The extension of the Krein–Šmulian theorem for Orlicz sequence spaces and convex sets

Antonio S. Granero

Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain

Received 18 November 2003
Available online 4 May 2006
Submitted by R. Curto

Abstract

If X is a Banach space and $C \subset X^{**}$ a convex subset, for $x^{**} \in X^{**}$ and $A \subset X^{**}$ let $d(x^{**}, C) = \inf\{\|x^{**} - x\|: x \in C\}$ be the distance from x^{**} to C and $d(A, C) = \sup\{d(a, C): a \in A\}$. In this paper we prove that if φ is an Orlicz function, I an infinite set and $X = \ell^\varphi(I)$ the corresponding Orlicz space, equipped with either the Luxemburg or the Orlicz norm, then for every w^*-compact subset $K \subset X^{**}$ we have $d(\overline{co} w^*(K), X) = d(K, X)$ if and only if φ satisfies the Δ_2-condition at 0. We also prove that for every Banach space X, every nonempty convex subset $C \subset X$ and every w^*-compact subset $K \subset X^{**}$ then $d(\overline{co} w^*(K), C) \leq 9d(K, C)$ and, if $K \cap C$ is w^*-dense in K, then $d(\overline{co} w^*(K), C) \leq 4d(K, C)$.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Krein–Šmulian theorem; Orlicz spaces; Convex sets

1. Introduction

If X is a Banach space, let $B(X)$ and $S(X)$ be the closed unit ball and unit sphere of X, respectively, and X^* its topological dual. If $C \subset X^{**}$ is a convex subset, for $x^{**} \in X^{**}$ and $A \subset X^{**}$ let $d(x^{**}, C) = \inf\{\|x^{**} - x\|: x \in C\}$ be the distance from x^{**} to C and $d(A, C) = \sup\{d(a, C): a \in A\}$. Observe that:

$E-mail address: as_granero@mat.ucm.es.

1 Supported in part by DGICYT grant MTM2005-00082, grant UCM-910346 and grant UCM-BSCH PR27/05-14045.

0022-247X/ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2006.03.090
(i) \(d(\text{co}(A), C) = d(A, C)\) where \(\text{co}(A)\) is the convex hull of \(A\);
(ii) if \(X^\perp = \{z \in X^{**}: z(x) = 0, \forall x \in X\}\) and \(Q : X^{**} \to X^{**}/X\) is the canonical quotient mapping, then:
\[
d(x^{**}, X) = \sup\{z(x^{**}): z \in S(X^\perp)\} = \|Qx^{**}\|.
\]

With this terminology, the Krein–Šmulian theorem (see [2, p. 51]) states the following: if \(X\) is a Banach space and \(K \subseteq X^{**}\) a \(w^*-\)compact subset such that \(d(K, X) = 0\) (thus, \(K\) is a weakly compact subset of \(X\)), then \(d(\overline{\text{co}}w^*(K), X) = 0\), that is, \(\overline{\text{co}}w^*(K) \subseteq X\) and \(\overline{\text{co}}w^*(K) = \overline{\text{co}}(K)\) is also a weakly compact subset of \(X\) (\(\overline{\text{co}}(K) = \|\cdot\|\)-closure of \(\text{co}(K)\) and \(\overline{\text{co}}w^*(K) = w^*-\)closure of \(\text{co}(K)\)). So, in view of this situation, we can pose two natural questions:

(A) If \(K \subseteq X^{**}\) is a \(w^*-\)compact subset, does the equality \(d(\overline{\text{co}}w^*(K), X) = d(K, X)\) always hold?

The answer to this question is negative. In fact, we constructed (under the continuum hypothesis in [4] and without axiomatic assumptions in [6]):

(i) a \(w^*-\)compact subset \(K \subseteq B(X^{**})\) such that \(K \cap X\) is \(w^*\)-dense in \(K\), \(d(K, X) = \frac{1}{2}\) and \(d(\overline{\text{co}}w^*(K), X) = 1\);
(ii) a \(w^*-\)compact subset \(K \subseteq B(X^{**})\) such that \(d(K, X) = \frac{1}{2}\) and \(d(\overline{\text{co}}w^*(K), X) = 1\).

(B) Does there exist a universal constant \(1 \leq M < \infty\) such that always \(d(\overline{\text{co}}w^*(K), X) \leq Md(K, X)\)?

The answer to this question is affirmative. In [4] we proved the following result, which extends the Krein–Šmulian theorem: if \(K \subseteq X^{**}\) is a \(w^*-\)compact subset and \(Z \subseteq X\) a subspace of \(X\) then \(d(\overline{\text{co}}w^*(K), Z) \leq 5d(K, Z)\) and, if \(Z \cap K\) is \(w^*-\)dense in \(K\), then \(d(\overline{\text{co}}w^*(K), Z) \leq 2d(K, Z)\). So, in view of these results we have:

(i) the universal constant \(M\) of our extension of the Krein–Šmulian theorem satisfies \(3 \leq M \leq 5\);
(ii) for the category of \(w^*-\)compact subsets \(K \subseteq X^{**}\) such that \(X \cap K\) is \(w^*-\)dense in \(K\), the constant \(M\) is exactly \(M = 2\).

Although the answer to question (A) is, in general, negative there are many Banach spaces \(X\) for which \(d(\overline{\text{co}}w^*(K), X) = d(K, X)\). This is the case (see [4]), for instance, if \(\ell_1 \not\subseteq X^*\), if the unit ball \(B(X^*)\) of the dual \(X^*\) is \(w^*-\)angelic (for example, if \(X\) is weakly compactly generated (WCG) or weakly Lindelöf determined (WLD)), if \(X = \ell_1(I)\), if \(K\) is fragmented by the norm of \(X^{**}\), etc. In this paper we enlarge this class of Banach spaces (for which \(d(\overline{\text{co}}w^*(K), X) = d(K, X)\) for every \(w^*-\)compact subset \(K \subseteq X^{**}\) with the Orlicz sequence spaces \(\ell_\varphi(I)\) when \(\varphi\) satisfies the \(\Delta_2\) condition at 0. In fact, we prove that if \(\varphi\) is an Orlicz function, \(I\) an infinite set and \(X = \ell_\varphi(I)\) the corresponding Orlicz space, equipped with either the Luxemburg or the Orlicz norm, then for every \(w^*-\)compact subset \(K \subseteq X^{**}\) we have \(d(\overline{\text{co}}w^*(K), X) = d(K, X)\) if and only if \(\varphi\) satisfies the \(\Delta_2\) condition at 0.

