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Abstract

In this paper, we study the asymptotic behavior of lengths of Tor modules of homologies o
plexes under the iterations of the Frobenius functor in positive characteristic. We first give
bounds to this type of length functions in lower dimensional cases and then construct a counte
ple to the general situation. The motivation of studying such length functions arose initially fro
asymptotic length criterion given in [S.P. Dutta, Intersection multiplicity of modules in the pos
characteristics, J. Algebra 280 (2004) 394–411] which is a sufficient condition to a special c
nonnegativity ofχ∞. We also provide an example to show that this sufficient condition does not
in general.
 2004 Elsevier Inc. All rights reserved.
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Introduction and notations

In this paper, (A, m, k) will be a complete local ring of characteristicp > 0, m its
maximal ideal,k = A/m andk is perfect. By a free complex we mean a complexF• =
(Fi, di)i�0 (· · · → F2

d2−→ F1
d1−→ F0 → 0) of finitely generated freeA-modules. We define

codimension ofM to be dimA − dimM (denoted by codimM) for anyA-moduleM . The
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Frobenius endomorphismfA : A → A is defined byfA(r) = rp for r ∈ A. Each iteration
f n

A defines a newA-module structure onA, denoted byf
n
A for which a · b = apn

b. Write
Fn

A(M) for M ⊗A
f n

A andFn
A(F•) for F• ⊗A

f n
A. We drop the subscriptA when there is

no ambiguity.
In [D1], Dutta introduced the following definition ofχ∞.

Definition. Let R be a local ring in characteristicp > 0. Let M andN be two finitely
generated modules such that�(M ⊗R N) < ∞ and proj dimM < ∞. Define

χ∞(M,N) = lim
n→∞χ

(
Fn(M),N

)
/pncodimM.

χ∞ plays an important role in the study of intersection multiplicityχ defined by
Serre [S], especially in the nonsmooth situation. For example, over complete interse
χ∞(M,N) = χ(M,N) when bothM andN are of finite projective dimension [D4, Coro
lary to Theorem 1.2]. Thus the positivity (or nonnegativity) ofχ∞ settles the positivity
(respectively nonnegativity) conjecture ofχ over complete intersections.

Our main object is to examine the following sufficient condition for the nonnegat
of χ∞ [D4, Corollary 1 to Theorem 2.2].

Theorem (Dutta).Let R be a local Gorenstein ring in characteristicp > 0. Let M and
N be finitely generated modules of finite projective dimensions such that�(M ⊗ N) < ∞.
SupposedimM + dimN = dimR, dimN = depthN + 1 = s and dimM = depthM +
1= 2. Thenχ∞(M,N) � 0, if

lim
n→∞�

(
Ext3(N,R) ⊗ H 0

m

(
Fn

(
Exts+1(M,R)

))∨)
/pns = 0. (1)

Note here proj dimM = s + 1 and proj dimN = 3 by Auslander–Buchsbaum formula, a
these Exts are the natural duals under the generalized “Matlis” duality.

This study leds us to investigate the asymptotic behavior of�(TorAj (Hi(F
n(F•)),N)),

whereF• is a free complex with homologies of finite length. (F• is not necessarily a
bounded complex here!)

In [D3], Dutta established that

�
(
TorAj

(
Hi

(
Fn(F•)

)
,N

))
� Cijp

ndimN

when codimN = 1 [D3, Proposition 1.3]. Naturally, one can ask whether this inequali
still valid whenN has higher codimension. Investigation of the length condition (1) ra
the same question. The expectation was that the same inequality should hold in gen
anyN , namely,�(TorAj (Hi(F

n(F•)),N)) � Cijp
ndimN . A positive answer to this questio

in codimension 3 would yield an affirmative answer for (1). However, our investiga
revealed that one can only extend this for codimN � 2.

The following result in Section 1 shows that one can extend this inequality
codimN � 2.



