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Impairment of epithelial barrier is observed in various intestinal disorders including inflammatory bowel
diseases (IBD). Numerous factorsmay cause temporary damage of the intestinal epithelium. A complex network
of highly divergent factors regulates healing of the epithelium to prevent inflammatory response. However, the
exact repair mechanisms involved in maintaining homeostatic intestinal barrier integrity remain to be clarified.
In this study, we demonstrate that activation of M1 muscarinic acetylcholine receptor (mAChR) augments
the restitution of epithelial barrier function in T84 cell monolayers after ethanol-induced epithelial injury, via
ERK-dependent phosphorylation of focal adhesion kinase (FAK). We have shown that ethanol injury decreased
the transepithelial electrical resistance (TER) along with the reduction of ERK and FAK phosphorylation.
Carbachol (CCh) increased ERK and FAK phosphorylation with enhanced TER recovery, which was completely
blocked by either MT-7 (M1 antagonist) or atropine. The CCh-induced enhancement of TER recovery was also
blocked by either U0126 (ERK pathway inhibitor) or PF-228 (FAK inhibitor). Treatment of T84 cell monolayers
with interferon-γ (IFN-γ) impaired the barrier function with the reduction of FAK phosphorylation. The CCh-
induced ERK and FAK phosphorylation were also attenuated by the IFN-γ treatment. Immunological and binding
experiments exhibited a significant reduction of M1 mAChR after IFN-γ treatment. The reduction of M1 mAChR
in inflammatory area was also observed in surgical specimens from IBD patients, using immunohistochemical
analysis. These findings provide important clues regarding mechanisms by which M1 mAChR participates in
the maintenance of intestinal barrier function under not only physiological but also pathological conditions.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Epithelial integrity of the gut is essential for preventing the invasion
of microorganisms and the development of inflammation in intestinal
submucosa. The intestinal epithelium is a highly selective barrier that
permits the absorption of nutrients from the gut lumen into the
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circulation and at the same time restricts the passage of harmful and
potentially toxic compounds [1,2]. Disruption of intestinal barrier
integrity (leaky gut) may lead to the penetration of luminal bacterial
products into the submucosa to initiate local inflammation [1]. Mild
form of intestinal epithelial injury commonly occurs in many diseases,
which is rapidly repaired to reform the integrity of epithelial mono-
layers to prevent invasion of noxious compounds.

Findings on various tissues or cells reveal that focal adhesion kinase
(FAK) is one of the key regulators for the maintenance and repair of
barrier functions [3–7]. FAK is a non-receptor tyrosine kinase that
modulates various cell functions, including survival, proliferation, and
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migration [8,9]. On the other hand, the MAP kinase family makes up a
group of important intracellular mediators of signal transduction to
various stimuli. The classical MAP kinase, ERK1/2 (ERK) has been asso-
ciated with the regulation of cellular proliferation and differentiation
[10,11]. The role of MAP kinase pathway in the regulation of the
paracellular permeability across epithelial cells has not been explored
extensively. However, several studies have reported the positive regula-
tion of epithelial barrier function as a result of the phosphorylation of
ERK [12,13].

Carbachol (CCh), an agonist of muscarinic acetylcholine receptors
(mAChRs), increased the phosphorylation of ERK and FAK in T84
cells [14]. Recent evidence implies the participation of mAChRs in the
tightness of epithelial integrity in the proximal colon [15]. These find-
ings suggest the crucial role of mAChRs in the intestinal epithelium to
maintain and/or to repair barrier functions. However, the mechanisms
and signaling molecules downstream from mAChRs in the regulation
of barrier functions are still unknown.

The family of mAChRs belongs to a G-protein–coupled-receptor su-
perfamily. Five subtypes of mAChRs (M1–M5), with difference in signal
transduction, have been cloned [16,17]. Numerous studies revealed that
intestinal infection and inflammation impaired themuscarinic choliner-
gic response to the gut epithelium [18]. The exact signaling mechanism
of cholinergic hyporesponsiveness to the gut epithelium under inflam-
matory condition remains to be clarified. We reported previously that
ERK and FAK are localized in the intestinal epithelial cells [19,20] and
may be involved in the modulation of barrier functions under normal
as well as inflammatory conditions. Impaired epithelial barrier function
is a common feature of the inflammatory bowel diseases (IBD) and is
caused, at least in part, by the elevated level of various cytokines.
Treatment of T84 epithelial cell monolayers with interferon-γ (IFN-γ),
one of those cytokines, has been shown to compromise their barrier
integrity with a decrease in transepithelial electrical resistance
(TER) and an increase in epithelial permeability [21,22]. Recently,
it has been demonstrated that AMP-activated protein kinase and
phosphatidylinositol 3′-kinase may be involved in IFN-γ-induced epi-
thelial barrier dysfunction [23–25]. However, the precise mechanism
of barrier dysfunction under the inflammatory condition is yet to be
elucidated.

