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Abstract

We have investigated a closed set of equations for the quark propagator, which has been obtained earlier with
nonperturbative approach to two-dimensional covariant gauge QCD. It is shown that this theory implies quark confinem
quark propagator has no poles, indeed), as well as dynamical breakdown of chiral symmetry (a chiral symmetry p
solution is forbidden). The above-mentioned set of equations can be exactly solved in the chiral limit. We develop an a
formalism, the so-called chiral perturbation theory at the fundamental quark level, which allows one to find solution
quark propagator in powers of the light quark masses. Each correction satisfies the differential equation, which can be
solved. We develop also an analytical formalism which allows one to find solution for the quark propagator in the inverse
of the heavy quark masses. It coincides with the free heavy quark propagator up to terms of order 1/m3

Q, wheremQ is the heavy
quark mass. So this solution automatically possesses the heavy quark flavor symmetry up to terms of order 1/mQ. At the same
time, we have found a general solution for the heavy quark propagator, which by no means can be reduced to the free
 2003 Elsevier B.V. 
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1. Introduction

The investigation of two-dimensional (2D) QC
in the context of the Schwinger–Dyson (SD) dynam
cal equations of motion has been initiated by the p
neering paper of ’t Hooft [1]. He used the free glu
propagator in the light-cone gauge, which is free fr
ghost complications. He used also the largeNc (the
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number of colors) limit technique in order to ma
the perturbation (PT) expansion with respect to 1/Nc
reasonable. In this case the planar diagrams are
duced to quark self-energy and ladder diagrams, wh
can be summed. The bound-state problem within
Bethe–Salpeter (BS) formalism was finally obtain
free from the infrared (IR) singularities. The existen
of a discrete spectrum only (no continuum in the sp
trum) was demonstrated. Since this pioneering pa
2D QCD continues to attract attention (see, for exa
ple, review [2] and recent papers [3–5] and referen
therein). Despite its simplistic vacuum structure it
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t be
mains a rather good laboratory for the modern the
of strong interactions, which is four-dimensional (4
QCD [6].

In our previous publications [7,8] we have inves
gated 2D QCD in the arbitrary covariant gauge for
first time. In these works a new, nonperturbative (N
solution (using neither largeNc limit technique explic-
itly nor a weak coupling regime, i.e., ladder appro
mation) to 2D QCD in the covariant gauge is obtain
in the context of the above-mentioned SD equatio
complemented by the corresponding Slavnov–Ta
(ST) identities. It is well known, however, that cova
ant gauges, in general, are complicated by the g
contributions. Nevertheless, we have shown that g
degrees of freedom can be considerable within our
proach [7]. The ghost-quark sector contains a very
portant piece of information on quark degrees of fr
dom themselves through the corresponding quark
identity. This is just the information which should b
self-consistently taken into account. In this way a clo
set of equations has been derived for the quark p
agator [7]. The main purpose of this Letter is to e
actly solve the obtained system of equations in
chiral limit and to develop analytical methods of
solution in the general case, i.e., for the nonzero c
rent quark masses. Let us emphasize in advance
we have found a general solution for the heavy qu
propagator, which by no means could be reduce
the free one. All of this will provide the necessary b
sis for future numerical calculations as well.

2. Quark SD equation

The final system of equations, obtained in Ref.
for the quantities in the quark sector, are presente
the quark SD equation and the quark ST identity
follows (Euclidean signature):

S−1(p)= S−1
0 (p)+ ḡ2Γµ(p,0)S(p)γµ,

(2.1)
Γµ(p,0)= idµS−1(p)− S(p)Γµ(p,0)S−1(p).

For simplicity, here we remove an overbar from t
definitions of the renormalized Green’s functions,
taining it only for the coupling constant̄g (which
has the dimensions of mass) in order to distingu
it from initial (“bare”) coupling constant. It contain
all known finite numerical factors.Γµ(p,0) is ob-
t

viously the proper quark–gluon vertex at zero m
mentum transfer. The Euclidean version of our pa
metrization of the quark propagator is as follow
iS(p) = p̂A(p2) − B(p2). It is convenient to intro-
duce the dimensionless variables and functions
A(p2) = ḡ−2A(x), B(p2) = ḡ−1B(x), x = p2/ḡ2.
Performing further some tedious algebra of theγ ma-
trices in 2D Euclidean space, the system (2.1) can
explicitly reduced to a system of a coupled, nonlin
ordinary differential equations of the first order for t
A(x) andB(x) quark propagator form factors, name

xA′ = −(1+ x)A− 1− m̄0B,

(2.2)2BB ′ = −A2 + 2(m̄0A−B)B,
whereA≡A(x),B ≡ B(x), and the prime denotes th
derivative with respect to the Euclidean dimensionl
momentum variablex. For the dimensionless curre
quark mass, we introduce the notationm̄0 =m0/ḡ.