858 J. Li / Journal of Algebra 285 (2005) 856–867

ite

le in

ly
t

lays a

h

posi-

en

n 1.2.
Theorem (Corollary 1.3 in Section 1).Let F• be a free complex with homologies of fin
length over a Cohen–Macaulay local ringA. LetN be a finitely generatedA-module such
that codimN � 2. Then there exist constantsCij ’s, such that

�
(
TorAj

(
Hi

(
Fn(F•)

)
,N

))
� Cijp

ndimN

for all i, j � 0.

When codimN = 3, we provide a counterexample in Section 2. This counterexamp
turn leads to us our main theorem in Section 3.

Main Theorem (Theorem 3.2 in Section 3).LetR = K[[X,Y,U,V ]]/(XY −UV ) where
K is a field of characteristicp > 0 andX, Y , U , V are indeterminates. There exist finite
generated modulesM , N overR as in the above theorem withs = 1, such that the sufficien
condition(1) for nonnegativity ofχ∞ fails to hold.

Nevertheless, this counterexample does not give a negativeχ∞.

1.

We first state a proposition due to Seibert [Se, Proposition 1, Section 3] which p
crucial role in our proof.

Proposition 1.1 (Seibert).LetF• be a free complex overA with homologies of finite lengt
andN be any finitely generatedA-module. Then there exist constantsCi ’s such that

�
(
Hi

(
Fn(F•) ⊗A N

))
� Cip

ndimN.

The following is our first result which generalizes a result due to Dutta [D3, Pro
tion 1.3].

Proposition 1.2. Let F• be a free complex with homologies of finite length overA. LetN
be A/xA or A/(x, y) where{ x} or { x,y} , respectively, forms a regular sequence. Th
there exist constantsCij ’s, such that

�
(
TorAj

(
Hi

(
Fn(F•)

)
,N

))
� Cijp

ndimN (2)

for all i, j � 0.

The following special lemma has been used repeatedly in the proof of Propositio
We leave the proof as an exercise for the reader.
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Special Lemma. Let A be a local ring andM be a module overA such that�(M) < ∞.
Supposex is A-regular. Then

�
(
TorA1 (M,A/xA)

) = �
(
M ⊗A (A/xA)

)
.

Proof of Proposition 1.2. We writeĀ = A/xA andF̄• = F• ⊗A Ā.

Case1. N = A/xA. This case has already been demonstrated in [D3] in a more ge
set up. (See the proof of Proposition 1.3 in [D3], although the official statement ther
the form of limit.) We give a simple proof of this case anyway for completeness.

Since proj dimN = 1,

TorAj
(
Hi

(
Fn(F•)

)
,N

) = 0

for j � 2 and by the special lemma

�
(
TorA1

(
Hi

(
Fn(F•)

)
,N

)) = �
(
Hi

(
Fn(F•)

) ⊗A N
)
.

Thus it suffices to prove the result forj = 0.
If i = 0, sinceH0(F

n(F•)) ⊗ N = H0(F
n(F•) ⊗ N), we get the desired inequality b

Proposition 1.1.
If i � 1, sinceFn

A(F•) ⊗A Ā = Fn

Ā
(F̄•), there is a short exact sequence of complexe

0→ Fn(F•) x−→ Fn(F•) → Fn

Ā
(F̄•) → 0.

Taking the associated long exact sequence of homologies, we get

· · · → Hi

(
Fn(F•)

) x−→ Hi

(
Fn(F•)

) → Hi

(
Fn

Ā
(F̄•)

) → Hi−1
(
Fn(F•)

) → ·· · .

It yields the following short exact sequence:

0→ Hi

(
Fn(F•)

) ⊗ A/xA → Hi

(
Fn

Ā
(F̄•)

) → (0 : x)Hi−1(F
n(F•)) → 0 (3)

for i � 1. So,

�
(
Hi

(
Fn(F•)

) ⊗ A/xA
)
� �

(
Hi

(
Fn

Ā
(F̄•)

))
and again, the desired inequality follows from Proposition 1.1 withN = Ā.