In this study, we aimed to uncover the role of mAChRs and the
downstream signaling pathway in the maintenance and restitution of
the barrier function in human intestinal epithelial cells. We also sought
to investigate the cause of barrier dysfunction under inflammatory con-
dition in T84 cell monolayers. Our data suggest that the IFN-γ-induced
barrier dysfunction is associated at least in part, with the reduction of
FAK phosphorylation presumably via the downregulation of M1
mAChR signaling. We also tested surgical specimens of colons from
IBD patients in immunohistochemical analysis.
2. Materials and methods

2.1. Reagents

Dulbecco's Modified Eagle's Medium (DMEM) and Ham's F-12,
trypsin-EDTA solution and CCh (Sigma Aldrich, St. Louis, USA), fetal bo-
vine serum (FBS) and Lipofectamine 2000 (Invitrogen, Life Technologies
Corp., CA, USA), atropine sulfate, U0126 and human IFN-γ (Wako Pure
Chemical Industries Ltd., Osaka, Japan), muscarinic toxin 3 (MT-3) and
7 (MT-7) (Peptide Institute, Inc., Osaka, Japan), PF-573228 (PF-228,
Tocris Cookson Ltd., Bristol, UK), [3H]-N-methyl scopolamine chloride
(PerkinElmer, Boston, USA) were obtained from the sources noted. An-
tibodies against MAP kinases (ERK, p38 and JNK), phosphorylated MAP
kinases, MAP2K1, FAK, phosphorylated FAK at tyrosine 397 (Y397), and
β actin were from Cell Signaling Technology, Inc. (Massachusetts, USA)
and those against mAChR M1 (H-120) and mAChR M3 (H-210) were
from Santa Cruz Biotechnology, Inc. (CA, USA).
2.2. Cell culture

A human colon cancer cell line, T84, from the Health Protection
Agency Culture Collection (Salisbury, UK) was grown in a humidified
atmosphere with 5% CO2 at 37 °C in DMEM and Ham's F12 medium
supplemented with 2 mM glutamine, 15 mM HEPES (pH 7.2), 10%
FBS, 100 U/ml penicillin and 100 μg/ml streptomycin. Cells were sepa-
rated by trypsinization, and 1 × 106 cells were seeded onto 12-mm
diameter semipermeable filter supports (Millicell-PCF, 0.4 μm pore
size, Millipore, Ireland) for TERmeasurement and immunoblot analysis.
Cells were cultured for at least 14–21 days prior to use. Human small
intestine epithelial cells (PD015-F, DV Biologics, CA, USA) were grown
in pro-conditioned medium (D-PRO-015, DV Biologics) in collagen
coated culture plates or collagen coated transwell as above.

2.3. Receptor binding assay

After development of 100% confluentmonolayerswith complete dif-
ferentiation, cells were scraped with rubber policeman and washed
with modified Krebs–Henseleit solution (KHS, comprising NaCl,
120.7 mM; KCl, 5.9 mM; MgCl2, 1.2 mM; CaCl2, 2.0 mM; NaH2PO4,
1.2 mM; NaHCO3, 25.5 mM; and (+)-glucose, 11.5 mM, pH 7.4),
which had been bubbled with a mixture of 95% O2 and 5% CO2. The
whole-cell suspension (1 × 106 cells/ml in KHS) was then incubated
for 2 h with [3H]-N-methyl scopolamine chloride (NMS) and appropri-
ate chemicals in a final volume of 1 ml at 4 °C. The assays were per-
formed in duplicate and a nonspecific binding was defined in the
presence of 1 μM atropine. [3H]-NMS concentrations ranging from 30
to 2500 pM were used in saturation binding experiments, while
600 pMwas used in the competition binding experimentwith the addi-
tion of increasing concentrations of the unlabeled drugs. The reactions
were terminated by centrifuging the incubation solution at 700 ×g for
2 min. The cell pellets were then washed once with 1 ml KHS and
were dissolved in 0.3 M NaOH. The radioactivity was measured by a
liquid scintillation counter (Hitachi Aloka Medical Ltd., Mitaka, Japan).
The mock incubation, in which cells were omitted, gave less than 40
counts per minute per tube and was similar to the background reading.
Protein concentration was measured using a protein assay kit (Bio-Rad
Inc., CA, USA).