The formal exact solution of the system (2.2) f
the dynamically generated quark mass function is

(2.3)B2(c, m̄0;x)= exp(−2x)

c∫
x

exp(2x ′)ν̃(x ′) dx ′,

andc is the constant of integration. Not losing gen
ality, it can be fixed asc = p2

c /ḡ
2, wherep2

c is some
constant momentum squared, and

(2.4)ν̃(x)=A2(x)+ 2A(x)ν(x)

with

(2.5)
ν(x)= −m̄0B(x)= xA′(x)+ (1+ x)A(x)+ 1.

Then the equation determining theA(x) function
becomes

(2.6)

dν2(x)

dx
+ 2ν2(x)= −A2(x)m̄2

0 − 2A(x)ν(x)m̄2
0.

2.1. Quark confinement

As was emphasized in Refs. [7,8], the import
observation is that the formal exact solution (2
exhibits the algebraic branch point atx = c, which
completely excludes a pole-type singularityat any
finite point on the real axis in thex-complex plane
whatever the solution for theA(x) function might be.
Thus the solution for the quark propagator canno
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presented as the expression having finally a pole-
singularity at any finite pointp2 = −m2 (Euclidean
signature), i.e.,

(2.7)S(p) 
= const

p̂+m,

certainly satisfies thereby the first necessary condi
of quark confinement, formulated at the fundamen
quark level as the absence of a pole-type singula
in the quark propagator [9]. It is well known that su
kind of unphysical singularity (algebraic branch po
atx = c) is due to the inevitable ghost contributions
the covariant gauge QCD. However, as was explai
in Refs. [7,8], it will not cause any problems with
our approach in order to calculate truly NP quan
ties, such as quark condensate. The absence of a
type singularities in the quark propagator as a cr
rion of confinement at the microscopic level is on
first necessary condition. The second sufficient c
dition of this criterion, formulated at the macroscop
(hadron) level, is the existence of a discrete spect
only (no continuum in the spectrum) in the bound-st
problem within the corresponding BS formalism [1
Its discussion is obviously beyond the scope of
present Letter.

2.2. Dynamical breakdown of chiral symmetry
(DBCS)

From a coupled system of the differential equatio
(2.2) it is easy to see that this systemallows a chiral
symmetry breaking solution only,

(2.8)m̄0 = 0, A(x) 
= 0, B(x) 
= 0

andforbids a chiral symmetry preserving solution,

(2.9)m̄0 = B(x)= 0, A(x) 
= 0.

Thus any nontrivial solution automatically breaks t
γ5 invariance of the quark propagator, and the
fore certainly leads to the spontaneous chiral sy
metry breakdown at the fundamental quark le
(m0 = 0, �B(x) 
= 0, dynamical quark mass gener
tion). In all previous investigations a chiral symm
try preserving solution always exists. For simpl
ity, we do not distinguish betweenB(x) and �B(x),
calling both dynamically generated quark mass fu
tions.
-

A few remarks are in order. A nonzero, dynam
cally generated quark mass function defined by co
tion (2.8) is the order parameter of DBCS at the fu
damental quark level. At the phenomenological le
the order parameter of DBCS is the nonzero ch
quark condensate determined as〈q̄q〉0 ∼ −ḡ ∫ c0

0 dx×
B0(c0, x) within our approach (see Ref. [8] an
B0(c0, x) is explicitly given below in Eq. (2.11))
In general, it can be formally zero, even when
mass function is definitely nonzero. Thus the nonze
dynamically generated quark mass is a much m
appropriate condition of DBCS than the quark co
densate. One may say that this is the first neces
condition of DBCS, while the nonzero chiral qua
condensate is the second sufficient one.

