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Abstract

We have investigated a closed set of equations for the quark propagator, which has been obtained earlier within a new,
nonperturbative approach to two-dimensional covariant gauge QCD. It is shown that this theory implies quark confinement (the
quark propagator has no poles, indeed), as well as dynamical breakdown of chiral symmetry (a chiral symmetry preserving
solution is forbidden). The above-mentioned set of equations can be exactly solved in the chiral limit. We develop an analytical
formalism, the so-called chiral perturbation theory at the fundamental quark level, which allows one to find solution for the
quark propagator in powers of the light quark masses. Each correction satisfies the differential equation, which can be formally
solved. We develop also an analytical formalism which allows one to find solution for the quark propagator in the inverse powers
of the heavy quark masses. It coincides with the free heavy quark propagator up to terms ofm@ewheremQ is the heavy
quark mass. So this solution automatically possesses the heavy quark flavor symmetry up to terms phigydét the same
time, we have found a general solution for the heavy quark propagator, which by no means can be reduced to the free one.
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1. Introduction number of colors) limit technique in order to make
the perturbation (PT) expansion with respect fvd
The investigation of two-dimensional (2D) QCD reasonable. In this case the planar diagrams are re-
in the context of the Schwinger—Dyson (SD) dynami- duced to quark self-energy and ladder diagrams, which
cal equations of motion has been initiated by the pio- can be summed. The bound-state problem within the
neering paper of 't Hooft [1]. He used the free gluon Bethe—Salpeter (BS) formalism was finally obtained
propagator in the light-cone gauge, which is free from free from the infrared (IR) singularities. The existence
ghost complications. He used also the lange (the of a discrete spectrum only (no continuum in the spec-
trum) was demonstrated. Since this pioneering paper
E-mail addressesgogohia@rmki.kfki.hu (V. Gogohia), 2D QCD continues to attract attention (see, for exam-

kluge@rmki.kfki.hu (Gy. Kluge), ignacio@nextlimit.com ple, r(.:"V'eW [2] and reqent pa_pers [3_5] and refer_ences
(1. Vargas de Usera). therein). Despite its simplistic vacuum structure it re-
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mains a rather good laboratory for the modern theory viously the proper quark—gluon vertex at zero mo-

of strong interactions, which is four-dimensional (4D)
QCD [6].

In our previous publications [7,8] we have investi-
gated 2D QCD in the arbitrary covariant gauge for the
first time. In these works a new, nonperturbative (NP)
solution (using neither larg¥,. limit technique explic-

mentum transfer. The Euclidean version of our para-
metrization of the quark propagator is as follows:
iS(p) = pA(p?) — B(p?). It is convenient to intro-
duce the dimensionless variables and functions as
A(p?) = §72AW), B(pH) = g7'B(x), x = p?/3°.
Performing further some tedious algebra of thena-

itly nor a weak coupling regime, i.e., ladder approxi- trices in 2D Euclidean space, the system (2.1) can be

mation) to 2D QCD in the covariant gauge is obtained
in the context of the above-mentioned SD equations,
complemented by the corresponding Slavnov—Taylor
(ST) identities. It is well known, however, that covari-

ant gauges, in general, are complicated by the ghos

proach [7]. The ghost-quark sector contains a very im-
portant piece of information on quark degrees of free-

dom themselves through the corresponding quark ST

identity. This is just the information which should be
self-consistently taken into account. In this way a close

set of equations has been derived for the quark prop-

agator [7]. The main purpose of this Letter is to ex-
actly solve the obtained system of equations in the
chiral limit and to develop analytical methods of its
solution in the general case, i.e., for the nonzero cur-

rent quark masses. Let us emphasize in advance thata“,[y

we have found a general solution for the heavy quark

propagator, which by no means could be reduced to

the free one. All of this will provide the necessary ba-
sis for future numerical calculations as well.

2. Quark SD equation

The final system of equations, obtained in Ref. [7]

for the quantities in the quark sector, are presented by

the quark SD equation and the quark ST identity as
follows (Euclidean signature):

S7Hp) = S5 (p) + 22Tu(p, O S(P) Yy,
[u(p.0)=id, S~ (p) — S(P)Tu(p. 0)S ().