We also prove that if \(X\) is a Banach space, \(C \subseteq X\) a nonempty convex subset and \(K \subseteq X^{**}\) a \(w^*-\)compact subset, then \(d(\overline{\text{co}}w^*(K), C) \leq 9d(K, C)\) and, if \(K \cap C\) is \(w^*-\)dense in \(K\), then
2. Orlicz sequence spaces

Let \(\varphi : \mathbb{R} \rightarrow [0, +\infty] \) denote an Orlicz function, i.e., a convex function which is even, non-decreasing and left continuous for \(x \geq 0, \varphi(0) = 0 \) and \(\varphi(x) \rightarrow \infty \) as \(x \rightarrow \infty \) (see [1,7]). Define \(a(\varphi) = \sup\{t \geq 0 : \varphi(t) = 0\} \). The complementary function of \(\varphi \) is a new Orlicz function \(\psi \) defined for \(u \geq 0 \) as \(\psi(u) = \sup\{tu - \varphi(t) : 0 \leq t < \infty\} \). The Orlicz function \(\varphi \) satisfies the \(\Delta_2 \) condition at 0 (for short, \(\varphi \in \Delta_2^0 \)) if \(\limsup_{t \to 0} \frac{\varphi(2t)}{\varphi(t)} < \infty \).

If \(I \) is an infinite set, let \(\beta I \) be the Stone–Čech compactification of \(I \) and \(I^* = \beta I \setminus I \). If \(J \subset I \) we denote \(J^* = \overline{J} \setminus J \subset I^* \). \(J^* \) is homeomorphic to \(\beta J \setminus J \). For \(x \in \mathbb{R}^I \), define \(I_\varphi(x) = \sum_{i \in I} \varphi(x_i) \). Let \(\ell_\varphi(I) \) be the corresponding Orlicz space, i.e., \(\ell_\varphi(I) = \{x \in \mathbb{R}^I : \exists \lambda > 0 \text{ such that } I_\varphi(x/\lambda) < \infty\} \). In \(\ell_\varphi(I) \) we consider the Luxemburg norm \(\| \cdot \|_O \):

\[
\|x\|_O = \inf\{\lambda > 0 : I_\varphi(x/\lambda) \leq 1\},
\]

as well as the Orlicz norm \(\| \cdot \|_L \):

\[
\|x\|_L = \sup \left\{ \sum_{i \in I} x_i y_i : y \in \mathbb{R}^I, I_\varphi(y) \leq 1 \right\}.
\]

It is known that, \(\forall x \in \ell_\varphi(I) \), \(\|x\|_L \leq \|x\|_O \leq 2\|x\|_L \) and that with both norms \(\ell_\varphi(I) \) is a Banach space. We denote \((\ell_\varphi(I), \| \cdot \|_L) =: \ell_\varphi^L(I) \) and \((\ell_\varphi(I), \| \cdot \|_O) =: \ell_\varphi^O(I) \). Define \(h_\varphi(I) \) by

\[
h_\varphi(I) = \{x \in \ell_\varphi(I) : \forall \lambda > 0, I_\varphi(x/\lambda) < \infty\},
\]

and recall that \(h_\varphi(I) \) is the closed subspace (and the closed ideal) generated by the vectors \(e_j, j \in I, \) where \(e_j(i) = 1, \) if \(j = i, \) and \(e_j(i) = 0, \) otherwise. In fact, the family \(\{e_j\}_{j \in I} \) is a symmetric basis of \(h_\varphi(I) \). Denote \(h_\varphi^L(I), \| \cdot \|_L := h_\varphi^L(I) \) and \(h_\varphi^O(I), \| \cdot \|_O := h_\varphi^O(I) \). Recall that \(h_\varphi(I) = \ell_\varphi(I) \) iff \(\varphi \in \Delta_2^0 \).

Let see the dual of an Orlicz space. It is well known that \((\ell_\varphi^O(I))^* = \ell_\varphi^O(I) \) and \((h_\varphi^O(I))^* = \ell_\varphi^L(I) \). As \(\ell_\varphi(I) \) is a Köthe function space, the dual of \(\ell_\varphi(I) \) is the monotone direct sum of the space of integral functionals \(\ell_\varphi(I) \) and the space of singular functionals \((h_\varphi(I))^\perp \). In more detail, we have

\[
(\ell_\varphi^L(I))^* = \ell_\varphi^O(I) \oplus F(I) \quad \text{and} \quad (\ell_\varphi^O(I))^* = \ell_\varphi^L(I) \oplus F(I),
\]

where \(F(I) = (h_\varphi(I))^\perp \). The norm of \(F(I) \) (see [5]) is the same, considered whether a subspace of \((\ell_\varphi^O(I))^* \) or whether a subspace of \((\ell_\varphi^L(I))^* \), and with this norm

\[
F(I) \cong \left(\frac{\ell_\varphi^L(I)}{h_\varphi^L(I)} \right)^* \cong \left(\frac{\ell_\varphi^O(I)}{h_\varphi^O(I)} \right)^*.
\]

(\(\cong \) means isometric isomorphism). The structure of \(F(I) \) depends on the number \(a(\varphi) \) (see [5]):

(A) If \(a(\varphi) > 0 \), then \(F(I) \) is isometrically isomorphic to the space \(M_R(I^*) \) of Radon measures on \(I^* \), i.e., \(F(I) = M_R(I^*) = (C(I^*))^* \).

(B) If \(a(\varphi) = 0 \), then \(F(I) \) is isometrically isomorphic to the subspace of Radon measures \(\nu \) on \(\beta I \) such that \(\nu(i) = 0, \forall i \in I \) (i.e., \(\nu \in M_R(I^*) \)), and there exists a sequence \(\{G_k\}_{k \geq 1} \) of pairwise disjoint finite subsets of \(I \) satisfying:

Then there exist $z \in \mathbb{R}^d$ such that $|G_k| = \text{card}(G_k)$.

(ii) $\sum_{k \geq 1} \varphi(\frac{1}{k}) \cdot |G_k| < \infty$, where $|G_k| = \text{card}(G_k)$.

(iii) $\sum_{k \geq 1} \varphi(\frac{1}{k}) \cdot |G_k \cap E| = \infty$, for every $n \geq 1$ and every $E \subseteq I$ such that $|v|(|I| \setminus I) > 0$.

If $I \subset I$ is an infinite subset, we consider the space $Y_I := h^1_{\varphi}(I)$ as a complemented subspace of $h^1_{\varphi}(I)$, with projection $P_I : h^1_{\varphi}(I) \rightarrow h^1_{\varphi}(I)$ such that, $\forall f \in h^1_{\varphi}(I)$, $P_I(f) = f|_I = \text{restriction of } f \text{ to } I$. Notice that $\|P_I\| = 1$. Clearly, $(h^1_{\varphi}(I))^{**} = \ell^1_{\varphi}(I) \oplus F(I)$, $Y_I^{**} = \ell^1_{\varphi}(I) \oplus F(I)$ and the space Y_I^{**} can be considered as a complemented subspace of $(h^1_{\varphi}(I))^{**}$ by means of the projection $P_I^{**} : (h^1_{\varphi}(I))^{**} \rightarrow (h^1_{\varphi}(I))^{**}$ such that, for every $f = v + w$ with $v \in \ell^1_{\varphi}(I)$ and $w \in F(I)$, then $P_I^{**}(f) = v|_I + w|_I$. So, $\|P_I^{**}\| = 1$ and P_I^{**} is w^*-w^*-continuous.