2.3. The chiral limit

In the chiral limit (m̄0 = 0) the system (2.2) can b
solved exactly. The solution for theA(x) function is

(2.10)A0(x)= −x−1{1− exp(−x)}.
It has thus the correct asymptotic properties (

Fig. 1). It is regular at smallx and asymptotically
approaches the free propagator at infinity (x → ∞),
which can be formally achieved by the two way
p2 → ∞ at fixed ḡ2 and/or byḡ2 → 0 as well. Let
us note that the last limit is known as the PT one.
the dynamically generated quark mass functionB(x)
the exact solution is

(2.11)B2
0(c0, x)= exp(−2x)

c0∫
x

exp(2x ′)A2
0(x

′) dx ′,

wherec0 = p2
0/ḡ

2 is an arbitrary constant of integra
tion andp2

0 is some constant momentum squared
the chiral limit case. It is regular at zero. In additio
it also has algebraic branch points atx = c0 and at
infinity (at fixed c0, i.e., whenḡ2 is fixed). As in the
general (nonchiral) case, these unphysical singular
are caused by the inevitable ghost contributions in
covariant gauges (for general behavior of this solut
see Fig. 2).

As was mentioned above,A0(x) automatically has
a correct behavior at infinity (it does not depend
the constant of integration, since it was specified
order to get regular at zero solution). In the PT lim
(ḡ2 → 0), the constant of the integrationc0 and the
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Fig. 1.A0(x) as given by Eq. (2.6).

Fig. 2. The dynamically generated quark mass function as given by Eq. (2.7).
.11)
th
iral
of

r
em
ot

ll.
variablex go to infinity uniformly (c0, x → ∞), so
the dynamically generated quark mass function (2
identically vanishes in this limit, in accordance wi
the vanishing current light quark mass in the ch
limit. Obviously, we have to keep the constant
integrationc0 in Eq. (2.11) arbitrary but finite in orde
to obtain a regular at zero point solution. The probl
is that if c0 = ∞, then the solution (2.11) does n
exist at all at any finitex, in particular atx = 0. This is
valid, of course, for the general solution (2.3) as we
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3. Nonzero current quark masses

Let us formulate and develop now the calculat
scheme, which gives the solution of the system (2
step by step in powers of the light nonzero curr
quark masses, as well as in the inverse power
the heavy quark masses. For this purpose, it is m
more convenient to start from the ground syst
itself, Eqs. (2.2), rather than to investigate the gen
solution (2.3). For this purpose, let us rewrite t
ground system (2.2) as follows:

xA′ + (1+ x)A+ 1 = −m̄0B,

(3.1)2BB ′ +A2 + 2B2 = 2m̄0AB.

As was mentioned above, we are interested in the
lutions which areregular at zeroand asymptotically
approach the free quark case at infinity. Because
our parametrization of the quark propagator, its
ymptotics have to be determined as follows (Euclide
signature):A(x) ∼x→∞ −1/(x + m̄2

0), B(x) ∼x→∞
−m̄0/(x + m̄2

0), and neglectingm̄2
0 in the denomina-

tors for light quarks. The ground system (3.1) is ve
suitable for numerical calculations.

3.1. Light quarks

Let us now develop the above-mentioned analyt
formalism, which makes it possible to find solutio
of the ground system (3.1) step by step in powers
the light (u, d, s) nonzero current quark masses, t
so-called chiral perturbation theory at the fundame
quark level. For this purpose it is convenient to pres
the quark propagator form factorsA andB as follows:

A(x)=
∞∑
n=0

m̄n0An(x),

(3.2)B(x)=
∞∑
n=0

m̄n0Bn(x),

where it is formally assumed that̄m(u,d,s)0 � 1. Sub-
stituting these expansions into the ground system (
and omitting some tedious algebra, one obtains

xA′
0(x)+ (1+ x)A0(x)+ 1 = 0,

(3.3)2B0(x)B
′
0(x)+A2

0(x)+ 2B2
0(x)= 0,
and forn= 1,2,3, . . . , one obtains

xA′
n(x)+ (1+ x)An(x)= −Bn−1(x),

(3.4)2Pn(x)+Mn(x)+ 2Qn(x)= 2Nn−1(x),

where

Pn(x)=
n∑
m=0

Bn−m(x)B ′
m(x),

Mn(x)=
n∑
m=0

An−m(x)Am(x),

Qn(x)=
n∑
m=0

Bn−m(x)Bm(x),

(3.5)Nn(x)=
n∑
m=0

An−m(x)Bm(x).