2.4. Immunoblotting

Cells were cultured onto 12-mm Millicell-PCF for 14–21 days. The
monolayers on filters were washed with KHS for three times and
allowed to equilibrate in KHS for 30 min at 37 °Cwith orwithout inhib-
itors. Cells were then stimulated with 100 μM carbachol (CCh) for
5 min. For receptor activation or inhibition by muscarinic ligands, all
drugs were added basolaterally as described previously [26]. Reaction
was terminated by aspirating the medium and rinsed with ice-cold
PBS twice. Cells were then lysed by adding pre-heated 1× SDS sample
buffer (50 mM Tris–HCl, pH 6.8, 10% glycerol, 2% SDS, 1% β-mercapto
ethanol, 0.1% bromophenol blue) to the monolayers and the lysates
were collected into Ependorf tubes and heated for 3 min at 100 °C. Pro-
teins were separated by SDS-PAGE and transferred to polyvinylidene
fluoride membranes. Membranes were probed with appropriate
concentrations of primary antibody. The immunoreactive proteins
were detected by horseradish-peroxidase-labeled secondary antibody
with Amersham ECL advance Western Blotting Detection Kit
(GEHealthcare, Buckinghamshire, UK). The ratio of intensities of signals
was quantified by densitometry.

2.5. Knockdown of M1 and MAP2K1 by siRNA

Weused predesigned siRNAs (Life Technologies) as follows: CHRM1
(5′–3′)-AGGUCAACACGGAGCUCAAtt and MAP2K1 (5′–3′) GGCCUGAC
AUAUCUGAGGGtt. Transient transfections of siRNA into T84 cells were
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performed using Lipofectamine 2000 as described previously [27].
Briefly, a total of 25 pmol of specific or scrambled siRNA in
Lipofectamine/Opti-MEM was added to suspension cultures of T84
cells (1 × 106 cells/ml) in antibiotic-free FBS-containing culture
medium. The cells were then seeded onto filter supports as described
above. Following an overnight incubation, adherent cells were washed
and transferred into antibiotic containing culture medium. After trans-
fection, the cells were cultured for 4 days before experiments.

2.6. Measurement of TER

TER across the cell monolayers wasmeasured using aMillicell ERS-2
epithelial volt–ohmmeter (MerckMillipore, Darmstadt, Germany). The
values (Ω × cm2) were obtained by subtracting the resistance of blank
filters without cells from the resistance of filters with cells multiplied
by the effective membrane area of the filter insert. Inserts having
N1000 Ω × cm2 of TER values were used for the experiments.

2.7. Monolayer injury models

The modulation of barrier function in T84 cell monolayers was
carried out as described previously [4,28]. Briefly, T84 cell monolayers
were treated with ethanol (7%, bilaterally) and incubated at 37 °C for
15 min. After removal of ethanol, monolayers were incubated with
fresh culturemedium and the TERwasmeasured at the times indicated.
In the case of inflammation-induced epithelial injury, the monolayers
were treated with IFN-γ (20 ng/ml, basolaterally) as described
previously [23].

2.8. Immunohistochemistry

There were four IBD cases: case 1, a 53-year-old male; case 2, a 31-
year-old male; case 3, a 40-year-old male; and case 4, a 52-year-old
female. All of them were diagnosed as ulcerative colitis but were
refractory to medical therapy and underwent total colectomy. Two
specimens, one from non-inflammatory area and another from inflam-
matory area, were isolated from each total colectomy sample from IBD
patients. They were fixed with 20% buffered formalin and embedded
in paraffin, and cut into tissue sections. After deparaffinization, each sec-
tion was incubated with 1:100 dilutions of FAK, P-FAK (Calbiochem,
Darmstadt, Germany), ERK, P-ERK (Cell Signaling Technology) or
mAChR M1 antibody (H-120) (Santa Cruz Biotechnology) for 1 h at
room temperature and then washed three times with PBS. Bound
primary antibody was detected by using anti-rabbit antibody and
diaminobenzidine.

All patients provided written informed consent before surgery. The
research protocol using human materials was approved at the ethical
committee of Asahikawa Medical University.

