-hand side of equation
(45) is ð1� kÞ, which confirms that k ¼ mþ Oðf Þ as f ! 0. Finally,
it is easy to verify that the expansion of expression (46) for ~r0, to
first order in f, is given by (13) with (14).

When m ¼ 0, the anisotropy ratio k! 0 as f ! 0. Numerical solu-
tions of equation (49) show that k 	 bf 2=3. In this case, Willot et al.
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(2008a) have shown that the expansion (50) for the effective modu-
lus ~k remains valid. To order f 2=3, the strain variables (43) are then

êð1Þk
�ee
¼

ffiffiffi
2
p

b3=4

1þ
ffiffiffi
2
p

b3=4 þ b1=4

ffiffiffi
2
p

C2ð0Þ � b3=4

1þ
ffiffiffi
2
p

b3=4
� 2 f 2=3;

êð1Þ?
�ee

 !2

¼ b

1þ
ffiffiffi
2
p

b3=4
� 2 f 2=3;

�eð1ÞL e
�ee
¼ 1�

ffiffiffi
2
p

b1=4

1þ
ffiffiffi
2
p

b3=4 f 2=3: ð52Þ

The coefficient b is obtained by expanding equation (49) to order
f 2=3; the solution is b ¼ 1=4, independent of C2ð0Þ and in agreement
with numerical results. Having determined the strain variables (52),
it is easy to show that the expansion of expression (46) for ~r0, to or-
der f 2=3, is given by (17) with aso ¼ 1=2. Note that the result is inde-
pendent of the second-order coefficient C2ðkÞ.

A.2. Stress formulation

A dual version of the ‘second-order’ method follows from ex-
actly analogous arguments. When specialized to porous materials
with an isotropic matrix phase, the ‘second-order’ variational esti-
mate for the effective stress potential is given by (Ponte Castañeda,
2002a; Idiart et al., 2006a)

~u �rð Þ ¼ stat
k;l

~uL �r; �rð1Þ;Mð1Þ� �
� ð1� f Þv ð1Þ �rð1Þ;Mð1Þ� �� �

: ð53Þ

In this expression, ~uL is the effective potential of a porous LCC with a
matrix characterized by a second-order, Taylor-type expansion of the
nonlinear potential (2)2 about a reference stress tensor �rð1Þ, given by

uð1ÞL r; �rð1Þ;Mð1Þ� �
¼ uð1Þ �rð1Þ

� �
þ ouð1Þ

or
�rð1Þ
� �

: r� �rð1Þ
� �

þ 1
2

r� �rð1Þ
� �

: Mð1Þ : r� �rð1Þ
� �

; ð54Þ

where Mð1Þ is a symmetric, fourth-order tensor (of compliances) of
the form

Mð1Þ ¼ 1
2k

Ek þ
1

2l
E?; k ¼ k=l: ð55Þ

Here, k and l are two shear moduli, and

Ek ¼
3
2

�r
ð1Þ
d

�rð1Þe

�
�r
ð1Þ
d

�rð1Þe

; E? ¼ K� Ek; ð56Þ

are two orthogonal, fourth-order, projection tensors with principal
axes ‘aligned’ with �rð1Þ.

In turn, the ‘error’ function v ð1Þ in (53) is defined as

v ð1Þ �rð1Þ;Mð1Þ� �
¼ stat

r̂ð1Þ
uð1ÞL r̂ð1Þ; �rð1Þ;Mð1Þ� �

� uð1Þ r̂ð1Þ
� �n o

; ð57Þ

and is a measure of the degree of nonlinearity of uð1Þ.
Given that the matrix potential (54) corresponds to a ‘thermo-

elastic’ material with a ‘thermal strain’ and a ‘specific heat’ given
by

gð1Þ ¼ ouð1Þ

or
�rð1Þ
� �

�Mð1Þ : �rð1Þ; ð58Þ

hð1Þ ¼ uð1Þ �rð1Þ
� �

� gð1Þ : �rð1Þ � 1
2

�rð1Þ : Mð1Þ : �rð1Þ; ð59Þ

the effective potential ~uL can be written as (Willis, 1981)

~uL �rð Þ ¼ 1
2

�r : ~M : �rþ ~g : �rþ ~h; ð60Þ

where ~g ¼ gð1Þ; ~h ¼ ð1� f Þhð1Þ; and ~M denotes the effective compli-
ance tensor of a porous material with a purely elastic matrix with
compliance tensor (55). It is useful to recall at this point that the
first and second moments of the stress field rL in the matrix of
the porous LCC can be obtained from relations completely analo-
gous to (31) (Idiart and Ponte Castañeda, 2007a).