If instead of the Luxemburg norm $\|\cdot\|$, we consider the Orlicz norm $\|\cdot\|_o$ on the spaces $h^0_{\varphi}(J)$ and $h^1_{\varphi}(I)$, the behaviour of P_J with this norm is similar. In particular, $\|P_J\| = \|P_J^{**}\| = 1$ with the Orlicz norm.

3. The extension of the Krein–Šmulian theorem for the spaces $h_{\varphi}(I)$

The following lemma is a reduced version of [4, Lemma 13]. We include it for the sake of completeness.

Lemma 1. Let X be a Banach space such that there exist $a, b > 0$ and a w^*-compact subset $K \subset B(X^{**})$ with $d(K, X) < a < b < d(\overline{co}^{w^*}(K), X)$. Then there exist $z_0 \in S(X^\perp)$ and a w^*-compact subset $\emptyset \neq H \subset K$ such that for every w^*-open subset V with $V \cap H \neq \emptyset$ there exists $\xi \in \overline{co}^{w^*}(V \cap H)$ with $z_0(\xi) > b$.

Proof. Since $b < d(\overline{co}^{w^*}(K), X)$, there exists $u_0 \in \overline{co}^{w^*}(K)$ such that $d(u_0, X) > b$. Thus, we can find $z_0 \in S(X^\perp)$ so that $z_0(u_0) > b + \epsilon$ for some $\epsilon > 0$. By the Bishop–Phelps theorem, there exists $z_1 \in S(X^{***})$ such that $\|z_0 - z_1\| \leq \epsilon/4$ and z_1 attains its maximum on $\overline{co}^{w^*}(K)$ in some $u_1 \in \overline{co}^{w^*}(K)$. So,

\[z_1(u_1) \geq z_1(u_0) = z_0(u_0) + (z_1 - z_0)(u_0) > b + \epsilon - \frac{1}{4} \epsilon = b + \frac{3}{4} \epsilon, \]

\[z_0(u_1) = z_1(u_1) + (z_0 - z_1)(u_1) > b + \frac{3}{4} \epsilon - \frac{1}{4} \epsilon = b + \frac{1}{2} \epsilon, \]

and for every $k \in K$,

\[z_1(k) = z_0(k) + (z_1 - z_0)(k) \leq d(k, X) + \frac{1}{4} \epsilon < a + \frac{1}{4} \epsilon < b + \frac{3}{4} \epsilon < z_1(u_1). \]

Since $z_0(u_1) > b + \frac{1}{2} \epsilon$ and $\sup \{|z_0(k)| : k \in K\} \leq d(K, X) < a < b$, we get that $u_1 \notin K$. If v is a Radon probability on K, denote by $r(v)$ the barycenter of v and recall that: (i) $r(v) \in \overline{co}^{w^*}(K)$; (ii) for every $u \in \overline{co}^{w^*}(K)$ there exists a Radon probability v on K with $r(v) = u$. So, as $u_1 \in \overline{co}^{w^*}(K)$, we can find a Radon probability μ on K such that $r(\mu) = u_1$.

\[z_0(u_1) > b + \frac{1}{2} \epsilon \text{ and } \sup \{|z_0(k)| : k \in K\} \leq d(K, X) < a < b, \text{ we get that } u_1 \notin K. \text{ If } v \text{ is a } \text{Radon probability on } K, \text{ denote by } r(v) \text{ the barycenter of } v \text{ and recall that: (i) } r(v) \in \overline{co}^{w^*}(K); \text{ (ii) for every } u \in \overline{co}^{w^*}(K) \text{ there exists a Radon probability } v \text{ on } K \text{ with } r(v) = u. \text{ So, as } u_1 \in \overline{co}^{w^*}(K), \text{ we can find a Radon probability } \mu \text{ on } K \text{ such that } r(\mu) = u_1. \]
Claim. \(\mu \) is atomless.

Indeed, suppose that \(\mu \) has mass \(0 < \lambda \leq 1 \) on some \(k_0 \in K \), i.e., \(\mu = \lambda \cdot \delta_{k_0} + \mu_1, \mu_1 \geq 0 \). If \(\lambda = 1 \) then \(\mu = \delta_{k_0} \), whence \(r(\mu) = k_0 \in K \), which is impossible because \(r(\mu) = u_1 \notin K \). So, \(0 < \lambda < 1 \), i.e., \(\mu_1 \neq 0 \) and \(\|\mu_1\| = 1 - \lambda > 0 \). Then \(\mu = \lambda \cdot \delta_{k_0} + (1 - \lambda) \frac{\mu_1}{\|\mu_1\|} \) and

\[
u_1 = r(\mu) = \lambda k_0 + (1 - \lambda)r \left(\frac{\mu_1}{\|\mu_1\|} \right).
\]

So, as \(z_1(k_0) < z_1(u_1) \) and \(z_1(r(\frac{\mu_1}{\|\mu_1\|})) \leq z_1(u_1) \), we get

\[
z_1(u_1) = \lambda z_1(k_0) + (1 - \lambda)z_1 \left(r \left(\frac{\mu_1}{\|\mu_1\|} \right) \right) < \lambda z_1(u_1) + (1 - \lambda)z_1(u_1) = z_1(u_1),
\]
a contradiction.

Let \(H = \text{supp}(\mu) \) be the support of \(\mu \) and suppose that there exists a \(w^* \)-open subset \(V \subset X^{**} \) with \(V \cap H \neq \emptyset \) such that \(z_0(\xi) \leq b \), for every \(\xi \in \overline{co}w^*(V \cap H) \). Denote \(\mu_1 = \mu |_{V \cap H} \) and \(\mu_2 := \mu - \mu_1 \). Observe that \(\mu_1 \neq 0 \) (because \(V \) is \(w^* \)-open and \(\emptyset \neq V \cap H = V \cap \text{supp}(\mu) \)) and \(\mu_2 \neq 0 \) (if \(\mu_2 = 0 \), then \(\mu = \mu_1 \) and \(u_1 = r(\mu) \in \overline{co}w^*(V \cap H) \), which is not true because \(z_0(u_1) > b + \frac{1}{4} \varepsilon \)). Then we have the decomposition \(\mu = \mu_1 + \mu_2 \) with \(\|\mu_1\| > 0 \), \(\|\mu_2\| > 0 \) and \(1 = \|\mu\| = \|\mu_1\| + \|\mu_2\| \). So,

\[
u_1 = r(\mu) = \|\mu_1\| \cdot r \left(\frac{\mu_1}{\|\mu_1\|} \right) + \|\mu_2\| \cdot r \left(\frac{\mu_2}{\|\mu_2\|} \right).
\]