(2.2)
For simplicity, here we remove an overbar from the
definitions of the renormalized Green’s functions, re-
taining it only for the coupling constang (which

explicitly reduced to a system of a coupled, nonlinear
ordinary differential equations of the first order for the
A(x) andB(x) quark propagator form factors, namely

txA/ =—(0+x)A—1—mgB,

contributions. Nevertheless, we have shown that ghost2BB’ = — A%+ 2(moA — B)B,
degrees of freedom can be considerable within our ap-

2.2)

whereA = A(x), B = B(x), and the prime denotes the

derivative with respect to the Euclidean dimensionless
momentum variable . For the dimensionless current
guark mass, we introduce the notatiag = mo/g.

The formal exact solution of the system (2.2) for

the dynamically generated quark mass function is

B?(c, mo; x) = exp(—2x) / exp2x)v(x) dx', (2.3)
andc is the constant of integration. Not losing gener-

it can be fixed as = p?/g?, wherep? is some
constant momentum squared, and

D(x) = A%(x) + 2A(x)v(x) (2.4)

with

v(x)=—mgBx)=xA"(x) + L+ x)A(x) + 1.
(2.5)

Then the equation determining th&(x) function
becomes
dv3(x)

Tt 20%(x) = —A2(x)m3 — 2A(x)v(x)m3.

(2.6)

2.1. Quark confinement

As was emphasized in Refs. [7,8], the important
observation is that the formal exact solution (2.3)
exhibits the algebraic branch point at= ¢, which
completely excludes a poktype singularityat any

has the dimensions of mass) in order to distinguish finite point on the real axis in the-complex plane

it from initial (“bare”) coupling constant. It contains
all known finite numerical factorsr,(p,0) is ob-

whatever the solution for tha(x) function might be.

Thus the solution for the quark propagator cannot be
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A few remarks are in order. A nonzero, dynami-
cally generated quark mass function defined by condi-
tion (2.8) is the order parameter of DBCS at the fun-
const damental quark level. At the phenomenological level
_ , the order parameter of DBCS is the nonzero chiral
p+m quark condensate determined(@g)o ~ —g /5° dx x
certainly satisfies thereby the first necessary condition Bo(co, x) within our approach (see Ref. [8] and
of quark confinement, formulated at the fundamental Bo(co, x) is explicitly given below in Eq. (2.11)).
quark level as the absence of a pole-type singularity In general, it can be formally zero, even when the
in the quark propagator [9]. It is well known that such mass function is definitely nonzero. Thus the nonzero,
kind of unphysical singularity (algebraic branch point dynamically generated quark mass is a much more
atx = ¢) is due to the inevitable ghost contributions in appropriate condition of DBCS than the quark con-
the covariant gauge QCD. However, as was explained densate. One may say that this is the first necessary

presented as the expression having finally a pole-type
singularity at any finite poinp? = —m? (Euclidean
signature), i.e.,

2.7)

S(p) #

in Refs. [7,8], it will not cause any problems within
our approach in order to calculate truly NP quanti-

condition of DBCS, while the nonzero chiral quark
condensate is the second sufficient one.

ties, such as quark condensate. The absence of a pole-

type singularities in the quark propagator as a crite-
rion of confinement at the microscopic level is only
first necessary condition. The second sufficient con-
dition of this criterion, formulated at the macroscopic
(hadron) level, is the existence of a discrete spectrum
only (no continuum in the spectrum) in the bound-state
problem within the corresponding BS formalism [1].
Its discussion is obviously beyond the scope of the
present Letter.

2.2. Dynamical breakdown of chiral symmetry
(DBCS)

From a coupled system of the differential equations
(2.2) it is easy to see that this systetows a chiral
symmetry breaking solution only

A(x)#0,  B(x)#£0 (2.8)

andforbids a chiral symmetry preserving solution

mo =0,

mo=B(x)=0,  A(x)#0.

Thus any nontrivial solution automatically breaks the
y5 invariance of the quark propagator, and there-
fore certainly leads to the spontaneous chiral sym-
metry breakdown at the fundamental quark level
(mo = 0, B(x) # 0, dynamical quark mass genera-
tion). In all previous investigations a chiral symme-
try preserving solution always exists. For simplic-
ity, we do not distinguish betweeB(x) and B(x),
calling both dynamically generated quark mass func-
tions.

