and binding studies using real time kinetics and surface plasmon resonance of these proteins have shown several features that are important for signaling roles of IGF and its analogs. The detailed study of various structural characteristics of LF and LP have revealed their new functions and have helped in the understanding of the mechanism of their action. IGF is a signaling component secreted during proliferative phase and its structure showed many novel features pertaining to structure and function relationship. We have also studied the structures of C-terminal halves of LF and their various complexes with tight binders of C-lobe and NSAIDs. It indicates a new role of lactoferrin C-lobe as a protector of side effects of NSAIDs. The structural studies of PGRP have revealed that this protein existed in a tetrameric form with four structurally identical molecules giving rise to a potent and versatile binding site.

1279-Pos Board B49
Design of Protein Sequences which Fold into Secondary Structures using an Explicit Solvent Model
Mithun Radhakrishna1, Sumit Sharma2, Sanat K. Kumar1.

1Columbia University, New York, NY, USA, 2Princeton University, Princeton, NJ, USA.

The folding of proteins into helices and beta sheets has been investigated for the past five decades. To date, there has not been a thorough understanding of the physics behind this. Theoretical predictions by Zimm and Bragg give us some information but many studies have revealed contradicting results. For example short chain polyalanine, which according to Zimm and Bragg should form a random coil forms an unusually stable helix in solution and some peptides which have a low propensity for helix formation according to the theory tend to form stable helices. In the current work we seek the helix and beta sheet forming properties of individual short peptides using a simplistic model with explicit solvent through Monte Carlo simulations. The protein back bone and side chains are represented as either hard spheres (hydrophobic) or Jagla particles (hydrophilic) in a Jagla solvent. The helix and beta sheet forming tendencies are studied while varying the chain length, backbone sequence, size of the side group and the strength of the interactions.

1280-Pos Board B50
Is the Amino Acid Dipetide a Suitable Model for Investigating Structural Preferences in the Unfolded State?
Daniel Verbaro1, Derya Meral1, Brigita Urbanc1, Karin Rybka2, Harald Schwalbe2, Reinhard Schweitzer-Stenner2.

1Drexel University, Cinnaminson, NJ, USA, 2Johann Wolfgang Goethe-University Frankfurt, Frankfurt am Main, Germany.

In view of many observations of local order within unfolded peptides and proteins, intrinsic conformational propensities of individual amino acid residues have been warranted for an understanding of how the conformational distributions of unfolded proteins affect protein folding. Various and sundry experimental and computational techniques have produced conflicting conformational sampling distributions even when similar unfolded model systems were employed. One of the most utilized model systems have been the amino acid dipetides because the classical definition of the unfolded state was supported by the Ramachandran plot of the alanine dipetide, which exhibited a nearly homogeneous sampling of sterically allowed conformations. Many studies on amino acid dipetides have indicated that conformational preferences vary between different amino acids. In order to quantify these differences, we measured the amide I band profiles of dipetides in water using infrared absorption, vibrational circular dichroism, and Raman spectroscopy. A conformational distribution model was utilized in order to reproduce all experimental data, which was further constrained by 3J(NH)z and 1J(CC) coupling constants. For alanine, our results suggest that it samples much less PPII-like conformations in a dipetide than in GAG. Our experimental results were confirmed by results from Molecular Dynamics simulations. A first analysis of data obtained for other dipetides also suggest reduced PPII fractions. We tentatively assign this to different hydration shells of blocked and unblocked peptides.

1281-Pos Board B51
Conservation of Complex Knotting and Slipknotting Patterns in Proteins
Joanna I. Sulkowska1, Eric J. Rawdon2, Kenneth C. Miller1.

1Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA, 2Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.