Since \(r(\frac{\mu_1}{\|\mu_1\|}) \in \overline{co}w^*(V \cap H) \), then \(z_0 \left(r(\frac{\mu_1}{\|\mu_1\|}) \right) \leq b \), whence \(z_1 \left(r(\frac{\mu_1}{\|\mu_1\|}) \right) \leq b + \frac{1}{4} \varepsilon \) because \(\|z_0 - z_1\| \leq \frac{1}{4} \varepsilon \). Therefore,

\[
z_1(u_1) = \|\mu_1\| z_1 \left(r \left(\frac{\mu_1}{\|\mu_1\|} \right) \right) + \|\mu_2\| z_1 \left(r \left(\frac{\mu_2}{\|\mu_2\|} \right) \right) \\
\leq \|\mu_1\| \left(b + \frac{1}{4} \varepsilon \right) + \|\mu_2\| z_1(u_1) < \|\mu_1\| z_1(u_1) + \|\mu_2\| z_1(u_1) = z_1(u_1),
\]
a contradiction. Thus, for every \(w^* \)-open subset \(V \) with \(V \cap H \neq \emptyset \) there exists \(\xi \in \overline{co}w^*(V \cap H) \) with \(z_0(\xi) > b \). \(\Box \)

Proposition 2. Let \(I \) be an infinite set, \(\varphi \) an Orlicz function and either \(X = h^L_\varphi(I) \) or \(X = h^0_\varphi(I) \). Then for every \(w^* \)-compact subset \(K \subset X^{**} \) we have \(d(K, X) = d(\overline{co}w^*(K), X) \).

Proof. Denote by \(\psi \) the complementary Orlicz function of \(\varphi \). We consider different cases.

Case 1. \(a(\varphi) > 0 \). In this case \(X \) is a WCG (= weakly compactly generated) space because it is isomorphic to \(c_0(I) \). So, the result holds because it is true for the class of WCG Banach spaces (see [4]).

Case 2. \(a(\varphi) = 0 = a(\psi) \).

(A) We first consider the case \(X = h^L_\varphi(I) \). Now \(X^* = \ell^0_\varphi(I) \) and \(X^{**} = \ell^L_\varphi(I) \oplus F(I) \), where \(F(I) \) is a subspace of \(M_R(I^*) \) as described before.

Suppose that there exist a \(w^* \)-compact subset \(K \subset X^{**} \) and a vector \(z_0 \in \overline{co}w^*(K) \) such that \(d(z_0, X) > b > a > d(K, X) \). Let \(z_0 = v_0 + w_0 \) with \(v_0 \in \ell^L_\varphi(I) \) and \(w_0 \in F(I) \). Since \(a(\varphi) = 0 \),
the support \(\text{supp}(v_0) = \{i \in I: v_0(i) \neq 0\}\) is countable. Also, as \(a(\psi) = 0\), there exists a countable subset \(I_0 \subset I\) such that, in fact, \(w_0 \in M_R(I_0^*)\). Let \(J = \text{supp}(v_0) \cup I_0\), a countable subset of \(I\). If \(Y_J = h^{I}_{\psi}(J)\), consider \(Y_J\) as a complemented subspace of \(X\) and \(Y_J^{**}\) as a complemented subspace of \(X^{**}\) by means of the projection \(P_{J}^{**}: X^{**} \to X^{**}\) described in Section 2. Notice that \(P_{J}^{**}(z_0) = z_0\). Clearly, \(L := P_{J}^{**}(K)\) is a \(w^*\)-compact subset of \(X^{**}\) (in fact, of \(Y_J^{**} := (h^{I}_{\psi}(J))^{**}\) such that \(z_0 \in \overline{co}w^*(L)\) and \(d(z_0, Y_J) \geq d(z_0, X) > b\). On the other hand, for every \(k \in K\) there exists \(x \in X\) with \(\|k - x\| < a\), whence \[
\|P_{J}^{**}(k) - P_{J}^{**}(x)\| \leq \|k - x\| < a.
\]
So, \(d(L, Y_J) \leq d(K, X) < a\). Since \(Y_J = h^{I}_{\psi}(J)\) is separable, we obtain a contradiction (because for every separable Banach space \(Z\) and every \(w^*\)-compact subset \(K \subset Z^{**}\) we have \(d(K, Z) = d(\overline{co}w^*(K), Z)\) (see [4])).

(B) The case \(X = h^{I}_{\psi}(I)\) follows using analogous arguments.

Case 3. \(a(\varphi) = 0, a(\psi) > 0\). Let \(X = h^{I}_{\psi}(I)\) and \(\|\cdot\|\) be either the Luxemburg norm or the Orlicz norm. We have:

(a) Since \(a(\psi) > 0\), then \(\varphi \in \Delta^0\), \(a(\varphi) = 0\) and the right derivative \(\varphi'_d\) of \(\varphi\) at 0 satisfies \(\varphi'_d(0) = a(\psi) > 0\), whence \(X \simeq \ell_1(I)\) (isomorphism). In fact, the canonical inclusion \(i : h^{I}_{\psi}(I) \to \ell_1(I)\) is an isomorphism. Hence the adjoint operator \(i^* : \ell_\infty(I) \to X^* = \ell_{\varphi}(I)\) is also an isomorphism.

(b) We know that \(X^{**} = X \oplus F(I)\) with \(F(I) = M_R(I^*)\). So, if \(f = v + w \in X^{**}\) with \(v \in X\) and \(w \in M_R(I^*)\), then \(\|f\| \geq \sup\{\|v\|, \|w\|\}\), because the direct sum \(X \oplus F(I)\) is monotone. Thus, \(d(f, X) = \|w\|\).

Suppose that there exists a \(w^*\)-compact subset \(K \subset B(X^{**})\) such that \(d(\overline{co}w^*(K), X) > b > a > d(K, X)\). By Lemma 1 we have:

Fact. There exist \(z \in S(X^{\perp})\) and a \(w^*\)-compact subset \(\emptyset \neq H \subset K\) such that for every \(w^*\)-open subset \(V\) with \(V \cap H \neq \emptyset\) there exists \(\xi \in \overline{co}w^*(V \cap H)\) with \(z(\xi) > b\).

Step 1. By the Fact there exists \(\xi_1 \in \overline{co}w^*(H)\) with \(z(\xi_1) > b\). As \(B(X^{**})\) is \(w^*\)-dense in \(B(X^{***})\), we can find a vector \(x_1 = x_1^* (\xi_1) > b\). Since \(\xi_1 \in \overline{co}w^*(H)\) and \(x_1 = x_1^*(\xi_1) > b\), we can choose \(\eta_1 \in H\) such that \(x_1^* (\eta_1) > b\). If \(\eta_1 = v_1 + w_1\) with \(v_1 \in X\) and \(w_1 \in M_R(I^*)\), then \(a > d(\eta_1, X) = \|w_1\|\) and \(\|v_1\| > b - a\), because \(\|\eta_1\| \geq x_1^*(\eta_1) > b\). So, as \(v_1 \in X\) is isomorphic to \(\ell_1(I)\) and \(\|v_1\| > b - a\), we can find \(y_1 \in B(X^{**})\) (\(X^{**}\) is isomorphic to \(\ell_\infty(I)\) with finite support \(\text{supp}(y_1)\) (we say \(\text{supp}(y_1) = \{y_1(1), \ldots, y_1(p_1) \subset I\}\) such that \(y_1(v_1) > b - a\). Since \(y_1 \in h_{\psi}(I)\) and \(w_1 \in F(I) = (h_{\psi}(I))^\perp\), we have \(y_1(\eta_1) = y_1(v_1) > b - a\).