(2.9)

2.3. The chiral limit

In the chiral limit ¢np = 0) the system (2.2) can be
solved exactly. The solution for th&(x) function is

Ao(x) = —x"H1—exp(—x)}. (2.10)

It has thus the correct asymptotic properties (see
Fig. 1). It is regular at smalk and asymptotically
approaches the free propagator at infinity—¢ o),
which can be formally achieved by the two ways:
p? — oo at fixed g2 and/or byg? — 0 as well. Let
us note that the last limit is known as the PT one. For
the dynamically generated quark mass functiiw)
the exact solution is

co
Bg(co,x)=exp(—2x)/exp(2x’)AS(x’)dx’, (2.11)

whereco = p3/g? is an arbitrary constant of integra-
tion andpg is some constant momentum squared for
the chiral limit case. It is regular at zero. In addition,
it also has algebraic branch pointsxat ¢o and at
infinity (at fixed co, i.e., wheng? is fixed). As in the
general (nonchiral) case, these unphysical singularities
are caused by the inevitable ghost contributions in the
covariant gauges (for general behavior of this solution
see Fig. 2).

As was mentioned abovd(x) automatically has
a correct behavior at infinity (it does not depend on
the constant of integration, since it was specified in
order to get regular at zero solution). In the PT limit
(32 — 0), the constant of the integratiap and the
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Fig. 1. Ag(x) as given by Eq. (2.6).
1_
x =CO0
0 X
Fig. 2. The dynamically generated quark mass function as given by Eq. (2.7).
variable x go to infinity uniformly (g, x — o0), so integrationcg in Eq. (2.11) arbitrary but finite in order

the dynamically generated quark mass function (2.11) to obtain a regular at zero point solution. The problem
identically vanishes in this limit, in accordance with is that if cg = oo, then the solution (2.11) does not
the vanishing current light quark mass in the chiral exist at all at any finite, in particular atc = 0. This is
limit. Obviously, we have to keep the constant of valid, of course, for the general solution (2.3) as well.
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3. Nonzero current quark masses and forn =1, 2, 3, ..., one obtains

Let us formulate and develop now the calculation *4,() + (14+x)A,(x) = —By-1(x),
scheme, which gives the solution of the system (2.2) 2p, (x) + M, (x) + 20, (x) = 2N,_1(x), (3.4)
step by step in powers of the light nonzero current
quark masses, as well as in the inverse powers of Where

the heavy quark masses. For this purpose, it is much n
more convenient to start from the ground system p,(x)= ZB”—’"(X)B};;(X)’
itself, Egs. (2.2), rather than to investigate the general =0
solution (2.3). For this purpose, let us rewrite the n
ground system (2.2) as follows: M, (x) = Z Apem () A (%),
=0
XA+ 1+ x)A+1=—moB, "
2BB' + A%+ 2B2 = 2ifigAB. @1 )= Byin(®)Bu(x),
m=0

As was mentioned above, we are interested in the so- n
lutions which areregular at zeroand asymptotically () — Z Anm () B (x). (3.5)
approach the free quark case at infinity. Because of 0

our parametrization of the quark propagator, its as-
ymptotics have to be determined as follows (Euclidean
signature):A(x) ~x— o0 —1/(x + m3), B(x) ~x—o0
—mo/(x + rﬁg), and neglectingug in the denomina-
tors for light quarks. The ground system (3.1) is very
suitable for numerical calculations.

