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In this paper it is proved that the problem of deteruzining the totai chromatic number of an 
arbitrary’graph is NP-hard. The problem remains NP-hard even for cubic bipartite graphs. 

1. Introduction 

The total chromatic number X,(G) of a graph G is the minimum number of 
colours required to colour the edges and vertices of G in such a way that no two 
adjacent or incident elements of G have the same colour. Clearly &(G) 2 
d(G) + 1, where d(G) is the maximum degree of G. It is a long standing 
conjecture that XT(G) d d(G) + 2. For example it is easily seen to be true if G is 
bipartite. 

Consider the following problem: 

Total colt uring 

Instance: A graph G. 
Question: Is G (d(G) + 1)total colourable? 

In this paper we prove that Total Colouring is NP-complete (see [l] for 
terminology and definitions). In fact we prove a stronger result, i.e. that Total 
Colouring is NP-complete even for cubic bipartite graphs. Thus the problem has 
no polynomial time algorithm unless P = NP. 

It is clear that Total Colouring is in the class NP. To prove that the problem is 
NP-complete we exhibit a polynomial reduction from a known NP-complete 
problem concerning edge-colourings in regular graphs, which is defined as 
follows: 

Regular edge-colouring 

Instance: A r-regular graph G. 
Question: Is G r-edge colourable? 
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This problem was shown to be NP-complete by Holyer [2] for r = 3, and by 

Leven and Galil[3] for r 3 4. We will transform Regular Edge-Colouring for r = 4 

to Total Colouring restricted to cubic bipartite graphs. 

2. The component used in the construction 

Given a 4-regular graph G of the 4-edge colouring problem we will show how 
to construct a cubic bipartite graph G’ which is 4-total colourable if and only if G 
is 4-edge colourable. The graph G’ will be constructed by replacing each vertex, 
V, of G with a replacement graph R, having 4 pendant edges. These edges will be 
associated with the edges of G incident to u. 

The replacement graph will be constructed by putting together several copies 
of the basic graph S of Fig. 1. The following are basic results concerning the 
graph S. 

2.1. (a) The graph S is 4-total colourable. 
(b) In any 4-total colouring of S the edges eI, e2 and e3 are coloured the same. 

Proof. The 4-total coloclring in Fig. 1 proves (a). In order to prove (b) assume 
that there is a 4-total colouring of S, in which two edges, say el and e?, are 
coloured differently. Thus the graph S’ constructed from S by deleting e3 and 
identifying cl with c2 is 4-total colourable. However, S’ is isomorphic to 
K3,\edge which is not 4-total colourable. This is the required contradiction. Cl 

A partial k-total colouring is a colouring of some of the vertices and edges so 
that no two adjacent or incident elements have the same colour. 

2.2. Consider a partial 4-total colouring of S in which the pendant edges have the 
same colour (say colour 4) and c1 and c2 are also coloured (and nothing else is 

Fig. 1. The graph S. 
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Fig. 2. The graph H. 

coloured j. Then 
(a) this extends to a 4-total colouring of S, and 
(b) if cl and c2 have different colours then the vertices b3 and c3 can be coloured 

with any colour except colour 4. 

Proof. If cl and c2 have the same colour, say colour 3, then colour c3 with colour 
1 or 2. Colour bj with colour i for i = 1, 2, 3. Finally use the colour sets of %.1(a) 
to colour the remaining part of S. This proves part (a) and part (b) follows 
immediately from 2.1(a). Cl 

Now consider the “replacement” graph R, constructed as follows (see Fig. 3). 
First replace each vertex of the graph K4 with a copy of the graph H shown in 
Fig. 2. Insert a new vertex in every edge of the original Kq. Finally add three 
‘cross’ edges. Observe that the replacement graph is cubic and bipartite. 

2.3. (a) Consider a partial 4-total colouring of R in which the four pendant edges 

Fig. 3. The replacement graph R. 
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-have different colours and the pendant vertices are also coloured (and nothing else 
is cobured). Then this extends to a 4-total colouring Df R. 

(b) In every h-total coiouring of R the four pendant edges must all have different 
colours. 

Proof. In order to prove part (a), first extend the given partial 4-total colouring 
of R as indicated in Fig. 3, then apply (2.2) twice on each graph H. By (2.2)b it 
fellows that this partial colouring can always be extended to a complete 4-total 
colouring of R. Part (b) follows easily from (2.l)b. 0 

We are now in position to prove the following theorem. 

Theorem 3.1. Total Colouring restricted to cubic bipartite graphs is NP-complete. 

Fig. 4. The transformation. (a) Typical part of G. (b) Typical part of G’. 
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Proof. The problem is clearly in the class NP. We exhibit a polynomial 
transformation from the 4-edge colouring problem. Consider a 4-regular graph G 
and construct frorzl it a graph G’ as follows: 

(i) Orient the edges of G so that each vertex has two arrows coming in and two 
arrows going out of it (see Fig. 4a). We can do this by finding eulerian cycles. 

(ii) Replace each vertex IJ of G by a replacement graph R, in which the 
incoming edges are associated with the odd terminal edges e,, e3 and the outgoing 
edges with the even terminal edges e2, e4 (see Fig. 46). 

Clearly the resulting graph G’ is cubic and bipartite, and the transformation 
can be carried out in polynomial time. We must show that G is cl-edge colourable 
if and only if G’ is 4-total colourable. 

One part is easy by (2.3)b if G’ is 4-total colourable then clearly G is 4-edge 
colourable. 

Suppose now we have a 4-edge colouring of G. This yields a colouring of the 
‘link’ edges of G’. By (2.3)a we can extend this colouring to a 4-total colouring of 
G’ by extending this partial colouring to each replacement graph in turn. This 
finishes the proof of theorem 3.1. Cl 
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