Case2. N = A/(x, y). In this case, since proj dimN = 2,

TorAj
(
Hi

(
Fn(F•)

)
,N

) = 0
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e:
for j � 3. By a result due to Serre [S, Theorem 1, Chapter IV],

2∑
j=0

(−1)j �
(
TorAj

(
Hi

(
Fn(F•)

)
,N

)) = χ
(
Hi

(
Fn(F•)

)
,N

) = 0.

Hence, it is enough to prove the result forj = 0 and 1.
Tensor (3) withA/(x, y) (� Ā/yĀ) overĀ. We obtain

· · · → TorĀ1
(
(0 : x)Hi−1(F

n(F•)), Ā/yĀ
) → Hi

(
Fn(F•)

) ⊗A A/(x, y)

→ Hi

(
Fn

Ā
(F̄•)

) ⊗Ā Ā/yĀ → (0 : x)Hi−1(F
n(F•)) ⊗Ā Ā/yĀ → 0 (4)

for i � 1. It follows that

�
(
Hi

(
Fn(F•)

) ⊗A A/(x, y)
)

� �
(
TorĀ1

(
(0 : x)Hi−1(F

n(F•)), Ā/yĀ
)) + �

(
Hi

(
Fn

Ā
(F̄•)

) ⊗Ā Ā/yĀ
)
.

Notice that by the special lemma,

�
(
TorĀ1

(
(0 : x)Hi−1(F

n(F•)), Ā/yĀ
)) = �

(
(0 : x)Hi−1(F

n(F•)) ⊗Ā Ā/yĀ
)

and from the above long exact sequence (4),

�
(
(0 : x)Hi−1(F

n(F•)) ⊗Ā Ā/yĀ
)
� �

(
Hi

(
Fn

Ā
(F̄•)

) ⊗Ā Ā/yĀ
)
.

Hence

�
(
Hi

(
Fn(F•)

) ⊗A A/(x, y)
)
� 2�

(
Hi

(
Fn

Ā
(F̄•)

) ⊗Ā Ā/yĀ
)
.

Therefore by Case 1, we are done forj = 0.
Finally, for j = 1, we use the following spectral sequence obtained by base chang

TorĀp
(
TorAq

(
Hi

(
Fn(F•)

)
, Ā

)
, Ā/yĀ

) �⇒
p

TorAp+q

(
Hi

(
Fn(F•)

)
,A/(x, y)

)
.

It follows that

�
(
TorA1

(
Hi

(
Fn(F•)

)
,A/(x, y)

))
� �

(
TorĀ1

(
TorA0

(
Hi

(
Fn(F•)

)
, Ā

)
, Ā/yĀ

)) + �
(
TorĀ0

(
TorA1

(
Hi

(
Fn(F•)

)
, Ā

)
, Ā/yĀ

))
= �

(
Hi

(
Fn(F•)

) ⊗ A/(x, y)
) + �

(
TorA1

(
Hi

(
Fn(F•)

)
, Ā

) ⊗ A/(x, y)
)
.

The last equality here is by the special lemma again.
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Sincex is A-regular, TorA1 (Hi(F
n(F•)), Ā) � (0 : x)Hi(F

n(F•)). Therefore by (3), we
have a surjection

Hi+1
(
Fn

Ā
(F̄•)

) ⊗ A/(x, y) � TorA1
(
Hi

(
Fn(F•)

)
, Ā

) ⊗ A/(x, y).

Thus

�
(
TorA1

(
Hi

(
Fn(F•)

)
,A/(x, y)

))
� �

(
Hi

(
Fn(F•)

) ⊗ A/(x, y)
) + �

(
Hi+1

(
Fn

Ā
(F̄•)

) ⊗ A/(x, y)
)
.