In addition, the reference stress �rð1Þ must also be specified in or-
der to characterize the potential uð1ÞL . As already mentioned, an
‘optimality’ condition for this variable, if it exists, is not yet avail-
able, and an ad hoc prescription is therefore required. Following
Idiart et al. (2006a) we identify �rð1Þ with the macroscopic deviator-
ic stress, i.e.,

�rð1Þ ¼ �rd: ð61Þ

Then, the stationarity conditions in (53) and (57) yield a system of
nonlinear algebraic equations for the variables r̂ð1Þ; k and l. With
(2)2, (55) and (61), the conditions resulting from the stationary
operation in (57) read:

r̂ð1Þk � �re

� .
ð3kÞ ¼ w0 r̂ð1Þe

� �
r̂ð1Þk =r̂

ð1Þ
e

� 
� w0 �reð Þ;

ð1=3lÞ ¼ w0 r̂ð1Þe

� ��
r̂ð1Þe ; ð62Þ

where r̂ð1Þk;? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þr̂ð1Þ : Ek;? : r̂ð1Þ

p
represent the components of r̂ð1Þ

that are ‘parallel’ and ‘perpendicular’ to the macroscopic stress �r.

The equivalent part of r̂ð1Þ is then r̂ð1Þe

� 2
¼ r̂ð1Þk
� 2

þ r̂ð1Þ?
� 2

. In

turn, the conditions resulting from the stationarity operation in
(53) are

r̂ð1Þk ¼ �re þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

1� f
o~uL

ok�1

s
; r̂ð1Þ? ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

1� f
o~uL

ol�1

s
; ð63Þ

where a choice of roots has been made (Idiart et al., 2006a). Finally,
making use of the relations (62) and (63), the estimate (53) can be
written in the simplified form

~u �rð Þ ¼ ð1� f Þ w r̂ð1Þe

� �
� w0 �reð Þ r̂ð1Þk � �rð1ÞLe

� h i
; ð64Þ

where �rð1ÞLe is the equivalent part of the average stress in the matrix
of the LCC.

Effective behavior. Differentiating expression (53) with respect
to �r yields (Idiart and Ponte Castañeda, 2007a)

�e ¼ o~u
o�r

�rð Þ ¼ �eL þ ð1� f Þcð1Þ; ð65Þ

where �eL ¼ ~M�rþ ~g is the macroscopic strain in the LCC, and the
(incompressible) tensor cð1Þ is given by

cð1Þ ¼ Mð1Þ �M
ð1Þ
t

h i
: r̂ð1Þ � �r

ð1Þ
L

� 
þ 3

4
k�1 � l�1

�r2
e

ðrLd
� �rdÞ

�	
�ðrLd

� �rdÞ
�ð1Þ � r̂

ð1Þ
d � �rd

� 
� r̂

ð1Þ
d � �rd

� i
: �rd: ð66Þ

Here, M
ð1Þ
t ¼ o2uð1Þ �rð Þ=oror is the tangent compliance tensor of the

matrix phase evaluated at �r.
Field statistics. Corresponding estimates for the first and second

moments of the fields in each phase corresponding to (64) are gi-
ven by (Idiart and Ponte Castañeda, 2007a)

�eðrÞ ¼ �eðrÞL þ cðrÞ; �rðrÞ ¼ �r
ðrÞ
L ; ð67Þ

he� eiðrÞ ¼ heL � eLiðrÞ þ 2�eðrÞ�sc
ðrÞ; hr� riðrÞ ¼ hrL � rLiðrÞ; ð68Þ

where �eð1Þ ¼ ouð1Þ �rð Þ=or, in the porous phase �eð2Þ ¼ cð2Þ ¼ 0, and the
subscript s in the tensor product denotes symmetrization. Thus,
while the nonlinear estimates for the stress statistics in the matrix
coincide with those quantities in the LCC, the estimates for the
strain statistics exhibit certain correction terms which depend on
the matrix nonlinearity through the tensor (66).
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Expressions for power-law materials under ‘aligned’ loadings.
When the macroscopic loading is ‘aligned’ the tensor ~M is gi-
ven in terms of k and l by the inverse of (40). Then, evaluat-
ing the derivatives of ~uL in (63), we arrive at the following
relations:

r̂ð1Þk =�re ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂k þ 1� �rð1ÞL e =�re

