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A b s t r a c t  

One of the trends in the theory of orthogonal polynomials is to get as much information on their behaviour as possible 
from the recurrence relation they satisfy. Our intention is to propose a method which in any particular case allows to 
localize the spectra of polynomial sequences orthogonal either on the real line or on the complex plane. 
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A sequence {Pn}n~=O C ~[X] of  orthogonal polynomials on the real line is uniquely determined 
by its recurrence relation while the orthogonality measure may not be. However, in the case of  
orthogonality on a bounded set it is and, consequently, so is its support. 

In the real line case the support o f  orthogonality is usually determined or localized in terms o f  
zeroes o f  polynomials and by means o f  chain sequences (cf. [1, 2, 4]). What we propose here is a 
method based on some results from operator theory. Though the method can be applicable in the 
case o f  polynomials in a single variable (both the real line and the complex case) as well as in 
several variables, we do not treat the latter case here. 

The recurrence relation coefficients determine uniquely the moments o f  the measure o f  orthogonal- 
ity (even more, there is a direct finite matrix algorithm leading from the coefficients to the moments)  
and vice versa. Thus, though we use in fact the moments to localize the support o f  orthogonality, 
one may think o f  this being done in terms o f  the coefficients as well. 

The related question is to localize the support o f  orthogonality neglecting some o f  its isolated 
points (cf. [3, 5, 6] and references therein). We would like to  contribute a bit to this as well. 
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1. The real case 

1.1. Our method is based on some observation from operator theory (see [9] as well as [10, 11]). 
Suppose A is a cyclic densely defined symmetric operator in a separable Hilbert space 7-/; cyclicity 
means that there is a vector f0, Ilfoll -- 1, such that the domain D(A) of  A is the linear span of  
{An f0; n = 0, 1,...}. Thus D(A) is invariant for A which implies that for any polynomial p and any 
f E D(A), p ( A ) f  is well defined and is again in D(A). 

Because, by the Schwarz inequality, we have 

IIAfll 2 = [(A2 f , f ) I  <<-HA2f[[ Ilfll, f E D(A), 

induction gives us 

IIAf[[2" IIMZ'fll Ilfll z', f E 79(A), n = 1 . . . . .  

Thus, in particular, 

[[A~/I <all foil = a, 

where 

• . 2 , ,+r  - 2 - n - I  
a = lirninf l[AZ" foll2-" = hnmmf(A fo, fo) • (1) 

On the other hand, for any f E D(A) there is a polynomial p such that f = p(A)fo. Then, because 
A is symmetric, we have 

= = (A 2"+' [IA z'+' IIA2" fl l  2 [[AZ"P(A)fo]l 2 ( fo, p(A)*p(A)fo) <~ foil ]]P*(A)p(A)foll. 

All this gives 

[[Afl I<<.ally]], f ~ 79(A). 

If a < +c~, the operator A is bounded with IIAIl<<.a. In this case, due to (1), a<~HAII and, conse- 
quently, 

[IAH = a. 

Because now A is a bounded self-adjoint operator, there is a 2 in the spectrum a(A) of  A such that 
12] = IIAII. Thus we arrived at 

(A) I f  A is a cyclic symmetric operator with the cyclic vector fo and a defined by (1) is finite, 
then the smallest interval centered at 0 and eontainin9 a(A) is [-a,a]. 

1.2. Let {P,},~0 be a sequence of polynomials which is orthonormal on the real line. Then they 
satisfy the three-term recurrence relation 

X p n = a n + l p , + l + b , p , + a , p , - 1 ,  n = 0 , 1 , . . . ,  P-I  = 0 ,  p 0 = l ,  (2) 

with 

b , E  ~, a, > 0, n>~0. (3) 
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The Favard theorem (which goes back to Stieltjes, as noticed in [5]) gives the converse: i f  the 
sequence {Pn}~0 satisfies the recurrence relation (2) together with (3), then {P ,}~0  is orthonormal 
over the real line. Take b E ~ and consider, instead of  (2), the perturbed relation 