The last decade has shown that there are an increasing numbers of known proteins that contain linear open knots or slipknots in their native folded structure. In general, knots in proteins are orders of magnitude less frequent than would be expected for random polymers with similar length, compactness and flexibility. Explaining why they are so rare is an intriguing question. While analyzing all available protein structures for the presence of knots and slipknots we detected a surprising conservation of complex knotting patterns with and between several protein families despite their large sequence divergence. Since protein folding pathways leading to knotted native protein structures are slower and less efficient than those leading to unknotted proteins with similar size and sequence, the strict conservation of knotting pattern in some families of proteins indicates an important physiological role of knots and slipknots in these proteins. Although little is known about the functional role of knots, recent studies have demonstrated a protein-stabilizing ability of knots and slipknots. In the slipknots studied here, some of the conserved knotting patterns occur in transmembrane domains of proteins, suggesting that slipknots may stabilize these domains against forces acting during their translocation through protein lined membrane pores.

1282-Pos Board B52
Is the Prevention of Alzheimer’s Already in Your Medicine Cabinet?
Jennifer A. Sepe, Sandra Chimon-Peszek.

Drexel University, Chicago, IL, USA.

Alzheimer’s disease (AD) is characterized by the excessive production of amyloid protein and deposition in senile plaques, which are mainly composed of 1-40 amyloid β-proteins (Aβ40). Various natural mutations of Alzheimer’s β-amyloid have been shown to promote an early onset of AD. Recent studies have shown that the Wild Type mutation (Aβ22-35) enhances neurotoxicity of 40-residue Aβ1-40. Our interest is to use this shorter (14-residue) fragment of the Aβ. Silymarin, a mixture of flavonolignanes extracted from the seeds, fruits, and leaves of Milk Thistle, has long been used for the treatment of hepatic disorders, most commonly for liver diseases. Many studies have investigated the inhibitory effects of various flavonoids on Aβ aggregation and neurotoxicity. As a result, silymarin, being a mixture of flavonolignane diastereomers and having already been proven safe for human consumption, might be capable of having a preventative effect against the Aβ-dependent phenotypes of AD.

To identify silymarin as a potential therapeutic agent for the treatment of Alzheimer’s disease, various Attenuated Total Reflection Infrared Spectroscopy, ATR-IR, and Ultraviolet Visible Spectroscopy, UV-Vis, assays will be developed to identify and rank whether or not the mixture of flavonolignane diastereomers could inhibit aggregation of Aβ. To carry out this test, Aβ will be incubated with the test compound silymarin at a controlled temperature for a set amount of hours followed by ultrafiltration in order to separate the monomeric Aβ from its aggregates. Aliquots of the ultrafiltrate will be analyzed for monomeric Aβ.

1283-Pos Board B53
Myosin Storage Myopathy Mutations Cause Age Dependent Muscle Degeneration and Cardiac Dysfunction in a Drosophila Model
Meera Viswanathan, William Kronert, Girish Melkani, Sanford I. Bernstein.

San Diego State University, San Diego, CA, USA.

Myosin storage myopathy (MSM) is a rare congenital disorder caused by missense mutations in the beta cardiac MHC rod and characterized by subsarcolemmal accumulation of beta cardiac MHC that has a hyaline appearance. These mutations map near to or within the assembly competence domain known to be crucial to filament assembly. We hypothesize that mutations interrupt assembly of coiled-coil rod dimers or thick filaments causing aggregation. We have made a Drosophila model for MSM which can serve as a powerful model for mechanistic investigations. This in vivo model makes it possible to examine interactions between wild-type and mutant full-length myosins, as the majority of mutant alleles are dominant. We introduced the R1845W, L1793P or the E1883K mutation into a Drosophila myosin heavy chain transgene and expressed it in the indirect flight/jump muscles. Our studies show a severe reduction in the flight and jump ability of the transgenic flies (p<0.0001) in both homozygotes and heterozygotes, with an age-dependent loss of muscle function. Electron and confocal microscopy of the indirect flight muscles of transgenic lines show myofibrillar disarray with large areas of granular filamentous inclusions similar to hyaline bodies found in affected humans. In addition, heterozygotes of at least two mutants show restrictive cardiomyopathy phenotypes with arrhythmia that mirrors cardiomyopathy reported in human