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Abstract Phosphorylation of histone H2AX (termed c-H2AX)
was recently identified as an early event after induction of
DNA double strand breaks (DSBs). We have previously shown
that coexposure to benzo[a]pyrene (BaP), a wide-spread environ-
mental carcinogen, and ultraviolet A (UVA), a major component
of solar UV radiation, induced DSBs in mammalian cells. In the
present study, we examined whether coexposure to BaP and
UVA generates c-H2AX in CHO-K1 cells. Single treatment
with BaP (10�9–10�7 M) or UVA (�2.4 J/cm2) did not result
in c-H2AX, however, coexposure drastically induced foci of c-
H2AX in a dose-dependent manner. c-H2AX could be detected
even at very low concentration of BaP (10�9 M) plus UVA
(0.6 J/cm2), which did not change cell survival rates. NaN3 effec-
tively inhibited the formation of c-H2AX induced by coexposure,
indicating the contribution of singlet oxygen. This is the first evi-
dence that coexposure to BaP and UVA induced DSBs, involving
c-H2AX.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Exposure to solar ultraviolet (UV) radiation is unambigu-

ously associated with skin cancer [1,2]. UVB (280–320 nm) is

directly absorbed by DNA and induces damage such as cyc-

lobutane pyrimidine dimers and (6-4) photoproducts [3,4],

contributing to carcinogenicity. On the other hand, UVA

(320–400 nm), the major component of solar UV radiation,

is considered less carcinogenic than UVB because DNA

absorption is extremely weak. In recent years, however, it

has been reported that UVA also induces various forms of

DNA damage in the presence of endogenous or exogenous

photosensitizers [4,5].

Polycyclic aromatic hydrocarbons (PAHs), wide-spread

environmental carcinogens, are suspected of being exogenous
Abbreviations: BaP, benzo[a]pyrene; BSFGE, biased sinusoidal field
gel electrophoresis; CHO, Chinese hamster ovary; DSBs, double
strand breaks; PAHs, polycyclic aromatic hydrocarbons; 1O2, singlet
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photosensitizers [6]. The metabolic products of PAHs, such

as diol-epoxides and diones, are recognized as highly carcino-

genic, forming covalent DNA adducts and oxidative DNA

lesions [7]. However, the potential risk of PAHs combined with

UVA irradiation has not yet been elucidated. The cytotoxicity

due to coexposure to PAHs and UVA was much greater than

that caused by exposure to PAHs alone [8–10]. Several groups

have demonstrated that coexposure to PAHs and UVA

significantly augmented DNA damage, such as single strand

breaks [11,12] and the formation of 8-oxo-7,8-dihydro-2 0-

deoxyguanosine [13–15]. In addition, we recently showed that

coexposure to the most commonly studied PAH, benzo[a]pyr-

ene (BaP), and UVA induced DNA double strand breaks

(DSBs) [16,17]. Among the many forms of DNA damage,

DSBs are considered the most serious threat to the cell, and

when not repaired or misrepaired, can result in mutations or

chromosomal rearrangements and eventually cell death [18].

Phosphorylation of histone H2AX (termed c-H2AX) has

been recently identified as an early event after induction of

DSBs [19]. Within minutes after the introduction of a DSB,

several thousand of H2AX near the site of the DSB are phos-

phorylated on serine 139, producing foci within the nucleus

that are microscopically visible by immunofluorescence stain-

ing [19–21]. There is a close correlation between the number

of c-H2AX foci and the expected number of DSBs induced

by ionizing radiation [22]. Although the induction of c-
H2AX by general DSB inducers such as ionizing radiation

and anti-cancer drugs has been well established, there are no

reports on the induction of c-H2AX by environmental carcin-

ogens. We expected BaP under UVA irradiation to induce

phosphorylation of H2AX because coexposure to BaP plus

UVA was shown to induce DSBs in our previous study [16,17].

In this study, we successfully detected c-H2AX after expo-

sure to BaP plus UVA. The generation of c-H2AX was

achieved at very low doses of BaP and UVA, near actual envi-

ronmental concentrations, indicating the potential risk of

PAHs under UVA irradiation.
2. Materials and methods

2.1. Exposure to BaP and UVA
Chinese hamster ovary (CHO)-K1 cells were treated with BaP for

1 h and subsequently irradiated with several doses of UVA. In the
experiment using a scavenger of singlet oxygen (1O2), sodium azide
(NaN3) was added 15 min before the UVA irradiation and the cells
were irradiated in the presence of NaN3. The conditions for UVA irra-
diation were as described previously [16,17].
blished by Elsevier B.V. All rights reserved.
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2.2. Colony-formation assay
Cells treated with BaP and/or UVA were trypsinized immediately

after UVA exposure, suspended at a density of 1 · 105 cells/ml, and
then plated at 1 · 102–104 cells/60-mm dish. After incubation for 7
days, the colonies of cells were fixed with methanol and stained with
Giemsa. The number of colonies containing about >50 cells was
counted.