� 2
r

; r̂ð1Þ? =�re ¼ r̂1=2
? ;

�rð1ÞL e =�re ¼ 1=ð1� f Þ; ð69Þ

where the functions r̂k and r̂? are given by

r̂k ¼
1

ð1� f Þ2
ð1� f Þ

~k�1

k�1 � k
~k�1

k�1

 !0" #
� 1

( )
; r̂? ¼

1
1� f

~k�1

k�1

 !0
:

ð70Þ

Again, the prime in these expressions denotes differentiation with
respect to k, and the ratio ~k=k is a function of k and f, and depends
on the specific loading. Explicit expressions have been given in Wil-
lot et al. (2008a). Then, by taking the ratio between the two condi-
tions (62) with w given by (5)2, we obtain the relation

ln 1� 1=kð Þ r̂ð1Þk =�re

� 
þ ð1=kÞ

h i
ln r̂ð1Þe =�re

�  ¼ 1� n; ð71Þ

where r̂ð1Þe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂ð1Þk
� 2

þ r̂ð1Þ?
� 2

r
. This relation, together with (69),

constitutes a single nonlinear, algebraic equation for the anisotropy
ratio k that must be solved numerically.

Finally, the ‘second-order’ estimate (64) can be written as (6)2

with the effective flow stress given by

~r0

r0
¼ ð1� f Þ�

1
n

r̂ð1Þe

�re

 !1þn

� ð1þ nÞ
r̂ð1Þk
�re
�

�rð1ÞL e
�re

 !2
4

3
5
�1

n

; ð72Þ

where r̂ð1Þk ; r̂ð1Þ? and �rð1ÞL e are given in terms of k by relations (69).
The corresponding estimates for the field statistics follow from rela-
tions (67) and (68). The estimates for the standard deviations of the
stress components in the matrix phase, as defined by (12), are given
by

SDð1Þðrk;?Þ ¼ r̂1=2
k;? ; ð73Þ

and the tensor cð1Þ required to compute the strain statistics simpli-
fies to

cð1Þ ¼ 1
2

k�1 � k�1
t

� �
r̂ð1Þk � �rð1ÞLe

� 
�rd

.
�re; ð74Þ

where ð2ktÞ�1 ¼ Ek �Mð1Þ
t ¼ ð3=2Þw0 �reð Þ. However, the estimates for

the strain statistics, which follow from (67) and (68), are rather
complicated and are omitted for conciseness.

In the ideally plastic limit ðn!1Þ, (71) simplifies further to
Fig. 7. Trial fields used to obtain limit analysis bounds for porous materials. (a)–(c) Arro
traction vectors associated with the stress field, all of the same magnitude. Dotted lines
r̂ð1Þk
.

�re ¼ 1=ð1� kÞ; ð75Þ

and the ‘second-order’ estimate (72) reduces to

~r0

r0
¼ r̂ð1Þe =�re
� ��1

: ð76Þ

Dilute limit. We now evaluate the above expressions as f ! 0. As in
the strain version, numerical solutions of (71) indicate that k! m
for both PS and SS loadings.

When m > 0, the anisotropy ratio k remains strictly positive and
the effective modulus ~k is given by (50) to second order in f (Willot
et al., 2008a). To first order in f, the stress variables (69) are then

r̂ð1Þk
�re
¼ 1þ k1=4ffiffiffi

2
p f 1=2 þ Oðf 3=2Þ; r̂ð1Þ?

�re

 !2

¼ 1

2k1=2 f ; ð77Þ

independent of C2ðkÞ. Making use of these expressions, it is easy to
verify that the zeroth-order term of the left-hand side of equation
(71) is ð1� 1=kÞ, which confirms that k ¼ mþ Oðf Þ as f ! 0. Finally,
it is easy to verify that the expansion of expression (72) for ~r0, to
first order in f, is given by (13) with (14).