Is is obvious that the system (3.3) describes
ground system (3.1) in the chiral limit (m̄0 = 0). As we
already know, it can be solved exactly (see below
well). The first nontrivial correction in powers of sma
m̄0 is determined by the following system, whic
follows from Eqs. (3.4) and (3.5), and it is

xA′
1 + (1+ x)A1 = −B0,

(3.6)(B1B
′
0 +B0B

′
1)+A0A1 + 2B0B1 =A0B0,

where we omit the dependence on the argumentx, for
simplicity. In the similar way can be found the syste
of equations to determine terms of orderm2

0 in the
solution for the quark propagator and so on.

Let us present a general solution to the first of E
(3.4), which is

(3.7)An(x)= −x−1e−x
x∫

0

dx ′ ex ′
Bn−1(x

′).

It is always regular at zero, since allBn(x) are
regular as well. The advantage of the developed ch
perturbation theory at the fundamental quark leve
that each correction in the powers of small curr
quark masses is determined by the correspon
system of equations which can be formally solv
exactly.

Let us write down the system of solutions appro
mating the light quark propagator up to first correcti
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i.e.,

A(x)=A0(x)+ m̄0A1(x)+ · · · ,
(3.8)B(x)= B0(x)+ m̄0B1(x)+ · · · .

This system is

(3.9)A0(x)= −x−1(1− e−x), A0(0)= −1,

(3.10)B2
0(x)= e−2x

c0∫
x

dx ′ e2x ′
A2

0(x
′),

and

(3.11)A1(x)= −x−1e−x
x∫

0

dx ′ ex ′
B0(x

′),

(3.12)

B1(x)= e−2xB−1
0 (x)

x∫
c1

dz e2zA0(z)
[
B0(z)−A1(z)

]
.

In physical applications we also needB2(x), so we
have

B2(x)= B2
0(x)+ 2m̄0B0(x)B1(x)+ · · ·

= B2
0(x)

+ 2m̄0e
−2x

x∫
c1

dz e2zA0(z)
[
B0(z)−A1(z)

]
(3.13)+ · · · ,

and the relation between constants of integrationc0
andc1 remains, in general, arbitrary. However, the
exists a general restriction, namelyB2(x) � 0 and it
should be real, which may lead to some bounds for
constants of integration, whilex � c0 always remains
valid.

3.2. Heavy quarks

For heavy quarks(c, b, t) it makes sense to replac
m̄0 → m̄Q. In this case it is convenient to find solutio
for heavy quark form factorsA andB as follows:

m̄2
QA(x)=

∞∑
n=0

m̄−n
Q An(x),

(3.14)m̄QB(x)=
∞∑
m̄−n
Q Bn(x),
n=0
and for heavy quark masses it is formally assum
that m̄(c,b,t)Q � 1, i.e., the inverse powers are sma
Substituting these expansions into the first equa
of the ground system (3.1) and omitting some tedi
algebra, one finally obtains

(3.15)B0(x)= −1, B1(x)= 0,

and

xA′
n(x)+ (1+ x)An(x)= −Bn+2(x),

(3.16)n= 0,1,2,3, . . . .

In the same way, by equating terms at equal pow
in the inverse of heavy quark masses, from secon
the equations of the ground system (3.1), one fin
obtains

P0(x)+Q0(x)−N0(x)= 0,

(3.17)P1(x)+Q1(x)−N1(x)= 0,

and

Pn+2(x)+Qn+2(x)−Nn+2(x)= −1

2
Mn(x),

(3.18)n= 0,1,2,3, . . . ,

wherePn(z),Mn(z),Qn(z),Nn(z) are again given by
Eqs. (3.5). Solving Eqs. (3.17) and taking into acco
Eq. (3.15), one obtains

(3.19)
A0(x)= B0(x)= −1, A1(x)= B1(x)= 0,

so the final system to be solved further becomes

xA′
n(x)+ (1+ x)An(x)= −Bn+2(x),

Pn+2(x)+Qn+2(x)−Nn+2(x)= −1

2
Mn(x),

(3.20)n= 0,1,2,3, . . . .

It is possible to show that all odd terms are sim
zero, i.e.,A2n+1(x) = B2n+1(x) = 0, n = 0,1,2,
3, . . . .

The explicit solutions for a few first nonzero term
are

(3.21)A0(x)= B0(x)= −1,

(3.22)A2(x)= x + 3

2
, B2(x)= x + 1.

A4(x)= −x2 − 3

2
x − 15

2
,

(3.23)B4(x)= −x2 − 7
x − 3

.