Is is obvious that the system (3.3) describes the
ground system (3.1) in the chiral limip = 0). As we
already know, it can be solved exactly (see below as
well). The first nontrivial correction in powers of small

mg is determined by the following system, which
follows from Egs. (3.4) and (3.5), and itis

3.1. Light quarks xA}+ (1+x)A1 = —Bo,

/ !/
Let us now develop the above-mentioned analytical (B1Bo+ BoB1) + AoA1+2BoB1 = AoBo,  (3.6)

formalism, which makes it possible to find solution \\here we omit the dependence on the argumefur

of the ground system (3.1) step by step in powers of gimpjicity. In the similar way can be found the system
the light («, d, s) nonzero current quark masses, the ¢ equations to determine terms of ordeg in the
so-called chiral perturbation theory at the fundamental gq| tion for the quark propagator and so on.

quark level. For this purpose it is convenientto present | ot s present a general solution to the first of Egs.

the quark propagator form factossand B as follows: (3.4), which is
o0 X
Alx) = Zﬁz'éAn(x), Ap(x) = —x "Lt / dx/ex,anl(x/). 3.7)
no=00 J
B(x) = Zfﬁan (x), (3.2) It is always regular at zero, since aB,(x) are
n=0 regular as well. The advantage of the developed chiral

perturbation theory at the fundamental quark level is

that each correction in the powers of small current

guark masses is determined by the corresponding

system of equations which can be formally solved
/ _ exactly.

o) + (14 x)?O(x) i 12 0 Let us write down the system of solutions approxi-

2Bo(x) By(x) + Aj(x) + 2By (x) =0, (3.3) mating the light quark propagator up to first correction,

where it is formally assumed that"“"*’ « 1. Sub-
stituting these expansions into the ground system (3.1)
and omitting some tedious algebra, one obtains
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i.e.,

A(x) = Ao(x) +moAr(x) +---,

B(x) = Bo(x) +moB1(x) + - -- (3.8)
This system is

Ao(x) = —x"1(1—e™), Ap(0)=-1, (3.9

co

Bi(x)=e f dx' e® A3(x"), (3.10)
and

A1(x) = —x"te™* / dx’ " Bo(x), (3.11)

0

Bi(x) = e_z"Bo_l(x)/dz % Ao(z)[Bo(z) — A1(2)]-

' (3.12)
In physical applications we also nedf(x), so we
have

B?(x) = B3(x) + 2moBo(x) B1(x) + - --
= B§(x)

+ 2rge 2 / dz e% Ao(2)[Bo(z) — A1(2)]

c1

T (3.13)

and the relation between constants of integratign
andc1 remains, in general, arbitrary. However, there
exists a general restriction, nameh#(x) > 0 and it
should be real, which may lead to some bounds for the
constants of integration, while < co always remains
valid.

3.2. Heavy quarks
For heavy quarkée, b, 1) it makes sense to replace

mo — mg. Inthis case it is convenient to find solution
for heavy quark form factord and B as follows:

moHA@) =Y g Ay(x),
n=0

moB(x)=Y iy By(x), (3.14)
n=0

V. Gogohia et al. / Physics Letters B 576 (2003) 243-252

and for heavy quark masses it is formally assumed
thatﬁz(QC’b”) > 1, i.e., the inverse powers are small.
Substituting these expansions into the first equation
of the ground system (3.1) and omitting some tedious
algebra, one finally obtains

Bo(x) = -1, B1(x) =0, (3.15)

and

x A, (x) + (1 +x)An(x) = —Byy2(x),
n=0,1,23,.... (3.16)

In the same way, by equating terms at equal powers
in the inverse of heavy quark masses, from second of
the equations of the ground system (3.1), one finally
obtains

Po(x) + Qo(x) — No(x) =0,

P1(x) + Q1(x) — N1(x) =0, (3.17)
and
1
Pn+2(x) + Qn+2(x) - Nn+2(x) = _EMn(x)v
n=0,1,23,..., (3.18)

whereP,(z), M, (2), On(z), N, (z) are again given by
Egs. (3.5). Solving Egs. (3.17) and taking into account
Eq. (3.15), one obtains

Ap(x) = Bo(x) = —1, A1(x) = B1(x) =0,
(3.19)

so the final system to be solved further becomes
XA, (x) + (L4 x)Ap(x) = = Buy2(x),

1
Puy2(x) + Qnyo(x) — Npjo(x) = _EMn(x)v
n=0123,.... (3.20)

It is possible to show that all odd terms are simply
zero, i.e., Agy41(x) = Boy41(x) =0, n = 0,1, 2,
3....