Step 2. Let \(V_1 = \{u \in X^{**}: y_1(u) > b - a\}\), which is a \(w^*\)-open subset of \(X^{**}\) with \(V_1 \cap H \neq \emptyset\), because \(\eta_1 \in V_1 \cap H\). By the Fact there exists \(\xi_2 \in \overline{co}w^*(V_1 \cap H)\) with \(z(\xi_2) > b\). Since \(z(\xi_2) > b\) and \(z(e_{\gamma_1}) = 0, 1 \leq i \leq p_1\) (where \(e_i \in X = h_{\psi}(I)\) is the unit vector such that \(e_i(i) = 1, i = j, p_1\)) otherwise, we can find \(x_2 = x_2^*(\xi_2) > b\) and \(x_2(e_{\gamma_1}) = 0, 1 \leq i \leq p_1\). Clearly, we can choose \(\eta_2 \in V_1 \cap H\) such that \(x_2^*(\eta_2) > b\) and, also, \(y_1(\eta_2) > b - a\) because \(\eta_2 \in V_1\). Let \(\eta_2 = v_2 + w_2\), with \(v_2 \in X\), \(w_2 \in M_R(I^*)\) and \(\|w_2\| = d(\eta_2, X) < a\). Since \[
|\gamma_2(v_2)| = |\gamma_2(\eta_2) - x_2^*(w_2)| \geq |\gamma_2(\eta_2)| - |x_2^*(w_2)| > b - a
\]
and \(x_2^* = 0 \) on \(\text{supp}(y_1) \), we can find \(y_2 \in B(X^*) \) with finite support disjoint from \(\text{supp}(y_1) \) (we say \(\text{supp}(y_2) = \{y_{21}, \ldots, y_{2p_2}\} \subseteq I \setminus \text{supp}(y_1) \)) such that \(y_2(\eta_2) = y_2(\nu_2) > b - a \).

By reiteration, we obtain a sequence \(\{y_i\}_{i \geq 1} \subseteq B(X^*) \) with pairwise disjoint supports, a sequence of \(w^* \)-open subsets \(\{V_k\}_{k \geq 1} \) with \(V_k = \{u \in X^*: y_i(u) > b - a, \; i = 1, 2, \ldots, k\} \) and \(V_k \cap H \neq \emptyset \), and a sequence \(\{\eta_k\}_{k \geq 1} \) with \(\eta_{k+1} \in V_k \cap H \subseteq B(X^*) \) such that \(y_n(\eta_k) > b - a \) for \(k \geq n \).

Since \(X^* = \ell_\psi(I) \) is canonically isomorphic to \(\ell_\infty(I) \) and the elements of the sequence \(\{y_k\}_{k \geq 1} \subseteq B(X^*) \) have pairwise disjoint supports, there exists a real number \(0 < M < \infty \) such that \(\|\sum_{i=1}^n y_i\| \leq M, \forall n \geq 1 \). On the other hand, \((\sum_{i=1}^n y_i)(\eta_n) > n(b - a), \forall n \geq 1 \), which implies \(\|\eta_n\| > \frac{n}{M}(b - a), \forall n \geq 1 \), a contradiction because \(\|\eta_n\| \leq 1, \forall n \geq 1 \). \(\square \)

4. The extension of the Krein–Šmulian theorem for the spaces \(\ell_\varphi(I) \)

First we consider the special Orlicz sequence space \(X = \ell_\infty(I) \). In [6] it is asked whether every \(w^* \)-compact subset \(K \subseteq (\ell_\infty(I))^{**} \) satisfies \(d(K, \ell_\infty(I)) = d(\overline{\sigma w^*}(K), \ell_\infty(I)) \). In the following proposition we show that the answer is negative.

Proposition 3. Let \(\Gamma \) be an infinite set and \(X = \ell_\infty(\Gamma) \) with the supremum norm \(\|f\| = \sup\{|f(i)|: \; i \in \Gamma, \; \forall f \in \ell_\infty(\Gamma)\} \). Then there exists a \(w^* \)-compact subset \(K \subseteq B(X^{**}) \) such that \(d(K, X) \leq \frac{1}{2} \) but \(d(\overline{\sigma w^*}(K), X) \geq \frac{2}{3} \).

Proof. Without loss of generality we suppose that \(\Gamma = \mathbb{N} \) and denote \(\ell_\infty(\mathbb{N}) =: \ell_\infty \). Set \(I = [0, 1] \) and let \(\lambda \) denote the Lebesgue measure on \(I \). We use the family of continuous functions \(g_{[i_1, \ldots, i_n]}: I \rightarrow I \) introduced in [6], namely, for every \(n \geq 1 \) consider the family of \(n^{2n} \) continuous functions \(g_{[i_1, \ldots, i_n]}: I \rightarrow I, \; i_j \in \{0, \ldots, n^2 - 1\}, \) such that:

\[
\begin{align*}
(a) & \quad g_{[i_1, \ldots, i_n]} \left(\frac{ij}{n^2}, \frac{i_j + 1}{n^2} \right) = [0] \quad \text{and} \\
(b) & \quad g_{[i_1, \ldots, i_n]}(t) = 1 \quad \text{whenever} \quad \min_{1 \leq j \leq n} \left| t - \frac{i_j}{n^2} \right| \geq \frac{2}{n^2}.
\end{align*}
\]

It is easy to verify that:

(A) \(\lambda(g_{[i_1, \ldots, i_n]}^{-1}(1)) \geq 1 - \frac{4}{n} \).
(B) For every \(t_1, \ldots, t_k \in I \) pairwise distinct, every subset \(A \subseteq \{t_1, \ldots, t_k\} \) and every \(m \geq 1 \) there exist \(n \geq m \) and \(g_{[i_1, \ldots, i_n]} \) such that:

\[
g_{[i_1, \ldots, i_n]}(t) = \begin{cases} 1 & \text{if } t \in A, \\ 0 & \text{if } t \in \{t_1, \ldots, t_k\} \setminus A. \end{cases}
\]

To see (B), it suffices to take \(n \) such that \(\frac{4n^2}{n^2} < \min_{i \neq j} |t_i - t_j| \) and apply conditions (a) and (b).