When m ¼ 0, the anisotropy ratio k! 0 as f ! 0. As in the
strain version, numerical solutions of (75) show that k 	 bf 2=3,
and the expansion (50) for the effective modulus ~k remains valid.
To order f 2=3, the stress variables (69) are then

r̂ð1Þk
�re
¼ 1þ b1=4ffiffiffi

2
p f 2=3;

r̂ð1Þ?
�re

 !2

¼ 1

2b1=2 f 2=3: ð78Þ

The coefficient b is obtained by expanding (75) to order f 2=3; the
solution is b ¼ 1=22=3, in agreement with numerical results. Having
determined the stress variables (78), it is easy to show that the
expansion of expression (72) for ~r0, to order f 2=3, is given by (17)
with aso ¼ 3=25=3.

A.3. Estimates for rigidly-reinforced composites

Making use of the duality relations of Section 2.3, second-order
estimates for rigidly-reinforced composites can be generated di-
rectly from the above estimates for porous materials. According
to those relations, see Table 1, we have the following correspon-
dences between the two sets of estimates: 1=m! m,
ð~r0=r0Þ�1=m ! ð~r0=r0Þ, SS (PS) loading ? PS (SS) loading,
1=k! k, strain (stress) version ? stress (strain) version, strain
(stress) statistics ? stress (strain) statistics.

Appendix B. Limit analysis bounds for periodic materials

In the limiting case of a rigid-ideally plastic matrix, use can be
made of the kinematic and static theorems of classical limit analy-
sis to compute upper and lower bounds, respectively, for the effec-
tive flow stress of the composite (Bouchitté and Suquet, 1991). The
ws denote displacement vectors, all of the same magnitude; (d)–(e) arrows denote
indicate surfaces of discontinuity.



Fig. 8. Trial displacement fields used to obtain limit analysis bounds for rigidly-
reinforced materials. Dotted lines indicate surfaces of discontinuity.
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computation of such bounds amounts to evaluating the effective
potentials (3) at (simple) trial fields e(x) (or displacement u(x))
and r(x), which in perfect plasticity include piecewise continuous
fields with surfaces of discontinuity not only at material interfaces
but also within the individual phases. Thus, this allows the use of
piecewise uniform trial fields, which can lead to simple analytical
bounds, as shown below. For consiceness, the procedure for com-
puting these bounds is only briefly addressed here, and the
interested reader is referred to Salençon (1983), Taliercio (1992)
and Maghous (1991).

B.1. Porous materials

Simple shear. Making use of the trial displacement and stress
fields shown in Fig. 7a and d, the following bounds for ~r0 are
obtained:

1� 2
ffiffiffiffiffiffiffiffiffi
2=p

p
f 1=2
6 ~r0=r0 6 1� ð2=

ffiffiffiffi
p
p
Þf 1=2: ð79Þ

Pure shear. Making use of the trial displacement and stress fields
shown in Fig. 7b, c and e, the following bounds for ~r0 are obtained:

1� 2ffiffiffiffi
p
p f 1=2

6

~r0

r0
6

1�
ffiffiffiffi
2
p

r
f 1=2; 0 6 f 6

p
6
;

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8f
p
� 1

r
;

p
6
< f 6

p
4
:

8>>><
>>>:

ð80Þ

Unlike in the case of simple shear loading, two different displace-
ment trial fields have been used in this case, motivated by the FFT
results shown in Table 2. The trial field shown in Fig. 7b yields
the smaller bound for low to moderate porosities, while that of
Fig. 7c yields the smaller bound for porosities closer to the close-
packing limit. Both bounds coincide for f ¼ p=6 	 0:524.

B.2. Rigidly-reinforced materials

Fig. 8 shows two displacement trial fields for SS and PS loadings.
Both cases involve straight shear bands passing entirely through
the matrix, from which it follows immediately that the resulting
upper bound for ~r0 under both loading conditions is

~r0=r0 6 1: ð81Þ

This upper bound agrees exactly with the corresponding Reuss low-
er bound, and consequently it is the exact result. It should be
emphasized, however, that in the PS case, the simple trial field of
Fig. 8b is valid for f 6 p=8. For larger values of f, trial fields involving
straight shear bands are no longer possible, and therefore the
resulting upper bound on ~r0 will exhibit a finite reinforcement
effect.
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