_(b) (b) Xp~ b)---a.+,p.+, +(bn-b)p~b)  + a . p . _ , ,  n----O, 1, . . . ,  P~)l = 0 ,  p ~ b ) = l .  (4) 

Denoting by p the measure of  orthogonality o f  {P ,}~0  and supposing it is uniquely determined we 
deduce immediately that 

(B) a measure I~ (b) o f  orthooonality o f  r_(b)xo~ is uniquely determined and #(6)([3) = #([3 - b) l Fn In=0 
for any Borel subset [3 of  ~. 

1.3. Set 

J(b)  -- 

/b0ib al 0 000 ) bl - b a2 0 0 0 
a2 b 2 - b a3 0 0 
0 a3 b3 - b a4 0 

and J -- J (0 ) ;  J(b)  is nothing but the Jacobi matrix of  tUn'fr~(b)'l'°°Jn=O" The relationship between spectral 
theory of  Jacobi matrices as operators in ~2 and orthonormal polynomials they are attached to has 
been described in great detail in [8]. Taking into account what has been known since then and 
making use of  our observations (A) and (B) the method of  localization we are going to propose 
can be developed as follows: set 

.L(b) = (J(b)"fo, fo), 

where f0 = (1 ,0 ,0  . . . .  ). Thus jn(b) is precisely the top-left entry of  the matrix J(b)" or, in other 
words, the nth moment of  the orthogonality measure p(b). Taking A = J(b) we define a = a(b) 
according to the formula (1), that is 

a(b) -- lim inf  (j2,,(b)) 2-''. 
n ----+ o o  

Let b. be such that 

a(b.) = inf  a(b). 
bE• 

Then, under the notation introduced so far, we come to 2 

Theorem 1. I f  a(b) is finite for some b, then the smallest interval eontainin 9 the support o f  the 
measure of  orthogonality of  {P,}~0  is [b. - a(b.) ,b.  + a(b.)].  

1.4. A slightly modified question to localizing the whole support (sometimes called the "true" 
interval of  orthogonality) is that which neglects a finite number o f  isolated points of  the spectrum. 

2 It may be tempting, instead of applying what has been worked out in Section 1, to make a shortcut here using for 
instance an /2~-argument. Just a warning: in the complex case there is no other way than this coming from operator 
theory. Because our intention is to put emphasis on exposing the method rather than on simplifying local arguments, we 
have resisted this temptation. 
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The latter question concerns localization of the essential spectrum of  the associated Jacobi matrix. 
Thus our operator approach can be used to contribute to what has been already done in this matter 
so far. 

Suppose b, ~ b. Set B -- diag(b~)~ 0 and A = J - B. Then apparently 

iil al 0 0 0 0 ... 0 a2 0 0 0 ... 

A = a2 0 a 3 0 0 ... (5) 
0 a3 0 a4 0 ... 

and 

J = A + b I + B - b I .  

Since B -  bI  is compact, due to the Weyl theorem, we have 

fie(J) -~ fe(A --b h i )  -~ fie(A) q- b. 

Since 6e(A ) is contained in the interval [ - a , a ]  where a is given by (1) for A defined by (5), we 
get another localization result, 

Theorem 2. I f  bn ~ b, then the essential spectrum 3 o f  the orthoyonali ty measure # o f  {Pn}n~=O is 
contained in the interval [b - a, b + a]. 

Invoking the definition of the essential spectrum we restate the above as 

Corollary. I f  bn ---+ b, then f o r  any ~ > 0 the set 

supp# \ ( b -  a -  e,b + a + ~) 

is finite. 

2. The complex case 

2.1. Let {Pn}~0 be a sequence of  polynomials in C[Z]. Supposing degpn - -n  we get 

Zpn = an, n+lpn+l + "" " + a,,oPo, 

with 

a,,,+l ¢ 0 ,  n = O ,  1 , . . . .  

n = O, 1,... (6) 

(7) 

Thus (6) becomes a recurrence relation. In general, in contrast to the real line case, no particular 
form of  the recurrence relation (6) can be deduced from orthogonality. 