Reindex the collection \(\{g_{[i_1, \ldots, i_n]}: n \in \mathbb{N}, \; i_j \in \{0, \ldots, n^2 - 1\}\} \) as \(\{h_n\}_{n \in \mathbb{N}} \). Consider \(B(\ell_\infty) \) equipped with the topology \(\tau_p \) of the pointwise convergence. Notice that \(\tau_p \) coincides on \(B(\ell_\infty) \) with the \(w^* \)-topology \(\sigma(\ell_\infty, \ell_1) \). So, \((B(\ell_\infty), \tau_p) \) is a metric compact space. Let \(H: [0, 1] = I \rightarrow (B(\ell_\infty), \tau_p) \) be such that \(H(t) = (h_n(t))_{n \geq 1}, \forall t \in I \). Since \(H \) is injective and continuous, \(L := H(I) \) is a compact subset homeomorphic to \(I \). Denote by \(\mu \) the Radon probability on \(L \), image by \(H \) of the Lebesgue probability \(\lambda \) on \(I \), and let \(z_0 \in \overline{\sigma w^*}(L) \) be the barycenter of \(\mu \).
If \(f \in \ell_\infty \), denote by \(\hat{f} \in C(\beta^N) \) the Stone–Čech continuous extension of \(f \) to \(\beta^N \). By (B), for every finite subset \(F \subset L \) we have \((\cap_{f \in F} \hat{f}^{-1}(0)) \cap N^* \neq \emptyset \) (\(N^* = \beta^N \setminus N \)). So, by compactness we get \(O := (\cap_{f \in L} \hat{f}^{-1}(0)) \cap N^* \neq \emptyset \).

Claim 1. \(\forall \delta > 0, \exists n_0 \in \mathbb{N} \) such that, \(\forall n \geq n_0, z_0(n) \geq 1 - \delta \). So, \(\hat{z}_0 = 1 \) on \(N^* \).

Indeed, by (A) there exists \(n_0 = n_0(\delta) \) such that, \(\forall n \geq n_0, \lambda(h_{n^{-1}}) \geq 1 - \delta \). So, for \(n \geq n_0 \) we have

\[
\begin{align*}
z_0(n) &= \int \limits_L x(n) \cdot d\mu = \int \limits_f H(t)(n) \cdot d\lambda = \int \limits_f h_n(t) \cdot d\lambda \geq \lambda(h_{n^{-1}}(1)) \geq 1 - \delta.
\end{align*}
\]

If \(X = \ell_\infty \), then \(X^* = \ell_1 \oplus M_R(N^*) \) and \(X^{**} = \ell_\infty \oplus M_R(N^*)^* \). Denote by \(\pi_1 : X^{**} \to \ell_\infty \), \(\pi_2 : X^* \to M_R(N^*)^* \) the canonical projections. So, if \(u \in X^{**} \), then \(u = (u_1, u_2) \) with \(u_1 = \pi_1(u) \) and \(u_2 = \pi_2(u) \). Observe that, if \(j : X \to X^{**} \) is the canonical embedding of \(X \) in its bidual and \(f \in X \), then \(j(f) = (f_1, f_2) \) with \(f_1 = \pi_1 \circ j(f) = f \) and \(f_2 = \pi_2 \circ j(f) = \hat{f}|\mathbb{N}^* \), where \(\hat{f}|\mathbb{N}^* \) is considered as an element of \(M_R(N^*)^* \).

Let \(\phi : \ell_\infty \to X^{**} \) be such that, \(\forall f \in \ell_\infty, \phi(f) = (f, 0) \), which is a linear \(w^*-w^* \)-continuous and \(\| \cdot \| \)-continuous mapping. Denote \(L_0 := \phi(L) = \{(f, 0) : f \in L \} \subset B(X^{**}) \). Looking at \(\frac{1}{2}1_{N^* \setminus O} \) and \(\frac{1}{2}1_{O} \) (recall that \(O := (\cap_{f \in L} \hat{f}^{-1}(0)) \cap N^* \)) as elements of \(M_R(N^*)^* \), consider the subset \(K = L_0 + (0, \frac{1}{2}1_{N^* \setminus O} - \frac{1}{2}1_{O}) \subset B(X^{**}) \), which is a \(w^*- \)compact subset of \(B(X^{**}) \) homeomorphic to \(L_0 \). Notice that \((z_0, \frac{1}{2}1_{N^* \setminus O} - \frac{1}{2}1_{O}) \in \partial w^*(K) \).

Claim 2. \(d(K, X) \leq \frac{1}{3} \).

Indeed, pick \((f, \frac{1}{2}1_{N^* \setminus O} - \frac{1}{2}1_{O}) \in K \) with \(f \in L \). Since \(\hat{f}|O = 0 \) we have

\[
\left\| \left(f, \frac{1}{3}1_{N^* \setminus O} - \frac{1}{3}1_{O} \right) - \frac{2}{3}j(f) \right\| = \sup \left\{ \left\| \frac{1}{2}f \right\|, \left\| \frac{1}{3}1_{N^* \setminus O} \right\| \right\} \frac{1}{3} = \frac{1}{3}.
\]

Claim 3. \(d((z_0, \frac{1}{2}1_{N^* \setminus O} - \frac{1}{2}1_{O}), X) = \frac{2}{3} \).

Indeed, by Claim 1 we have \(\hat{z}_0 = 1 \) on \(N^* \), whence

\[
\left\| \left(z_0, \frac{1}{3}1_{N^* \setminus O} - \frac{1}{3}1_{O} \right) - \frac{2}{3}j(z_0) \right\| = \left\| \left(\frac{2}{3}z_0 - \frac{2}{3}1_{O} \right) \right\| = \frac{2}{3}.
\]

On the other hand, if \(c \in O \) and \(f \in \ell_\infty \), then

\[
\left\| \left(z_0, \frac{1}{3}1_{N^* \setminus O} - \frac{1}{3}1_{O} \right) - j(f) \right\| \geq \sup \left\{ |1 - \hat{f}(c)|, \left| \frac{1}{3} + \hat{f}(c) \right| \right\} \geq \frac{2}{3}.
\]

Proposition 4. Let \(I \) be an infinite set and \(\varphi \) an Orlicz function.

1. If \(\varphi \in \Delta_2^0 \) and either \(X = \ell_{\varphi}^p(I) \) or \(X = \ell_{\varphi}^w(I) \), then for every \(w^* \)-compact subset \(K \subset X^{**} \) we have \(d(\partial w^*(K), X) = d(K, X) \).
2. If \(\varphi \notin \Delta_2^0 \) and \(X = \ell_{\varphi}^p(I) \), then there exists a \(w^* \)-compact subset \(K \subset B(X^{**}) \) such that \(d(\partial w^*(K), X) \geq 2d(K, X) > 0 \).
(3) If \(\varphi \notin \Delta^o_2 \) and \(X = \ell^o_\varphi(I) \), then for every \(\epsilon > 0 \) there exists a \(w^* \)-compact subset \(K_\epsilon \subset B(X^{**}) \) such that \(d(\overline{\text{co}}w^*(K_\epsilon), X) \geq (2 - \epsilon)d(K_\epsilon, X) > 0 \).

Proof. (1) As \(\varphi \in \Delta^o_2 \), then \(\ell^o_\varphi(I) = h_\varphi(I) \). So, this part follows from Proposition 2.