2.9. Statistical analysis

Binding data were analyzed using PRISM software (Version 5.01,
Graph Pad Software, La Jolla, USA), as described previously [19,29].
Briefly, the data from saturation binding studies were fitted by a one-
site saturation-binding isotherm and the Kd values and the binding
capacity were then calculated. The abundance of themAChRs is indicat-
ed as themaximum binding capacity permg of total cell protein (Bmax).
For the competition studies, the data were analyzed using the Binding–
Competitive Equation of the PRISM software. A two-site model was
adopted only when the residual sums of squares were significantly
less (p b 0.05) for a two-site fit to the data than for a one-site by F test
comparison. In immunoblots, the signal intensity was calculated using
the Image J software. Statistical significance was evaluated using
Student's t-test and was considered to be significant when p values
were less than 0.05. Data are represented as the mean ± SEM with
the number of experiments in parenthesis (n).
3. Results

3.1. ERK-dependent FAK phosphorylation regulates the barrier function in
T84 cell monolayers

To investigate the function of ERK and FAK on the barrier function of
T84 cell monolayers, we evaluated TER by using inhibitors for ERK
(U0126) and FAK (PF-228). We first examined the effect of inhibitors
on the maintenance of epithelial barrier function. Monolayers were
treated with 10 μM U0126 or 10 μM PF-228 and the change of TER
was measured. As shown in Fig. 1A, U0126 or PF-228 caused a signifi-
cant reduction of TER within 30 min. Immunoblot analysis showed
that U0126 significantly inhibited the phosphorylation of both ERK
and FAK but PF-228 inhibited the phosphorylation of FAK alone
(Fig. 1B). We next investigated the effect of U0126 and PF-228 on the
recovery of epithelial barrier function after damage. We employed an
ethanol-induced damage model, in which the treatment with low
noncytotoxic dose of ethanol produced a reversible change of barrier
function [4]. As shown in Fig. 1C, 15-min ethanol treatment caused ap-
proximately 60% reduction of TER. Ethanol-induced reduction of TER
was recovered to about 75–85% 3 h after ethanol removal but the recov-
ery was impaired up to 50–60% in the presence of either U0126 or PF-
228. As shown in Fig. 1D, ethanol treatment significantly reduced the
basal phosphorylation levels of both ERK and FAK and these
phosphorylation levels were recovered again after ethanol removal.
The recovery of ERK and FAK phosphorylation was concordant with
the recovery of TER. We also observed that U0126 inhibited the recov-
ery of both ERK and FAK phosphorylation levels but PF-228 inhibited
the recovery of FAK phosphorylation alone. These results suggest that
ERK-dependent FAK phosphorylation regulates the maintenance and
recovery of barrier function in T84 cell monolayers.

3.2. Pharmacological characterization of mAChRs in T84 cells

We have characterized mAChRs in T84 cells by binding methods
using [3H]-NMS as a radioligand. We incubated cells as a whole-cell
suspension for 2 h at 4 °C because we observed stable and saturable
bindings at this time point (T1/2 = 11.8 ± 0.7 min). The total receptor
density was 151.1 ± 13.2 fmol/mg of total cell protein with Kd,
153.1 ± 5.3 pM (Fig. 2A). We examined the pharmacological profiles
of the [3H]-NMS binding sites in the cells in competition binding exper-
iments using several subtype selective drugs. MT-7, anM1 selective an-
tagonist, showed a simple high affinity competition (pKi = 9.6 ± 0.3).
However, there was a part insensitive to MT-7 of the [3H]-NMS binding
sites (63.2 ± 3.2% of the total specific binding), which was not
displaced by MT-7 even at high concentrations (Fig. 2B). Darifenacin,
an M3 selective antagonist, gave a shallow competition curve which
fitted better to a two-site model in computer analyses (Fig. 2C) with
pKi values, 8.8 ± 0.2 and 7.4 ± 0.1 for the high and low affinity compo-
nents, respectively. The proportion of the darifenacin high affinity com-
ponent, which was presumably theM3 subtype, was 65.4 ± 4.6% of the
total specific binding sites. This proportion showed good agreement
with that of the MT-7 resistant component. Furthermore, in order to
verify the identity of the MT-7-insensitive component as M3 subtype,
displacement by darifenacin was examined in the presence of 0.3 μM
MT-7, which masked more than 95% of the MT-7-sensitive site. As
shown in Fig. 2D, the MT-7-insensitive site was displaced completely
by darifenacin in a monophasic manner with a pKi value of 8.8 ± 0.1,
which is compatible to that of the M3 subtype. AF-DX 116, an M2
selective antagonist showed monophasic competition with low affinity
(pKi 5.9 ± 0.2) (Supplementary Fig. S1A) andMT-3, anM4 selective an-
tagonist did not show any displacement (Supplementary Fig. S1B).
Therefore, we assumed that the M2, M4 or M5 subtype would be none
or very minor population if at all as reported previously [18,30]. Based
on these data, we concluded that T84 cells express mAChRs, M1 and
M3 with the proportion of approximately 35% and 65%, respectively.
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Fig. 1. ERK-dependent FAK phosphorylation maintains and recovers the barrier function of T84 cell monolayers. (A) Effects of U0126 and PF-228 on T84 cell monolayer barrier function.
Treatment of monolayers with 10 μMU0126 or 10 μMPF-228 significantly (# p b 0.05) reduced the TER (n = 3). Each data point represents themean of quadruplicate measurements of
TERwith SEM. (B) Effects of U0126 and PF-228 on the levels of ERK and FAK phosphorylation.Monolayerswere incubatedwith fresh culturemedium for 60 minwithout (Control) orwith
10 μMU0126 or 10 μMPF-228. Themonolayers were lysed, separated in SDS-PAGE, blotted and probedwith anti-phospho-ERK (P-ERK) or anti-ERK (ERK) antibodies (n = 3). The same
membranes were stripped and reprobed with anti-phospho-FAK (P-FAK), anti-FAK (FAK), and anti-β actin antibodies as a loading control. U0126 significantly (# p b 0.05) inhibited the
phosphorylation of both ERK (white column) and FAK (black column) while PF-228 inhibited the phosphorylation of FAK alone. The ratio of intensities of signal was quantified by den-
sitometry and was normalized to that without treatment as 100%. (C) Time course of barrier recovery after ethanol injury. T84 cell monolayers were treated with 7% ethanol for 15 min.
After ethanol removal, monolayers were incubated with fresh culture mediumwithout (Control) or with 10 μMU0126 or 10 μM PF-228 (n = 3). (D) Immunoblot analyses of the phos-
phorylation of ERK and FAK in the ethanol injury model (n = 3). Cell lysates were obtained before the addition of ethanol (Normal), 15 min after the addition (EtOH), 60 min after the
removal without (Control) or with 10 μM U0126 (U0126) or 10 μM PF-228 (PF-228). The phosphorylation levels of ERK and FAK were assessed by immunoblot as described in (B).
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The immunoblot results (Fig. 2E) also supported the presence ofM1 and
M3 subtype in T84 cells.
3.3. Stimulation of M1 mAChR leads to phosphorylation of ERK and FAK in
human intestinal epithelial cells