2.3. Detection of DSBs
DSBs were detected using a biased sinusoidal field gel electrophore-

sis (BSFGE) system (Atto Co., Japan) as described previously [16,17].
In brief, cells treated with BaP and UVA were suspended in 1% low-
melting agarose and solidified immediately after treatment. The aga-
rose plugs were treated with 1 mg/ml of proteinase K and with 1 mg/
ml of ribonuclease A, and electrophoresed in a 0.8% agarose gel.
The gel was stained with SYBR Gold (Molecular Probes, USA) and
photographed.

2.4. Immunofluorescence microscopy
Cells grown on Lab-Tek chamber slides (Nalge Nunc Int., USA)

were treated with BaP and/or UVA, and fixed in 2% paraformaldehyde
for 5 min at room temperature. They were permeabilized in 100%
methanol for 20 min at �20 �C and blocked with 1% BSA for
30 min at 37 �C. After being washed, they were incubated with primary
antibody against phospho-H2AX (1:200) (Upstate Biotechnology,
USA) for 2 h, then with secondary antibody conjugated with FITC
(Jackson Immuno Research Laboratories, USA). To confirm the dis-
tribution of foci, the nucleus was stained with propidium iodide
(20 lg/ml). Images were acquired on a laser-scanning confocal micro-
scope (LSM510, Carl Zeiss, Germany). Cells were judged as ‘‘positive’’
for c-H2AX foci if they displayed 5 or more discrete dots of brightness.
At least 300 cells were counted for each experimental condition.

2.5. Western blot analysis
Samples containing 60 lg of nuclear protein were separated on

12.5% SDS–PAGE gels, and blotted onto PVDF membranes. After
blocking with 3% non-fat milk, the membrane was incubated with
primary antibody against phospho-H2AX (1:1000) for 4 h, then with
secondary antibody conjugated with HRP (Jackson Immuno Research
Laboratories) for 2 h. Protein expression was visualized with an
enhanced chemiluminescence detection kit (Amersham Bioscience,
UK).
Fig. 1. Cell survival and induction of DSBs after coexposure to BaP
and/or UVA. CHO-K1 cells were treated with various doses of BaP
and UVA. (A) Survival fraction was determined by colony-formation
assay and (B) DSBs were detected by BSFGE as described in Section 2.
3. Results

3.1. Survival rate of CHO-K1 cells and induction of DSBs after

coexposure to BaP and UVA

CHO-K1 cells were treated with BaP (10�9–10�7 M) and/or

UVA (0.6–2.4 J/cm2). The survival rates after treatments were

determined by colony-formation assay (Fig. 1A). Single treat-

ment with BaP (10�7 M) or UVA (2.4 J/cm2) did not change

the survival rates of CHO-K1 cells. Although the co-treatment

with BaP and UVA slightly decreased cell viability in a dose-

dependent manner, more than 90% of cells were alive under

all conditions we examined. We have previously shown that

higher doses of BaP (10�6–10�5 M) and UVA (1 J/cm2) in-

duced significant cytotoxicity [16]. The induction of DSBs

immediately after treatments was examined by BSFGE

(Fig. 1B). A migration of DNA was detected only when the

cells were co-exposed to 10�8 or 10�7 M of BaP and UVA

(2.4 J), whereas no migration was detected at 10�9 M of BaP

and UVA.
3.2. Detection of c-H2AX after coexposure to BaP and UVA

A significant number of cells positive for c-H2AX foci were

observed immediately after coexposure to BaP (10�7 M) and

UVA (1.2 J/cm2), but not following treatment with either
BaP or UVA alone (Fig. 2A). The number of c-H2AX-positive

cells (Fig. 2B and C) and of foci per nucleus (data not shown)

increased dependent on the doses of BaP and UVA. The gen-

eration of c-H2AX induced by coexposure was confirmed by

Western blotting, consistent with the result of immunofluores-

cence staining.

3.3. Effect of 1O2 on levels of c-H2AX after coexposure to BaP

and UVA

CHO-K1 cells were treated with BaP (10�7 M) and UVA

(2.4 J/cm2) in the presence or absence of NaN3 (10 or

50 mM), a 1O2 scavenger. These concentrations of NaN3 did

not affect cell viability. Number of c-H2AX-positive cells fol-

lowing coexposure (more than 60%) decreased in the presence

of 10 mM NaN3 (37%) and of 50 mM NaN3 (12%) (Fig. 3).