(2) In this case it is well known that there exists in \(X \) a complemented isometric copy \(Y \) of \(\ell_\infty \) with projection \(P : X \to Y \) such that \(\|P\| = 1 \). So, if \(Y^{**} \) is considered as a subspace of \(X^{**} \) (in fact, \(Y^{**} = Y^{w^*} \) inside \(X^{**} \)) and \(K \subset Y^{**} \) is the \(w^* \)-compact set constructed in Proposition 3, then \(d(\overline{\text{co}}w^*(K), X) \geq 2d(K, X) > 0 \), because for every \(u \in Y^{**} \) we have \(d(u, Y) = d(u, X) \).

(3) Since \(\varphi \notin \Delta^o_2 \), it is well known that there exists in \(\ell^o_\varphi(I) \) an isomorphic copy of \(\ell_\infty \). In [8] it has been proved that any Banach space isomorphic to \(\ell_\infty \) contains subspaces arbitrarily nearly isometric to \(\ell_\infty \). So, in this case for every \(\delta > 0 \) there exists in \(X \) a complemented subspace \(Y_\delta \) which is \((1 + \delta) \)-isometric to \(\ell_\infty \), with projection \(P_\delta \) such that \(\|P_\delta\| \leq 1 + \delta \). Thus, using the same argument as in (2), for every \(\epsilon > 0 \) we can construct a \(w^* \)-compact subset \(K_\epsilon \subset X^{**} \) such that \(d(\overline{\text{co}}w^*(K_\epsilon), X) \geq (2 - \epsilon)d(K_\epsilon, X) > 0 \). Notice that if the Orlicz function \(\varphi \) is strictly convex and \((\varphi(t)/t) \to 0 \) as \(t \to 0 \), then the Orlicz norm of \(\ell^o_\varphi(I) \) is strictly convex (see [1, p. 55]) and \(\ell^o_\varphi(I) \) cannot contain an isometric copy of \(\ell_\infty \), although it contains an isomorphic copy if \(\varphi \notin \Delta^o_2 \). \(\square \)

5. The extension of the Krein–Šmulian theorem for convex subsets

If \(X \) is a Banach space, \(K \subset X^{**} \) a \(w^* \)-compact subset and \(C \subset X^{**} \) a convex subset, we consider in this section the distances \(d(K, C) \) and \(d(\overline{\text{co}}w^*(K), C) \). In view of our extension of the Krein–Šmulian theorem, which deals with this type of distances when \(C \) is a subspace of \(X \), it is natural to ask whether there exists some constant \(1 \leq M < \infty \) such that always \(d(\overline{\text{co}}w^*(K), C) \leq Md(K, C) \), when \(C \) is a convex subset. The answer to this question is the following:

(a) For the category of convex subsets \(C \subset X^{**} \) there is not such a constant. In fact, if \(L \subset B(\ell_\infty) \) is the \(w^* \)-compact constructed in Proposition 3, \(\mathcal{O} := (\bigcap_{f \in L} \tilde{f}^{-1}(0)) \cap \mathbb{N}^* \) and \(Y_\mathcal{O} \) is the closed subspace of \(\ell_\infty \) such that \(Y_\mathcal{O} = \{ f \in \ell_\infty : \tilde{f}|\mathcal{O} = 0 \} \), then, clearly, \(L \subset Y_\mathcal{O} \) and \(d(L, Y_\mathcal{O}) = 0 \). On the other hand, since \(\tilde{z}_0 = 1 \) on \(\mathbb{N}^* \) (see Proposition 3), then \(d(z_0, Y_\mathcal{O}) = 1 \) and, so, \(d(\overline{\text{co}}w^*(L), Y_\mathcal{O}) \geq 1 \). In [4, Corollary 12] we proved that if \(I \) is an infinite set, \(H \subset I^* \) a regular compact subset (\(H \) is regular in \(I^* \) if and only if \(\text{int}(H) \) is dense in \(H \)) and \(Y_H = \{ f \in \ell_\infty : \tilde{f}|H = 0 \} \), then for every \(w^* \)-compact subset \(K \subset \ell_\infty \) we have \(d(K, Y_H) = d(\overline{\text{co}}w^*(K), Y_H) \). So, the subset \(\mathcal{O} = (\bigcap_{f \in L} \tilde{f}^{-1}(0)) \cap \mathbb{N}^* \) is not regular in \(\mathbb{N}^* \).

(b) For the category of convex subsets \(C \subset X \), we prove in the following that for every \(w^* \)-compact subset \(K \subset X^{**} \) we have \(d(\overline{\text{co}}w^*(K), C) \leq 9d(K, C) \) and, if \(C \cap K \) is \(w^* \)-dense in \(K \), then \(d(\overline{\text{co}}w^*(K), C) \leq 4d(K, C) \).

Lemma 5. Let \(X \) be a Banach space and \(D \subset C \subset X \) two convex subsets of \(X \). Then for every \(z \in \overline{D} \subset X^{**} \) we have

\[
d(z, C) \leq d(z, D) \leq 2d(z, C).
\]

Proof. Fix some \(z \in \overline{D} \). Clearly, \(d(z, C) \leq d(z, D) \). So, prove that \(d(z, D) \leq 2d(z, X) \). Assume that \(d(z, D) > 2d(z, X) \). Then:

(i) for some \(a > 0 \) we have \(d(z, D) > 2a > 2d(z, X) \) and

(ii) there exists \(w \in X \setminus \overline{D} \) such that \(d(w, D) > a \) and \(\|w - z\| < a \).
Since \(d(w, D) > a \), there exists \(x^* \in S(X^*) \) such that \(\inf \{ x^*(w - d): d \in D \} > a \). Choose a net \(\{d_i\}_{i \in I} \subset D \) such that \(d_i \xrightarrow{w^*} z \). Then \(w - d_i \xrightarrow{w^*} w - z \) and, so, \(x^*(w - d_i) \to x^*(w - z) \). Since \(x^*(w - z) < a \) (because \(\|w - z\| < a \)), there exists \(i_0 \in I \) such that \(\forall i \geq i_0 \) we have \(x^*(w - d_i) < a \). But by construction \(a < x^*(w - d_i), \forall i \in I \). So, we get a contradiction which proves that \(d(z, D) \leq 2d(z, X) \).

Finally, observe that \(d(z, X) \leq d(z, D) \). \(\square \)

Proposition 6. Let \(X \) be a Banach space, \(C \subset X \) a convex subset of \(X \) and \(K \subset X^{**} \) a \(w^* \)-compact subset. Then \(d(\overline{co}w^*(K), C) \leq 9d(K, C) \).

Proof. Without restriction, we suppose that \(0 \in C \). Assume that

\[
d(\overline{co}w^*(K), C) > b > 9a > 9d(K, C)
\]

and choose \(z_0 \in \overline{co}w^*(K) \) such that \(d(z_0, C) > b \). So, there exists \(\psi \in S(X^{**}) \) such that \(\inf \{\psi(z_0 - c): c \in C\} > b \).

