COMMUNICATION

DETERMINING THE TOTAL COLOURING NUMBER IS NP-HARD*

Abdón SÁNCHEZ-ARROYO
Mathematical Institute, University of Oxford, Oxford, England
Communicated by D. J. A. Welsh
Received 30 March 1989

Abstract

In this paper it is proved that the problem of deterriining the totai chromatic number of an arbitrary graph is NP-hard. The problem remains NP-hard even for cubic bipartite graphs.

1. Introduction

The total chromatic number $X_{\mathrm{T}}(G)$ of a graph G is the minimum number of colours required to colour the edges and vertices of G in such a way that no two adjacent or incident elements of G have the same colour. Clearly $X_{T}(G) \geqslant$ $d(G)+1$, where $d(G)$ is the maximum degree of G. It is a long standing conjecture that $X_{\mathrm{T}}(G) \leqslant d(G)+2$. For example it is easily seen to be true if G is bipartite.

Consider the following problem:

Total colcaring
Instance: A graph G.
Question: Is $\boldsymbol{G}(\boldsymbol{d}(\boldsymbol{G})+1)$-total colourable?
In this paper we prove that Total Colouring is NP-complete (see [1] for terminology and definitions). In fact we prove a stronger result, i.e. that Total Colouring is NP-complete even for cubic bipartite graphs. Thus the problem has no polynomial time algorithm unless $P=$ NP.

It is clear that Total Colouring is in the class NP. To prove that the problem is NP-complete we exhibit a polynomial reduction from a known NP-complete problem concerning edge-colourings in regular graphs, which is defined as follows:

Regular edge-colouring
Instance: A \boldsymbol{r}-regular graph \boldsymbol{G}.
Question: Is G r-edge colourable?

[^0]This problem was shown to be NP-complete by Holyer [2] for $r=3$, and by Leven and Galil [3] for $r \geqslant 4$. We will transform Regular Edge-Colouring for $r=4$ to Total Colouring restricted to cubic bipartite graphs.

2. The component used in the construction

Given a 4-regular graph G of the 4-edge colouring problem we will show how to construct a cubic bipartite graph \boldsymbol{G}^{\prime} which is 4 -total colourable if and only if \boldsymbol{G} is 4 -edge colourable. The graph G^{\prime} will be constructed by replacing each vertex, v, of G with a replacement graph R, having 4 pendant edges. These edges will be associated with the edges of G incident to v.

The replacement graph will be constructed by pitting together several copies of the basic graph S of Fig. 1. The following are basic results concerning the graph S.
2.1. (a) The graph S is 4-total colourable.
(b) In any 4-total colouring of S the edges e_{1}, e_{2} and e_{3} are coloured the same.

Proof. The 4-total colouring in Fig. 1 proves (a). In order to prove (b) assume that there is a 4-total colouring of S, in which two edges, say e_{1} and ϵ_{2}, are coloured differently. Thus the graph S^{\prime} constructed from S by deleting e_{3} and identifying c_{1} with c_{2} is 4 -total colourable. However, S^{\prime} is isomorphic to $K_{33} \backslash$ ledge which is not 4-total colourable. This is the required contradiction.

A partial k-total colouring is a colouring of some of the vertices and edges so that no two adjacent or incident elements have the saine colour.
2.2. Consider a partial 4-total colouring of S in which the pendant edges have the same colour (say colour 4) and c_{1} and c_{2} are also coloured (and nothing else is

Fig. 1. The graph S.

Fig. 2. The graph H.
coloured). Then
(a) this extends to a 4-total colouring of S, and
(b) if c_{1} and c_{2} have different colours then the vertices b_{3} and c_{3} can be coloured with any colour except colour 4.

Proof. If c_{1} and c_{2} have the same colour, say colour 3 , then colour c_{3} with colour 1 or 2 . Colour b_{i} with colour i for $i=1,2$, 3. Finally use the colour sets of 2.1(a) to colour the remaining part of S. This proves part (a) and part (b) follows immediately from 2.1(a).

Now consider the "replacement" graph R, constructed as follows (see Fig. 3). First replace each vertex of the graph K_{4} with a copy of the graph H shown in Fig. 2. Insert a new vertex in every edge of the original K_{4}. Finally add three 'cross' edges. Observe that the replacement graph is cubic and bipartite.
2.3. (a) Consider a partial 4-total colouring of R in which the four pendant edges

Fig. 3. The replacement graph R.
have different colours and the pendant vertices are also coloured (and nothing else is coloured). Then this extends to a 4 -total colouring of R.
(b) in every 4-total colouring of R the four pendant edges must all have different colours.

Proof. In order to prove part (a), first extend the given partial 4-total colouring of R as indicated in Fig. 3, then apply (2.2) twice on each graph H. By (2.2)b it fcllows that this partial colouring can always be extended to a complete 4-total colouring of R. Part (b) follows easily from (2.1)b.

3. The main theorem

We are now in position to prove the following theorem.
Theorem 3.1. Total Colouring restricted to cubic bipartite graphs is NP-complete.

Fig. 4. The transformation. (a) Typical part of G. (b) Typical part of \boldsymbol{G}^{\prime}.

Proof. The problem is clearly in the class NP. We exhibit a polynomial transformation from the 4-edge colouring problem. Consider a 4-regular graph \boldsymbol{G} and construct from it a graph G^{\prime} as follows:
(i) Orient the edges of G so that each vertex has two arrows coming in and two arrows going out of it (see Fig. 4a). We can do this by finding eulerian cycles.
(ii) Replace each vertex v of G by a replacement graph R, in which the incoming edges are associated with the odd terminal edges e_{1}, e_{3} and the outgoing edges with the even terminal edges e_{2}, e_{4} (see Fig. 4b).
Clearly the resulting graph G^{\prime} is cubic and bipartite, and the transformation can be carried out in polynomial time. We must show that G is 4-edge colourable if and only if G^{\prime} is 4-total colourable.
One part is easy by (2.3)b if \boldsymbol{G}^{\prime} is 4 -total colourable then clearly \boldsymbol{G} is 4-edge colourable.
Suppose now we have a 4-edge colouring of G. This yields a colouring of the 'link' edges of G^{\prime}. By (2.3)a we can extend this colouring to a 4-total colouring of G^{\prime} by extending this partial colouring to each replacement graph in turn. This finisnes the proof of theorem 3.1.

Acknowledgement

I would like to thank Colin McDiarmid for suggesting a simplification of the original replacement graph.

References

[1] M. Garey and D. Johnson, Computers and intractability A Guide to a NP-completeness Theory (Freeman, San Francisco, 1979).
[2] I.J. Holyer, The NP-completeness of edge colourings, SIAM J. Computing 10(1981) 718-720.
[3] D. Leven and Z. Galil, NP-completeness of finding the chromatic index of regular graphs, J. Algorithms 4 (1983) 35-44.

[^0]: * Research supported by grant no. 53328, Conacyt, México. 0012-365X/89/\$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