The number of foci per nucleus also decreased dependent on

the concentration of NaN3 (data not shown). These results

were confirmed by Western blotting.



Fig. 2. Induction of c-H2AX after coexposure to BaP and UVA in CHO-K1 cells. CHO-K1 cells were treated with various doses of BaP and/or
UVA and incubated for a predetermined period. Induction of c-H2AX was analyzed by immunofluorescence staining and Western blotting as
described in Section 2. (A) Time-dependent (0–2 h) c-H2AX induction after treatment with BaP (10�7 M) and/or UVA (1.2 J/cm2). Nuclei were
stained with propidium iodide. (B) BaP dose-dependent c-H2AX induction immediately after treatment with BaP (10�9–10�7 M) and UVA (1.2 J/
cm2). (C) UVA dose-dependent c-H2AX induction immediately after treatment with BaP (10�9 or 10�7 M) and UVA (�2.4 J/cm2). Values are
means ± S.D. All experiments were repeated two or three times with similar results.
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4. Discussion

In this study, we showed for the first time that concomitant

treatment with BaP and UVA induced the phosphorylation of

H2AX. It has been reported that the generation of c-H2AX

was accompanied by the induction of DSBs [19–21]. Since

we have previously demonstrated that coexposure to BaP

and UVA induced DSBs in mammalian cells [16], the forma-

tion of c-H2AX was considered due to the DSBs induced by

coexposure. Furthermore, we have previously demonstrated

that production of 1O2 following coexposure caused the induc-

tion of DSBs [17], which was confirmed by the inhibition of c-
H2AX induction in the presence of the 1O2 scavenger NaN3

(Fig. 3).

DSBs are a serious threat to cells, and if not repaired properly,

can result in cell death or loss and a rearrangement of genomic

integrity, eventually leading to cancer. The role of c-H2AX is

not yet fully understood but some reports suggested a relation-

ship between induction of c-H2AX and, cell survival (DNA
repair) and death. An absence of c-H2AX or inhibition of the

phosphorylation of H2AX enhanced sensitivity to radiation

[23,24]. We assumed two patterns of correlation between cell

death and induction of c-H2AX on exposure to ionizing radia-

tion; a linear-model, in which cells are killed depending on the

dose of radiation, and levels of c-H2AX increase similarly

[25,26], and a non-linear-model, in which cell death and c-
H2AX induction are not completely interrelated [24]. In our

study, the correlation was non-linear. At lower doses of BaP

(10�9–10�7 M), the level of c-H2AX increased dose-depen-

dently (Fig. 2B and C) but cell death was not observed

(Fig. 1A). At higher doses (>10�6 M), cell survival drastically

decreased and DSBs were significantly induced (detected by

BSFGE) [16,17], but the level of c-H2AX decreased (data not

shown). This might be due to acute phototoxicty, that is, cells

were killed immediately afterUVA irradiation and cellular func-

tions against DSBs might not have worked.

It is interesting that coexposure to very low concentrations

of BaP and UVA, which significantly generated c-H2AX,



Fig. 3. Effect of NaN3 on levels of c-H2AX following coexposure to
BaP and UVA. CHO-K1 were cells treated with BaP (10�7 M) and
UVA (2.4 J/cm2) in the presence or absence of NaN3 (10 or 50 mM).
The presence of c-H2AX was examined by immunofluorescence
staining and Western blotting immediately after treatment. Values
are means ± S.D. All experiments were repeated three times with
similar results.
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did not change the cell survival rates (Fig. 1A). This sug-

gested that the DSBs induced by the coexposure were re-

paired. But, in any case, the unscheduled induction of

DSBs by extrinsic insult may account for an increased risk

of miss-repair. Notably, lesions in a critical gene related to

cancer (such as a tumor suppressor gene) could have cata-

strophic consequences for the cell. Wang et al. [27] showed

that the coexposure to BaP and UVA induced mutations

in H-ras gene, 8 weeks before tumor emergence in SKH-1

hairless mice, and that these mice developed malignant tu-

mor by 25 weeks. In everyday life, contamination with

PAHs is inevitable and skin contaminated with PAHs might

be exposed to UVA irradiation. Recently, Yan et al. [28]

demonstrated that 11 of 16 PAHs listed by the U.S. Envi-

ronmental Protection Agency as priority pollutants were

photomutagenic. The presence of c-H2AX at low concentra-

tions of BaP and UVA suggested the possibility of pho-

tomutagenicity and photocarcinogenicity of environmental

PAHs.

Finally, it is worth noting that a more sensitive detection of

DSBs could be achieved by examining the expression of c-
H2AX induction than with BSFGE. Detection of c-H2AX is

considered a powerful tool for detecting DSBs, applicable to

the screening of genotoxic substances, especially photocarcino-

gens in the environment.
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