In order to investigate the muscarinic cholinergic response in T84
cells, we stimulated the T84 cell monolayers with 100 μM CCh. The
stimulation of cell monolayers with CCh resulted in an increase in phos-
phorylation of ERK (Fig. 3A) and FAK (Fig. 3B), approximately 60–70%
and 50–60%, respectively above the baseline. The other MAP kinases
p38 and JNK were also phosphorylated by CCh approximately 55–65%
and 80–100%, respectively above the baseline (Supplementary
Fig. S2A, B). These increases in phosphorylation were completely
inhibited by the addition of either 10 μM atropine or 1 μM MT-7 prior
to the stimulation. These results suggest that the phosphorylation of
MAP kinases and FAK is elicited by M1 mAChR. To determine whether
the phosphorylation of FAK by CCh in T84 cells is mediated through
an ERK-dependent pathway, the cell monolayers were stimulated
with CCh under the presence of different concentrations of U0126
or PF-228. U0126 inhibited the phosphorylation of both ERK and
FAK, but PF-228 inhibited the phosphorylation of FAK alone in a dose-
dependent manner (Fig. 3C), suggesting that the M1-elicited FAK
phosphorylation is a downstream of ERK phosphorylation. In addition,
in the human intestine epithelial cells, we detected M1 mAChR
(Fig. 2E) that also elicited the similar ERK-dependent FAK phosphoryla-
tion as shown in Fig. 3D.
3.4. Ablation of M1 mAChR or MAP2K1 reduces ERK-dependent FAK phos-
phorylation in T84 cells

Genetic ablation ofM1mAChR orMAP2K1 (an upstreamactivator of
ERK) in T84 cells with specific siRNA reduced their protein expression
levels compared to those in the cells treated with nonspecific control
siRNA. As a result of these knockdown of M1 (65.5 ± 3.6% significant
reduction) or MAP2K1 (61.8 ± 1.6% significant reduction) caused a
significant reduction of CCh-induced ERK and FAK phosphorylation in
T84 cells. There were 4.5 ± 0.4 and 1.8 ± 0.2 fold increase in the
CCh-induced phosphorylation of ERK and FAK, respectively in the
monolayers transfected with control siRNA. In contrast, knockdown of
M1 caused 2.0 ± 0.3 and 1.2 ± 0.1 fold increase (Fig. 4A), and that of
MAP2K1 caused 1.6 ± 0.4 and 1.2 ± 0.2 fold increase (Fig. 4B) in the
phosphorylation of ERK and FAK, respectively. These findings are
consistent with those in pharmacological analyses, supporting the
conclusion that FAK is phosphorylated via M1 mAChR-mediated ERK
activation.
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3.5. Stimulation of M1 mAChR enhances the restitution of barrier function
after ethanol-induced epithelial injury