The explicit solutions for a few first nonzero terms
are

Ao(x) = Bo(x) = —1, (3.21)
Ax(x)=x+ g, By(x)=x+1. (3.22)
_ 2 3 15
Ag(x) = —x 2x >
7 3
Ba(x) =—x°— Ex ~ 3 (3.23)
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Thus our solutions for the heavy quark form factors
look like

e¢]

1 -
A(x)=7 mg" Ay (x)
mQ n=0
1 2
Mg Mg Mg
where
3 3x+15
D J— — + oo 3.25
A(x) —%2 2n'1€‘Q (3.25)
and
o0
B(x)=——> iy By(x)
n=0
1 2
- T4+ Dp), (3.26)
I’VlQ mQ mQ
where
1 7x+3
Dp(x)=— — —— (3.27)
my ZmQ
Summing up, one obtains
A(x)=— ) +DA(-X)7
x+mQ
B(x)=——2 + Dg(x). (3.28)
x+mQ

In terms of the Euclidean dimensionless variables,
the quark propagator is

iS(x) =RA(x) — B(x). (3.29)

Using our solutions, obtained above, it can be written
down as follows:

iSh(x)=iSo(x) +xDas(x) — Dp(x), (3.30)

where iSp(x) is nothing else but the free quark
propagator with the substitutiong — g, i.e.,

iSo(x)=——— "2 (3.31)
X +mQ

Since £Ds(x) — Dp(x) is of order m;°, then

Eq. (3.30), becomes

iSh(x) =iSo(x) + O (), (3.32)

i.e., it is reduced to the free quark propagator up to
terms of order 3.

249

3.3. Heavy quarks flavor symmetry

It is instructive to show explicitly that our solution
(3.32) possesses the heavy quark flavor symmetry [10,
11]. We will show that the quark propagator to leading
order (up to terms of order/lng) in the inverse
powers of the heavy quark mass will not depend on
it, i.e., it is a manifestly flavor independent to the
leading order of this expansion. For this purpose,
we must take into account that the argument
which is the dimensionless momentum of the heavy
quark, contains itself the heavy quark mass.

In other words, a standard heavy quark momentum
decomposition should be used, namely

Pu=mouy +ky, (3.33)
as well as
X=yuxp=yulmouy + yu), (3.34)

wherev is the four-velocity withu? = —1 (Euclidean
signature). It should be identified with the four-
velocity of the hadron. The “residual” momentum

is of dynamical origin. In these terms the Euclidean
dimensionless dynamical momentum variabhle=
p?/32 then becomes

X =—m% — 2ot -z, (3.35)

where we denote = (v - y) with y, = k,/g and
2 =k?/g>.

Substituting these expressions into the Eq. (3.31)
and taking into account only the leading order term in
the inverse powers of o, one finally obtains

1
iSp(v,y)=iSo(v,y)+ O (—) (3.36)
mo
where
1 0-1
iSo(v, y) = — ==, (3.37)
v-y 2

which is exactly the heavy quark propagator [11].
Thus our propagator does not depenadgnto leading
order in the heavy quark mass limitpy — oo, i.e., in
this limit it possesses the heavy quark flavor symmetry,
indeed.



250 V. Gogohia et al. / Physics Letters B 576 (2003) 243-252

4. The general solution for heavy quarks So the general solution (2.3) becomes

It is easy to understand that the chiral perturbation B2(c, ;%)
theory at the fundamental quark level developed for < exp2x’)
light quarks in Subsection 3.1 completely coincides = (1— %ZQ)GXFJ(—ZX)] — 5 dx’
with the general solution (2.3), complemented by S " +mG)
Egs. (2.4), (2.5) and (2.6). We use these equations in c ,
the chiral limit as input information in the expansions 1 22 exp(—zx)/ exp2x’) dx’
(3.2). However, things are not so straightforward Q (x/+n‘12Q)3
in the case of heavy quarks. Developing the chiral — _ *
perturbation theory in the inverse powers of the heavy + Dp(c,mg; x), (4.4)
quark masses in Subsection 3.2, we do not use thewhere
general solution (2.3), only the system (2.2) itself. In c
this subsection we will show that the general solution 7 - N _ N YN
(2.3), complemented by Egs. (2.4), (2.5) and (2.6), for ~ & (@)= X Zx)/exp(Zx YDa(x)dx
the heavy quark mass function possesses much more * (4.5)
information than the direct solution of the system (2.2)
on account of the expansions (3.14) provides at all.