3 That is the essential spectrum of the spectral measure of J. 
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Attach to this relation the Hessenberg matrix 

a0o aol a0,2 a03 ...  "~ 

J 
al0 all a~2 a13 ...  

H = 0 a21 a22 a23 . . .  
0 0 a32 a33 ...  

Then the matrix H acts as an operator (denoted by the same letter) in (2 according to the formula 

Hen ~ ~ ankek~ 
k=0 

where en = (rni)~=O is the usual zero--one sequence. Define the domain D ( H )  of  the operator H by 

D ( H )  = lin{e,; n = 0, 1 . . . .  } 

Then, due to (7), H is a cyclic operator, which means that 

79(H) = lin{H"e0; n = 0, 1, . . .  }. 

Defining the inner product in C[Z] according to the formula 

(Pro, P,)C~Zl = 6re, n, 

we get that C[Z] is unitarily equivalent to [2 and the operator Z o f  multiplication by the independent 
variable in C[Z] becomes unitarily equivalent to H.  More precisely, if U is the unitary operator 
which maps each p ,  into e,, then 

Z = U - 1 H U  

and 

(Z m, Zn)c[z ] = (Hmeo,Hneo)e2. 

Thus putting 

Ci, j = (Hg fo ,HJ fo)~2 (8) 

one may think of  {Cm.,}~.,=O as of  "moments"  of  {P,}~-0. I f  the sequence { P , } ~ o  is orthonormal 
over the complex plane, that is if  there is a nonnegative measure p on (possibly a subset of) C such 
that 

(Pro, p,)c[Z] = Jc p m ( z ) p , ( z ) p ( d x d y )  = fro,,, m,n  = 0, 1 , . . . ,  (z = x + iy),  (9) 

then {Cm, n}m~,=0 is a moment  (bi)sequence of  the measure p and, consequently, p is a measure of  
orthogonality (or, rather, orthonormality) o f  {P ,}~0-  We now want to study the converse problem. 

What can be deduced from (9) is that 

N 

Z Cm+q'n+p~m,n~p'q~O' N {~i,j}i,j=O C C. (10)  
mn,pq--O 
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This and (7) is something which corresponds to (3) in the real case. Again in contrast to the 
real case, the condition (10) does not imply orthogonality of {P,},~0 (cf. [13] for this and related 
questions). 

2.2. In the bounded case, however, (7) and (10) imply orthogonality of  {P,}~0. Adapting the 
method developed in the real case to the present circumstances we can get both orthogonality and 
localization of  the spectrum simultaneously. First some definitions come: a densely defined operator 
N in a Hilbert space 7-/ is said to be formal ly  normal if  D ( N ) C D ( N * )  and for any f E D(N) ,  
[[Nfl [ = [iN*f[ I. It is called normal if  D ( N )  = D(N*).  Though these two notions look much alike, 
they may have nothing in common; more precisely, there exist formally normal operators having 
no normal extension. Thus the couple "formally normal-subnormal" differs a lot from its classical, 
better known counterpart "symmetric-selfadjoint". Two other notions are related: a densely defined 
operator S in a Hilbert space ~ is said to be formal ly  subnormal if there is a Hilbert superspace K~ 
of 7-[ and a formally normal operator N in it such that D(S)  c D ( N )  and for f E D(S),  S f  = N f ;  
S is called subnormal if N is normal. Not every formally subnormal operator is subnormal (the 
theory is far from being complete; for some recent results see [13]). 

There are two notions of  cyclicity: we say that a formal ly  subnormal operator S is cyclic if there 
is a vector f0 such that 

D(S)  = lin{S"f0; n = 0, 1, . . .)  

while a formally  normal operator N is *-cyclic if there a vector f0 such that 

D ( N )  = lin{N*"Nm fo; m,n = O, 1 . . . .  }. 