We assumed that the stimulation of M1mAChRmight have positive
effects on the restitution of epithelial barrier function after ethanol inju-
ry because M1 also elicited ERK-dependent FAK phosphorylation as
shown in Figs. 3 and 4. To verify this hypothesis, cell monolayers bathed
in fresh culture medium were stimulated by CCh after ethanol-induced
epithelial injury. As shown in Fig. 5, addition of CCh significantly aug-
mented the recovery of TER as compared to control. The CCh-induced
increase in TER was canceled in the presence of either atropine, or
MT-7 (Fig. 5A). The CCh-induced increase in TER was also canceled in
the presence of either U0126 (Fig. 5B) or PF-228 (Fig. 5C) in a dose-
dependent manner, suggesting that the stimulation of M1 mAChR
facilitates the restitution of barrier function through ERK-dependent
FAK phosphorylation pathway after ethanol injury. However, there
was no significant change of TER after addition of either CCh or
mAChR inhibitors in the confluent monolayers without injury (data
not shown), presumably because of the maximum barrier function
that is already established.

3.6. Attenuation of TER and mAChR signaling after IFN-γ treatment

Treatment of monolayers with IFN-γ (20 ng/ml) decreased the TER
in a time-dependentmanner as shown in Fig. 6A. Since IFN-γ treatment
compromised the epithelial barrier function, we have investigated the
signaling aspect of mAChRs in the IFN-γ treatment. The monolayers
were treated with IFN-γ for 48 h and were then stimulated with CCh,
and the phosphorylation levels of ERK (Fig. 6B) and FAK (Fig. 6C)
were compared with those of cells without IFN-γ treatment. There
was approximately 50 ± 3.7% and 35 ± 2.7% significant reduction of
CCh-induced increase in the phosphorylation levels of ERK and FAK,
respectively after IFN-γ treatment. As shown in Fig. 6B, there was slight
increases (but not significant) in the basal levels of ERK and ERK phos-
phorylation after IFN-γ treatment. In contrast, IFN-γ treatment signifi-
cantly decreased the basal level of FAK phosphorylation 44.2 ± 3.9%
as compared to the control monolayers without any change of total
FAK levels (Fig. 6C). These results suggest that downregulation of FAK
phosphorylation participates in the IFN-γ-induced reduction of TER.

We further investigated whether IFN-γ alters the expression levels
of mAChRs that elicit the phosphorylation of ERK and FAK. As shown
in Fig. 6D, there was 51.3 ± 2.3% and 14.4 ± 5.0% reduction of the sig-
nal intensity for theM1 and M3, respectively. The reduction of receptor
subtypes was also confirmed in binding studies as shown in Fig. 6E. The
densities of mAChRs in the control T84 cells were 160.8 ± 3.8,
63.6 ± 1.8 and 97.2 ± 2.3 fmol/mg of total cell protein for total, M1
and M3 subtypes, respectively, whereas in the IFN-γ treated cells the
densities were 82.1 ± 3.8, 23.0 ± 2.5 and 59.1 ± 1.3 fmol/mg of total
cell protein for total, M1 and M3 subtypes, respectively. There was
63.9 ± 1.8% and 39.2 ± 2.3% reduction of the density of [3H]-NMS
binding sites, for the M1 and M3 subtypes, respectively in the cells
from IFN-γ treated monolayers compared to those from the control
monolayers (Fig. 6F). Thus the IFN-γ treatment caused a reduction of
mAChR density and the reduction was significantly higher in M1 sub-
type as compared to that of M3. These data suggest that the reduction
of M1 mAChR under inflammatory condition might be relevant to the
attenuation of ERK/FAK phosphorylation and to barrier dysfunction as
well.
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3.7. Immunohistochemical analyses of M1 mAChR, ERK/FAK and their
phosphorylation in the colonic epithelium from IBD patients