Both of the terms on the right-hand side of the above inequality are bounded by a co
timespndimN by thej = 0 case, and so we are done forj = 1 which finishes our proof. �
Corollary 1.3. LetA be a Cohen–Macaulay local ring and letF• be as in Proposition1.2.
LetN be a finitely generatedA-module such thatcodimN � 2. Then there exist constan
Cij ’s, such that

�
(
TorAj

(
Hi

(
Fn(F•)

)
,N

))
� Cijp

ndimN

for all i, j � 0.

Proof. Suppose codimN = h, h = 1 or 2. Then AnnA N contains anA-regular sequenc
{x1, . . . , xh}. We have the following short exact sequence:

0→ Q → (
A/(x1, . . . , xh)

)t → N → 0.

Tensoring the above short exact sequence withHi(F
n(F•)), we get a long exact sequen

· · · → TorA1
((

A/(x1, . . . , xh)
)t

,Hi

(
Fn(F•)

))
→ TorA1

(
N,Hi

(
Fn(F•)

)) → Q ⊗ Hi

(
Fn(F•)

)
→ (

A/(x1, . . . , xh)
)t ⊗ Hi

(
Fn(F•)

) → N ⊗ Hi

(
Fn(F•)

) → 0.

By Proposition 1.2 and induction onj , we obtain the desired inequality.�
Remark 1.4. If A is a regular local ring, since the functorFn(−) is exact [K, Theorem 3.3]
TorAj (Hi(F

n(F•)),N) � TorAj (Fn(Hi(F•)),N). Thus by Proposition 1.1, the inequality
Proposition 1.2 holds for any finitely generatedA-moduleN .
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Now, we demonstrate an example to show that the inequality (2) in Proposition 1
well as the one in Corollary 1.3, can fail when codimN = 3.

We first state two standard facts in commutative algebra which will be used in the
of Proposition 2.4.

Fact 2.1. LetR be a finitely generated algebra over a fieldK andM be a finitely generated
R-module. Letm be a maximal ideal ofR. SupposeSuppM = {m} andK � R/m via the
natural map. Then�R(M) = dimK M . HeredimK M denote the dimension ofM as aK-
vector space.

Fact 2.2. LetR be a commutative ring andM be a finitely generatedR-module. Let̂Rm be
them-adic completion ofRm wherem is a maximal ideal ofR. If SuppR M = {m}, then

�R(M) = �Rm(Mm) = �R̂m
(M̂m).

Lemma 2.3. Let R = K[X,Y,U,V ]/(XY − UV ) whereK is a field of characteristic
p > 0 andX, Y , U , V are indeterminates. ConsiderK as a module overR in the obvious
way. ThenHomR(K,Fn

R(K)) is aK-vector space and

dimK HomR

(
K,Fn

R(K)
)
� pn.

Proof. To simplify our notations, we usex, y,u, v to denote the images ofX, Y , U , V

respectively in any quotient ring ofK[X,Y,U,V ] if there is no confusion about that am
bient quotient ring. HomR(K,Fn

R(K)) is aK-vector space consisting of all the eleme
of Fn

R(K) which are killed by the maximal ideal(x, y,u, v). Let A = {xpn−1yiupn−1−i |
0� i � pn − 1}, which is a subset of

Fn
R(K) = K[X,Y,U,V ]

(X
pn

, Y
pn

,U
pn

,V
pn

,XY − UV )
.

It is easy to verify thatA ⊂ HomR(K,Fn
R(K)). We will show that elements inA are

linearly independent overK which gives us the desired inequality.
Let {λi}0�i�pn−1 be elements inK such that

pn−1∑
i=0

λix
pn−1yiupn−1−i = 0∈ Fn

R(K). (5)

Let

S = K[X,Y,U,V ]
pn pn pn pn .
(X ,Y ,U ,V )
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ThenR = S/(xy − uv). Lift the relation (5) to a relation inS. SinceS is aK-vector space
with basis{xiyjukvl | 0� i, j, k, l � pn − 1}, we obtain

pn−1∑
i=0

λix
pn−1yiupn−1−i =

( ∑
0�i,j,k,l�pn−1

µ
i,j,k,l

xiyjukvl

)
(xy − uv) ∈ S, (6)

where theµ
i,j,k,l

are elements ofK . Define

λ
i,j,k,l

=
{

λj , if i = pn − 1, j + k = pn − 1 andl = 0,
0, otherwise.