Step 1. Let \(D_0 = \{0\} \). Since \(\psi(z_0) > b \) and \(B(X^*) \) is \(w^* \)-dense in \(B(X^{**}) \), there exists \(x_i^* \in S(X^*) \) such that \(x_i^*(z_0) > b \). So, as \(z_0 \in \overline{co}w^*(K) \) we can find \(\eta_i = \sum_{i=1}^{n_1} \lambda_{i1} \eta_{i1} \in co(K), \eta_{i1} \in K, \lambda_{i1} \geq 0, \sum_{i=1}^{n_1} \lambda_{i1} = 1 \), such that \(x_i^*(\eta_{i1}) > b \). Since \(d(\eta_{i1}, C) < a \) we have the decomposition \(\eta_{i1} = \eta_{i1}^1 + \eta_{i1}^2 \) with \(\eta_{i1}^1 \in C \) and \(\eta_{i1}^2 \in aB(X^*) \).

Step 2. Let \(D_1 = \{\eta_{i1}^1: 1 \leq i \leq n_1\} \cup D_0 \subset C \). Since \(D_1 \) is finite and \(\min \{\psi(z_0 - y): y \in D_1\} > b \), there exists \(x_2^* \in S(X^*) \) such that \(\min \{x_2^*(z_0 - y): y \in D_1\} > b \). So, as \(x_1^*(z_0) > b \), \(\min \{x_1^*(z_0 - y): y \in D_1\} > b \), \(D_1 \) is finite and \(z_0 \in \overline{co}w^*(K) \), we can find \(\eta_2 = \sum_{i=1}^{n_2} \lambda_{2i} \eta_{2i} \in co(K), \eta_{2i} \in K, \lambda_{2i} \geq 0, \sum_{i=1}^{n_2} \lambda_{2i} = 1 \), such that \(x_1^*(\eta_{2i}) > b \) and \(\min \{x_2^*(\eta_{2i} - y): y \in D_1\} > b \). Since \(d(\eta_{2i}, C) < a \) we have the decomposition \(\eta_{2i} = \eta_{2i}^1 + \eta_{2i}^2 \) such that \(\eta_{2i}^1 \in C \) and \(\eta_{2i}^2 \in aB(X^*) \).

By reiteration, we obtain the sequences \(\{x_i^*\}_{i \geq 1} \subset S(X^*), \eta_k = \sum_{i=1}^{n_k} \lambda_{ki} \eta_{ki} \in co(K), \eta_{ki} \in K, \lambda_{ki} \geq 0, \sum_{i=1}^{n_k} \lambda_{ki} = 1 \), \(D_k = \{\eta_{ki}: 1 \leq i \leq n_k\} \cup D_{k-1} \), \(\eta_{ki} = \eta_{ki}^1 + \eta_{ki}^2 \) with \(\eta_{ki}^1 \in C \) and \(\eta_{ki}^2 \in aB(X^*) \), \(k \geq 1 \), such that \(\min \{x_i^*(\eta_k - y): y \in D_{k-1}\} > b \) for every \(k \geq i \).

Let \(D = \overline{co}(\bigcup_{k \geq 1} D_k) \subset C \) and

\[
K_1 = \left\{ \eta_{ji}^1: i \geq 1, 1 \leq j_i \leq n_i \right\} \subset (K + aB(X^*)) \cap \overline{D}w^*.
\]

Let \(\eta_0 \) be a \(w^* \)-limit point of \(\{\eta_k\}_{k \geq 1} \).

Claim 1. \(d(\eta_0, D) < 9a \).

Indeed, clearly \(\eta_0 \in \overline{co}w^*(K_1) + aB(X^*) \). Now observe that:

(i) Since \(K_1 \subset K + aB(X^*) \), we get \(d(K_1, C) \leq d(K, C) + a < 2a \).

(ii) Since \(K_1 \cap X \) is \(w^* \)-dense in \(K_1 \), by [4, Theorem 6], [3, Theorem 2] we obtain

\[
d(\overline{co}w^*(K_1), X) \leq 2d(K_1, X) \leq 2d(K_1, C) < 4a.
\]
(iii) Since $\overline{co}^{w^*}(K_1) \subset \overline{D}^{w^*}$, by Lemma 5 we get
\[d(\overline{co}^{w^*}(K_1), D) \leq 2d(\overline{co}^{w^*}(K_1), X) < 8a. \]

So, as $\eta_0 \in \overline{co}^{w^*}(K_1) + aB(X^{**})$, we finally get $d(\eta_0, D) < 9a$.

Claim 2. $d(\eta_0, D) \geq b$.

Indeed, let $\phi \in B(X^{***})$ be a w^*-limit point of $\{x^*_n\}_{n \geq 1}$. Since $x^*_n(\eta_k - y) > b$ if $k \geq n$ and $y \in D_{n-1}$, then $x^*_n(\eta_0 - y) \geq b$, $\forall n \geq 1$, $\forall y \in D_{n-1}$. Hence $\phi(\eta_0 - y) \geq b$, $\forall y \in D$, and, so, $d(\eta_0, D) \geq b$.

Since $b > 9a$ we get a contradiction, which completes the proof.

Proposition 7. Let X be a Banach space, $C \subset X$ a convex subset of X and $K \subset X^{**}$ a w^*-compact subset such that $K \cap C$ is w^*-dense in K. Then $d(\overline{co}^{w^*}(K), C) \leq 4d(K, C)$.

Proof. Suppose that there exists a w^*-compact subset $K \subset B(X^{**})$ with $\bigcap \{x^*_n\} \cap C \cap K$ w^*-dense in K such that $d(\overline{co}^{w^*}(K), C) > 4d(K, C)$, i.e., there exist $z_0 \in \overline{co}^{w^*}(K)$ and $a, b > 0$ such that $d(z_0, C) > b > 4a > 4d(K, C)$. Pick $\psi \in S(X^{***})$ such that $\inf\{\psi(z_0 - c) : c \in C\} > b$. We follow the argumentation of Proposition 6 with the following changes:

(i) as $C \cap K$ is w^*-dense in K we choose $\eta_k \in co(C \cap K)$, i.e., $\eta_k = \sum_{i=1}^{n_k} \lambda_{ki} \eta_{ki}$ with $\eta_{ki} \in C \cap K$ and $\lambda_{ki} \geq 0$, $\sum_{i=1}^{n_k} \lambda_{ki} = 1$;

(ii) we define:
\[D_k = \{\eta_{kj} : 1 \leq j \leq n_k\} \cup D_{k-1}, \quad D = \overline{co}\left(\bigcup_{k \geq 1} D_k\right) \quad \text{and} \quad K_1 = \{\eta_{ij} : i \geq 1, 1 \leq j \leq n_i\}^{w^*} \subset \overline{D}^{w^*} \cap K. \]

Clearly, $d(K_1, X) \leq d(K_1, C) \leq d(K, C) < a$, whence $d(\overline{co}^{w^*}(K_1), X) \leq 2d(K_1, X) < 2a$ and $d(\overline{co}^{w^*}(K_1), D) < 4a$. Finally, every w^*-limit point η_0 of $\{\eta_k\}_{k \geq 1}$ satisfies $\eta_0 \in \overline{co}^{w^*}(K_1)$, $d(\eta_0, D) < 4a$ and $d(\eta_0, D) \geq b$, a contradiction.

References