Starting from the expansion (3.14) for the(x)
function, which contributes into the quark wave func-
tion renormalization only, and using exact Egs. (2.5) Bz(c,th;x)
and (2.6), it is possible to show explicitly that it is de- _ (1 — 22 )e—Zx
termined by the solution (3.28), i.e., itis 0

The first two integrals can be explicitly expressed
in terms of the corresponding integral exponential
function Ei(x), so one has

er eZC
A(x)=— Da(x), 4.1 x [ -2y " -
(x) x+rﬁ2Q+ A(x) (4.1) (x+mQ) (c+mQ)
o2 _
where theD 4 (x) function is given in Eq. (3.25). Thus — 2e 2mQ[El (2(x + ng))
in the case of thd (x) function the straightforward so- ) >
lution of the initial system (2.2) completely coincides — Ei(2(c + mQ))]}
with exact solution, indeed. 2% 2%
Unfortunately, things are not so simple for the + 2% e [_ ¢ - ¢ .
heavy quark mass functioB(x), which should be 2(C+fﬁQ)2 (c+mp)

determined with the help of the exact solution (2.3),

—2%) i (o, =2
on account of the solution (4.1). Substituting it first +2e""OEi(2(c +mG))

into the relation (2.5) and then using the relation (2.4) n e n e
and doing some tedious algebra, one finally obtains 2(x + ,;ZZQ)Z (x + ”_IZQ)
1— 2im? 212 2
~ [ [ n —2m . -2
v(x) = + + D4(x), 4.2 —2e OFEi(2(x +m ]
© (32 (x+i3)° At (42) (2(x +1g))
where + Dp(c,mg; x). (4.6)
Da(x) = D2 (x) + 2D (x) — D) It is convenient to separate the dependence on the
(x +mQ) constant of integratiom, so after some algebra one
2y obtains
+—————Da(x) +2xDa(x) D)y (x
Y AX) A(X) D)y (x) B(c. g )
2(3+ 2x) 1 mZQ

Da(x) +2(1+ x) DA (x). —
(ct ) A(x) + 214 x) D45 (x) (x+r712Q) + (x+r?z2Q)2
(4.3)
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- 26_2(x+"_12Q)Ei(2(x +m%)) the uniform limitx, m2, — oo the heavy quark propa-
Ds(c.io: Dalc.imo: x), 47 gator may be_co_me the free one up to the composition

+ Dple,mo; x) + Dp(e.mg; x) .7) Dp(mg; x), similar to Egs. (3.28).

where It is instructive to present explicitly a few first

Dp(c.iio: x) terms of the expansion (3.14) for tiBgx) function by
B0 , substituting it directly into the general solution (2.3),
o 1-2my oy on account of the known already expansion for the
- (C_,_”-ZZQ)E A(x) function. Omitting all the tedious algebra one

) —2(x+rh2Q)E- 2 -2 obtains
e l( (C+mQ))

2 2(c—
n‘zZQ[ ' 72+ : 2 ]ez(c—x)_ Bg(x) =1~ ™),
2c+my? " (i) Bo() =[x — 142V~ DBy ), (4.12)

(4.8)
Evidently, by no means the exact solution (4.7) can and all odd terms are zero. In order to reproduce
be reduced to the free quark propagator solution the free quark propagator case, one has to go again
(3.28) for the B(x) function, except, maybe, of the t0 the limit x — oo and fixedc. Neglecting then
asymptotical regime (see below). It is regular at zero. the exponentially suppressed terms and choosing the
It identically vanishes in the PT limig2 — 0, as  Negative sign in front of the square root, i.8o(x) =

it should be, since in this cage= x — oo uniformly —1, one obtaingB(x) = x + 1 and so on. Summing
(see general solution (2.3)). In the heavy quark mass UP. one gets the free quark propagator solution (3.28),
infinite limit (m o — oo and g2 fixed), the quark mo- indeed. However, even in this case there is a solution

mentum also goes to infinity (i.ex,— oo see, forex-  With opposite sign, corresponding apparently to the
ample Eq. (3.33)). In this case the constant of inte- free heavy antiquark propagator. Concluding, let us
grationc remains finite, and therefore the composition rémind thatitis a general feature of nonlinear systems,
Dp(c.mg:; x) also vanishes. Using further the asymp- like the initial system (2.2), that the number of
totics of the integral exponential functidfi (z) as fol- independent solutions is not fixedriori.