We compared the expression levels of M1mAChR, ERK and FAK and
the phosphorylation levels of the kinases in between a relatively non-
inflammatory area and an inflammatory area of each colon resected
from IBD patients by using immunohistochemistry method as shown
in Fig. 7. Although one out of four cases had severe inflammation
(case 3) so that the colonic epitheliumwas denuded almost completely,
there was a discernible reduction of M1 mAChR density in the
inflammatory area of the epithelium as compared to the relatively
non-inflammatory area (Fig. 7). These results are concordant with
the in vitro experiment of IFN-γ-induced inflammation in T84 cell
monolayers. In contrast, the expression levels of the kinases were
increased slightly and the phosphorylation levels of the kinases were
also increased considerably in the epithelial cells in inflammatory
areas as compared to in non-inflammatory areas (Fig. 7). These
increases, especially that of FAK phosphorylation disagreed with the
IFN-γ-induced decrease in a cell culture system (Fig. 6C). However,
there must be not only a pro-inflammatory system but also an anti-
inflammatory system as well functioning at the same time in vivo. We
speculated that these increases were a part of compensatory cellular
mechanisms which reinforce the barrier function in the inflammatory
condition. However, we have to be very careful to interpret these results
in clinical samples, not only because a diverse range of inflammatory
mediators and cytokines participated in the pathology of IBD, but also
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because multiple factors such as a phase of disease, chemotherapy
regimens, etc. may be involved in the modulation of ERK/FAK signaling
in the IBD patient in vivo.

4. Discussion

In this study, we have shown that treatment of T84 cell monolayers
with U0126 or PF-228 significantly reduced the TERwith the concurrent
reduction of ERK/FAK phosphorylation levels. Our data exhibited that
U0126 inhibited the phosphorylation of both ERK and FAK but PF-228
inhibited the phosphorylation of FAK alone not only in the steady
phase but also in the recovery phase (Fig. 1). These findings indicate
that both ERK and FAK activities are required in the maintenance and
recovery of the barrier function in T84 cell monolayers and suggest
that the activation of FAK is dependent on ERK activity.

We, next, exhibited that human intestinal epithelial cells including
primary culture and T84 cells express M1 and M3 mAChRs (Fig. 2),
based on pharmacological profiling and on immunoblot analyses. We
have demonstrated that stimulation of T84 cells by CCh increased the
phosphorylation of MAP kinases (ERK, p38 and JNK) and FAK. The
CCh-induced increase in phosphorylation of both MAP kinases and
FAK was completely inhibited in the presence of either subtype-
nonselective mAChR antagonist (atropine) or M1 selective mAChR
antagonist (MT-7). These results suggest that the phosphorylation of
MAP kinases and FAK in human intestinal epithelial cells was mediated
by M1 mAChR.

Wehave, then, focused on ERKand FAK in relation to themodulation
of barrier function. We have found that the CCh-induced phosphoryla-
tion of FAK in human intestinal epithelial cells is a downstream of ERK
phosphorylation, becauseU0126 inhibited theCCh-induced phosphory-
lation of both ERK and FAK but PF-228 inhibited the phosphorylation of
FAK alone (Fig. 3). In addition, genetic ablation of M1 mAChR or
MAP2K1 by specific siRNA in T84 cells significantly suppressed the
CCh-induced phosphorylation of both ERK and FAK (Fig. 4A and B),
supporting the conclusion drawn from pharmacological analyses. Liu
et al. [31] demonstrated that ERK-mediated HGF-induced phosphoryla-
tion of paxillin resulted in the recruitment and activation of FAK
in mIMCD-3 epithelial cells. Similar results of ERK-dependent FAK
activation have also been reported in various other tissues or cell
models [32,33]. However, there are also some contradictory reports.
Flinder et al. [34] showed that EGF induced FAK-dependent ERK activa-
tion in hepatocytes through Rac1-NADPH oxidase pathway. These
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discrepancies could be due to the conditions of the experiments or
different cell types used in the respective studies.

ERK is believed to be involved in the regulation of barrier function
andparacellular permeability. Several researchers reported an enhance-
ment of the epithelial barrier functions in T84 cell monolayers via MAP
kinase signaling pathway by up-regulating the tight junction proteins
[12,13]. On the other hand, several studies implicate a significant role
of FAK signaling pathway in the barrier function and paracellular
permeability. Recent studies have demonstrated that FAK activity is
necessary for the barrier enhancement [6,7] and that FAK is an integrat-
ed component of the occludin/ZO-1 complex [5,35]. In this study, we
also showed that FAK participated in the augmentation of the barrier
recovery by CCh in T84 cell monolayers (Fig. 5). These data including
ours suggest that the enhancement of TER recovery is mediated by M1
mAChR, via the activation of ERK-dependent FAK signaling pathways.