We also defineµ
i,j,k,l

= 0 if one ofi, j , k, l is negative.
By comparing the coefficients on both sides of(6), we obtain that

λ
i,j,k,l

= µ
i−1,j−1,k,l

− µ
i,j,k−1,l−1, ∀i, j, k, l � pn − 1.

Using the above formula repeatedly, noticing thatλ
i,j,k,l

= 0 if i < pn − 1, we get

λi = λpn−1,i,pn−1−i,0

= µpn−2,i−1,pn−1−i,0 + 0

= µpn−3,i−2,pn−i,1

= µpn−4,i−3,pn−i+1,2

...

= µpn−i−1,0,pn−2,i−1

= 0

for all i = 0,1, . . . , pn − 1. �
The following is an example where the inequality (2) in Proposition 1.2 fails w

codimN = 3. The complexF• is taken to be a free resolution ofK andi = 0.

Proposition 2.4. LetR = K[[X,Y,U,V ]]/(XY −UV ) whereK is a field of characteristic
p > 0 andX, Y , U , V are indeterminates. Then

�
(
TorR3

(
Fn(K),R/(x, y,u + v)

))
� pn.

Proof. Since {x, y, u + v} forms anR-sequence, it follows that

TorR3
(
Fn(K),R/(x, y,u + v)

) � HomR

(
R/(x, y,u + v),F n(K)

)
.
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Since there is a surjectionR/(x, y,u+v) � K , by applying HomR(−,F n(K)), we obtain
an injection

HomR

(
K,Fn(K)

)
↪→ HomR

(
R/(x, y,u + v),F n(K)

)
.

From Facts 2.1, 2.2 and Lemma 2.3, we have

�
(
HomR

(
K,Fn(K)

))
� pn.

Therefore,

�
(
TorR3

(
Fn(K),R/(x, y,u + v)

))
� pn. �

Remark 2.5. Using the same method, one can show that over the hypersurface rinR =
K[[X1, . . . ,Xt , Y1, . . . , Yt ]]/(∑t

i=1 XiYi), �(HomR(K,Fn(K))) is unbounded.

3.

In [D4], Dutta gave an asymptotic length condition over Gorenstein local rings of
itive characteristic for the nonnegativity ofχ∞(M,N) when dimM = 2. In this section,
we will construct examples to show that over the local hypersurfaceR discussed in Corol
lary 2.4, this length condition fails to hold.

Let R be a local ring in characteristicp > 0. Let M andN be two finitely generated
modules such that�(M ⊗R N) < ∞, dimM + dimN � dimR and proj dimM < ∞. In
[D1], Dutta defined

χ∞(M,N) = lim
n→∞χ

(
Fn(M),N

)
/pncodimM.

For properties ofχ∞, see [D1,D2,R,Se]. Dutta [D4] established the following criterion
nonnegativity ofχ∞ over a local Gorenstein rings of positive characteristic.

Theorem 3.1 (Dutta).LetR be a local Gorenstein ring in characteristicp > 0. LetM and
N be finitely generated modules of finite projective dimension such that�(M ⊗ N) < ∞.
SupposedimM + dimN = dimR, dimN = depthN + 1 = s and dimM = depthM +
1= 2. Thenχ∞(M,N) � 0, if

lim
n→∞�

(
Ext3(N,R) ⊗ H 0

m

(
Fn

(
Exts+1(M,R)

))∨)
/pns = 0.

Here(−)∨ denotes the Matlis dualityHomR(−,E) whereE is the injective hull of the
residue field ofR.