lows:

, 1 1 1
El(z)=ez[z+z—2+0<z—3)}, z—>o00, (4.9) 5. Conclusions

from Eq. (4.7) one obtains We have shown that the quark propagator in 2D

5 n‘12Q — _ covariant gauge QCD reveals several desirable and
B(c,mg; x)x e 122 + Dp(c,mo; x). promising features, so our conclusions are:
Mo 0
(4.10)

. ) L i (1) The quark propagator has no poles, indeed
Choosing negative sign in the square root, one finally (quark confinement).

obtains (2) Italsoimplies DBCS, i.e., a chiral symmetry is

B(iig; x) certainly dynamically (spontaneously) broken for light

quarks, while a chiral symmetry preserving solution is

i - forbidden.

xig—oo (¥ +mp) (3) The chiral limit physics (i.e., the Goldstone
(x + ,;,2Q)2 _ 1/2 sector) can be exactly evaluated, since we have found

X [1 + ————Dg(my; X)} ; exact solution for the quark propagator in this case.
Mo (4) We develop an analytical formalism, the so-

(4.11) called chiral perturbation theory at the fundamental

where BB(I”I_/lQ; x) does not depend on and its ex- quark level, which allows one to find solution for the

plicit expression is not important here. Thus, only in quark propagator in powers of the light quark masses.

no

~
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Each correction satisfies the differential equation, Our general conclusion is that 2D covariant gauge
which can be formally solved exactly. QCD implies quark confinement and dynamical break-
(5) We develop also an analytical formalism, which down of chiral symmetry without explicitly involv-
allows one to find solution for the quark propagator in ing some extra degrees of freedom. The only dynam-
the inverse powers of the heavy quark masses. It co-ical mechanism responsible for them, which can be
incides with the free quark propagator up to terms of thought of in 2D covariant gauge QCD, is the direct
order J,/ﬁz3Q. So this solution automatically possesses interaction of massless gluons [7,8]. This interaction

the heavy quark flavor symmetry up to terms of order is a main dynamical effect not only in 2D QCD but in
1/mg. 4D QCD as well, i.e., in QCD itself. However, to di-
(6) We have proved that the exact solution for the rectly generalize the quark confinement mechanism of
A(x) function coincides with the direct solution of 2D covariant gauge QCD to 4D QCD is impossible.
the initial system (2.2), obtained by using the above- The problem is that in former theory the coupling con-
mentioned expansions in the inverse powers of the stant, having the dimensions of mass, plays the role
heavy quark masses. of a mass gap, which was introduced and discussed
(7) At the same time, the exact solution (4.7) for by Jaffe and Witten (JW) in Ref. [12]. In latter the-
the heavy quark mass functid(x) by no means can  ory the coupling constant is dimensionless, and there
be reduced to the free heavy quark propagator. Sois none of the characteristic scales in QCD Lagrangian.
it is not coincided with the solution obtained by the If QCD confinesthen such a characteristic scale is very
expansions in the inverse powers of the heavy quark likely to exist, and it is notAgcp, of course, which
masses. can be considered as responsible for the nontrivial PT
(8) There is no doubt left that by using the expan- dynamics in QCD (scale violation, asymptotic free-
sions in the inverse powers of the heavy quark massesdom). A possible way how to introduce a mass gap re-
from the very beginning, we are loosing some piece sponsible for the nontrivial NP dynamics in QCD has
of the important information on the structure of the been described in Ref. [13]. Its possible relation to the
nonlinear system (2.2) itself. So its direct solution, ob- above-mentioned JW mass gap is also discussed there.
tained by using the straightforward expansions in the
inverse powers of the heavy quark masses, has a Paracknowledgements
ticular character. Evidently, such straightforward solu-
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