A leaky intestinal barrier is considered an important contributor to
the pathology of IBD, which includes Crohn's disease and ulcerative
colitis [36,37]. Indeed, a decline in barrier function of the intestinal
epithelium has been shown to correlate positively with the degree
of mucosal inflammation in IBD patients [38]. Participation of pro-
inflammatory cytokines in the pathophysiology of IBD is well
recognized and IFN-γ, one of those cytokines, has been implicated in
epithelial barrier dysfunction [39]. In our study, we have shown that
IFN-γ treatment decreased the TER of T84 cell monolayers (Fig. 6A).
We identified that IFN-γ treatment decreased the basal phosphoryla-
tion levels of FAK at the same time (Fig. 6C). These results are consistent
with thefindings by Leeb et al. [40], which showed that IFN-γ treatment
decreased the phosphorylation levels of FAK in colonic lamina propria
fibroblast (CLPF). They also demonstrated the reduction of FAK
phosphorylation levels in CLPF obtained from the active Crohn's disease
patients. On the other hand, we found that the phosphorylation level of
ERK was increased slightly in IFN-γ treatment (Fig. 6B). We speculate
that under inflammatory conditions, FAK phosphorylation is downreg-
ulated via ERK-independent pathway and the reduction of FAK
phosphorylation may be relevant to the mechanism of IFN-γ-induced
barrier dysfunction in T84 cell monolayers. Further studies are neces-
sary to uncover the complex mechanism of these signal transductions.

The ERK/FAK signaling viamAChRswas also significantly attenuated
in IFN-γ treatment (Fig. 6B and C). Cholinergic hyporesponsiveness is a
well-known phenomenon in colitis. Dextran sulfate sodium (DSS)-
induced colitis in mice results in a profound hyporesponsiveness of
the colonic epithelium to prosecretory agents and a complete loss of
response to mAChR activation [41]. Immunological results revealed
that the IFN-γ treatment caused a significant reduction of M1 mAChR
but notmuchofM3 (Fig. 6D). In addition, binding experiments also sup-
ported the reduction of the density of M1 subtype significantly higher
than that of M3 in the T84 cells after treatment with IFN-γ (Fig. 6E
and F). We have speculated that the reduction of M1 mAChR density
on the cell surface of colonic epitheliummay be one of themechanisms
in the cholinergic hyporesponsiveness in inflammatory conditions.

Finally, immunohistochemical staining of colonic epithelium from
IBD patients has revealed that there was apparent reduction of M1
mAChR density in inflammatory area as compared to the relatively
non-inflammatory area of the colonic epithelium (Fig. 7). Recently, we
reported that colitis induction inmousemodel resulted in the reduction
of epithelial mAChRs where M1 subtype was highly susceptible to in-
flammation than M3 [19]. Although the mechanism of this reduction
is not clarified yet, our data provide direct evidence that the reduction
of mAChRs could be a fundamental mechanism of inflammatory cholin-
ergic hyporesponsiveness. Our data also revealed that the expression
levels of ERK and FAK were slightly increased in the inflammatory
areas and the phosphorylation levels of the kinases were also increased
considerably (Fig. 7). These results are concordant with the previous
studies, in which, using cell cultures or isolated crypts in biopsies
from IBD patients, ERK was not only over-expressed but also highly
phosphorylated during the active phase of IBD [42,43]. In the case of
FAK, this is the first report showing the upregulation in the colonic
epithelium of IBD patients. In a mouse model also, we reported the



644 M.R.I. Khan et al. / Biochimica et Biophysica Acta 1842 (2014) 635–645
increase in the expression level of FAK [20]. Our results in this
manuscript suggest that FAK functions in themaintenance and recovery
of the barrier function in colonic epithelium. This is concordant with re-
cent findings by Owen et al. which have shown that the FAK knockout
mice exhibited earlier onset and increased severity of DSS-induced
colitis as compared to control animals. The colonic epithelial repair
was also impaired significantly in the absence of FAK [44]. Since the
patients with IBD represent a heterogeneous spectrum of pathological
featureswith the participation of a diverse range of inflammatorymedi-
ators, it is difficult to conclude how FAK is involved in the pathology.
However, we could speculate that the activity of FAK might be relevant
with the episode of inflammation. In some phase of inflammation, FAK
expression and activity may be upregulated to compensate the epitheli-
al damage. Further studies are required in the future to elucidate the
involvement of FAK in the pathology of IBD.

In conclusion, our data show that human intestinal epithelial cells
express M1 mAChR that positively regulates the barrier function
through ERK-dependent FAK phosphorylation pathways. In a patho-
physiological aspect, reduction of FAK phosphorylation in T84 cells
may be relevant to the IFN-γ-induced barrier dysfunction. The attenuat-
ed phosphorylation of ERK and FAK upon muscarinic stimulation
after IFN-γ treatment is presumably due to the reduction of M1
mAChR density on the cells. Although further studies are necessary,
these findings could implicate an important role of M1 mAChR for the
maintenance and restitution of intestinal epithelial barrier function in
pathophysiological conditions.
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