The following is an example where the length criterion in Theorem 3.1 fails.
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Theorem 3.2. Let R = K[[X,Y,U,V ]]/(XY − UV ) whereK is a field of characteristic
p > 0 and X, Y , U , V are indeterminates. There exist finitely generated modulesM , N

overR satisfying the conditions in Theorem3.1such that

lim
n→∞�

(
Ext3(N,R) ⊗ H 0

m

(
Fn

(
Ext2(M,R)

))∨)
/pn > 0.

Proof. We are going to construct modulesM andN satisfying the conditions in Theo
rem 3.1 withs = 1, such that Ext2R(M,R) � K and Ext3R(N,R) � K .

Let x, y, u, v denote the images ofX, Y , U , V in R. Take a minimal free resolution o
K overR

· · · → Rt ψ−→ R4 φ−→ R → K → 0

whereφ can be written as a matrix[x, y,u, v] with respect to the standard bases forR4

and R. Let (−)∗ denote HomR(−,R). Apply (−)∗ to the above exact sequence. Sin
depthR = 3, K∗ = 0 and we obtain the following exact sequence

0→ R
φ∗−→ R4 → M ′ → 0

whereM ′ = cokerφ∗. Let {e1, e2, e3, e4} be a standard basis forR4, it follows thatM ′ =
R4/R(xe1 + ye2 + ue3 + ve4). Note that ifr ∈ AnnR M ′, then there exists ana ∈ R such
that

r(e1 + e2 + e3 + e4) = a(xe1 + ye2 + ue3 + ve4).

It follows that ax = ay = r . But R is a domain andx = y in R, thusr = 0. Therefore
AnnR M ′ = (0) whence dimM ′ = dimR = 3. Moreover, since Ext1

R(K,R) = 0, M ′ =
Imψ∗, which is a submodule ofRt and therefore torsion-free. Hence,x ∈ R is a nonzero
divisor onM ′.

Let M = M ′/xM ′ = R4/(xR4 +R(xe1 +ye2 +ue3 +ve4)). It follows that dimM = 2.
One can also prove that proj dimM = 2 since proj dimM ′ = 1 andx is bothM ′-regular and
R-regular. Therefore by Auslander–Buchsbaum formula, depthM = 1. Moreover,

Ext2R(M,R) � Ext1R(M ′,R) � K.

In order to constructN , let R̄ = R/(y,u + v). Then dimR̄ = 1, depthR̄ = 1. Take a
minimal resolution ofK overR̄

R̄2 ζ−→ R̄ → K → 0.

Apply HomR̄(−, R̄). Let N = cokerζ ∗ and we obtain a free resolution ofN overR̄

0→ R̄
ζ ∗−→ R̄2 → N → 0.

Use a similar argument as before, AnnR̄ N = (0). Hence dim̄R N = 1, proj dimR̄ N = 1
and depth̄ N = 0. Therefore dimR N = 1, depthR N = 0 and proj dimR N = 3. Note that
R
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75.
�(M ⊗R N) < ∞ since the annihilator ofM ⊗R N contains(x, y,u+ v) which is primary
to the maximal ideal(x, y,u, v). Moreover, Ext3R(N,R) � Ext1

R̄
(N, R̄) � K .

Finally, to check

lim
n→∞�

(
Ext3(N,R) ⊗ H 0

m

(
Fn

(
Ext2(M,R)

))∨)
/pn > 0,

it is enough to notice that

�
(
Ext3(N,R) ⊗ H 0

m

(
Fn

(
Ext2(M,R)

))∨)
= �

((
Ext3(N,R) ⊗ H 0

m

(
Fn

(
Ext2(M,R)

))∨)∨)
= �

(
Hom

(
Ext3(N,R),H 0

m

(
Fn

(
Ext2(M,R)

))))
= �

(
Hom

(
Ext3(N,R),H 0

m

(
Fn(K)

)))
= �

(
Hom

(
K,Fn(K)

))
� pn. �

Remark 3.3. Although the length criterion does not hold in general, there do exist
Gorenstein rings such that the length criterion holds for allM andN . It would be nice to
have a general method to identify such rings.
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