In our situation, we have, cf. [7], 
C c~ (i) { re, n} ..... 0 satisfies (10) if and only if there is Hilbert space 7-/, a cyclic formally subnormal 

operator S in 7-/with a cyclic vector f0 such that 

Cm, n z (Smfo, Snfo)~ ' m,n z O, 1 . . . . .  

If this happens, there is another Hilbert space /C, containing 7-(, and a *-cyclic formally normal 
operator N in it with the same cyclic vector j% such that D ( S ) c  D(N) ,  for f E D(S) ,  S f  = N f  
and, consequently, 

Cm,, : (Nmfo,N"fo)x:, m,n : O, 1 . . . .  ; 

C oo (ii) { m,,}m,,=0 is a complex moment sequence if and only if S in the above is subnormal or, 
equivalently, N has a normal extension; 

C o~ (iii) under the circumstances of  (ii) the measure # representing { m,n}m,n:O is precisely (E(dx dy)  
f0, f0), where E is the spectral measure of  the normal extension N of S satisfying 

tC : l i n { E ( a ) f  : f E 79(S), a a Borel subset of  C} 

(here the overline denotes the closure). 
Notice that the linear space lin{N*"N", m,n = 0, 1 . . . .  } is invariant for such an N. 

C oo It is a matter of  direct verification that if { m,,}m,,=0 is defined by (8), then Gram-Schmidt 
orthonormalization applied to the sequence {snfo}~O of linearly independent vectors (cyclicity of 
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S!) leads to the sequence {P, (S) fo}~o.  Thus there is a unitary isomorphism between fz and 
under which H is equivalent to S. This links our concrete problem concerning the operator H and 
the general theory of  subnormal operators. 

2.3. Suppose N is a formally normal operator such that N D ( N ) C  D(N).  Then A = N*N is a 
symmetric operator with domain 79(A) = D(N).  Exploiting what has been worked out in Section 1, 
we get 

IIN*Nfoll  <allf0ll = a, 

where 

a = lira inf I I(N*N)Z'foll2-" --- lirn inf <(N'N)2"+' f0  , fo> z .... ' 

and fo = {1,0,0, . . .}  as so far, and, because fo is a cyclic vector of  N, 

[[(N*N)I I = a 

provided a < +c~. Consequently, 

IINII = e, 

where for c we have now 

c = v/-a = l iminf((N*N)Z' fo,  fo> 2 .... ' 
n - - ~  

and, according to (i), 

c = lim inf(c2,, z,,)2 . . . .  ' .  ( l l )  

Then we arrive at 

Theorem 3. Suppose (7) and (8) are satisfed. I f  c defined 4 by (11) is finite, then the smallest 
disc containing the support o f  the measure # o f  orthogonality o f  {P,}~0 is the disk with centre 
b, and radius c(b.). 

o o  . 4Notice that there is a finite matrix algorithm leading from the matrix H to the moments {Cm,.} . . . .  0' in fact the entry 
C,~m follows via simple recursion from the top-left comer of the matrix H of  size m × m. 

g/----~ OO 

If c is finite, the formally normal operator becomes bounded and hence normal. Thus we can apply 
what is in (i)-(iii). 

Now for any b E C, set 

H(b)  = H - bL 

~,~(b) lo~ and the corresponding denote the corresponding moment sequence defined by (8) as t~m,,Jm,,=O 
number defined by (11) as c(b). Let b, be such that 

c( b, ) = inf c( B ). 
bCC 
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2.4. Supposing the diagonal entries of H tend to zero, that is 

a,,, ---~b (12) 

we get an analogue of Theorem 2 and its Corollary. 

Theorem 4. Suppose (7) and (8) are satisfied and c < + ~ .  Suppose, moreover, (12) holds. Then 
for  any e > 0 the set 

s u p p p \ { z C C ;  I z - b  I < c + e }  

is finite, where c - -  defined by (11 ) - -  corresponds now to the matrix H - bI instead o f  H and 
is finite. 
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