2 2
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Thus our solutions for the heavy quark form facto
look like

A(x)= 1

m̄2
Q

∞∑
n=0

m̄−n
Q An(x)

(3.24)= − 1

m̄2
Q

+ x

m̄4
Q

− x2

m̄6
Q

+ · · · +DA(x),

where

(3.25)DA(x)= 3

2m̄4
Q

− 3x + 15

2m̄6
Q

+ · · · ,

and

B(x)= 1

m̄Q

∞∑
n=0

m̄−n
Q Bn(x)

(3.26)= − 1

m̄Q
+ x

m̄3
Q

− x2

m̄5
Q

+ · · · +DB(x),

where

(3.27)DB(x)= 1

m̄3
Q

− 7x + 3

2m̄5
Q

+ · · · .

Summing up, one obtains

A(x)= − 1

x + m̄2
Q

+DA(x),

(3.28)B(x)= − mQ

x + m̄2
Q

+DB(x).

In terms of the Euclidean dimensionless variab
the quark propagator is

(3.29)iS(x)= x̂A(x)−B(x).
Using our solutions, obtained above, it can be writ
down as follows:

(3.30)iSh(x)= iS0(x)+ x̂DA(x)−DB(x),
where iS0(x) is nothing else but the free qua
propagator with the substitution̄m0 → m̄Q, i.e.,

(3.31)iS0(x)= − x̂ − m̄Q
x + m̄2

Q

.

Since x̂DA(x) − DB(x) is of order m̄−3
Q , then

Eq. (3.30), becomes

(3.32)iSh(x)= iS0(x)+O
(
m̄−3
Q

)
,

i.e., it is reduced to the free quark propagator up
terms of order 1/m̄3

Q.
3.3. Heavy quarks flavor symmetry

It is instructive to show explicitly that our solutio
(3.32) possesses the heavy quark flavor symmetry
11]. We will show that the quark propagator to lead
order (up to terms of order 1/mQ) in the inverse
powers of the heavy quark mass will not depend
it, i.e., it is a manifestly flavor independent to t
leading order of this expansion. For this purpo
we must take into account that the argumentx,
which is the dimensionless momentum of the he
quark, contains itself the heavy quark massmQ.
In other words, a standard heavy quark momen
decomposition should be used, namely

(3.33)pµ =mQυµ + kµ,
as well as

(3.34)x̂ = γµxµ = γµ(mQυµ + yµ),
whereυ is the four-velocity withυ2 = −1 (Euclidean
signature). It should be identified with the fou
velocity of the hadron. The “residual” momentumk
is of dynamical origin. In these terms the Euclide
dimensionless dynamical momentum variablex =
p2/ḡ2 then becomes

(3.35)x = −m̄2
Q − 2m̄Qt − z,

where we denotet = (υ · y) with yµ = kµ/ḡ and
z= k2/ḡ2.

Substituting these expressions into the Eq. (3.
and taking into account only the leading order term
the inverse powers ofmQ, one finally obtains

(3.36)iSh(υ, y)= iS0(υ, y)+O
(

1

mQ

)
,

where

(3.37)iS0(υ, y)= 1

υ · y
υ̂ − 1

2
,

which is exactly the heavy quark propagator [1
Thus our propagator does not depend onmQ to leading
order in the heavy quark mass limit,mQ → ∞, i.e., in
this limit it possesses the heavy quark flavor symme
indeed.
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4. The general solution for heavy quarks

It is easy to understand that the chiral perturbat
theory at the fundamental quark level developed
light quarks in Subsection 3.1 completely coincid
with the general solution (2.3), complemented
Eqs. (2.4), (2.5) and (2.6). We use these equation
the chiral limit as input information in the expansio
(3.2). However, things are not so straightforwa
in the case of heavy quarks. Developing the ch
perturbation theory in the inverse powers of the he
quark masses in Subsection 3.2, we do not use
general solution (2.3), only the system (2.2) itself.
this subsection we will show that the general solut
(2.3), complemented by Eqs. (2.4), (2.5) and (2.6),
the heavy quark mass function possesses much m
information than the direct solution of the system (2
on account of the expansions (3.14) provides at all

Starting from the expansion (3.14) for theA(x)
function, which contributes into the quark wave fun
tion renormalization only, and using exact Eqs. (2
and (2.6), it is possible to show explicitly that it is d
termined by the solution (3.28), i.e., it is

(4.1)A(x)= − 1

x + m̄2
Q

+DA(x),

where theDA(x) function is given in Eq. (3.25). Thu
in the case of theA(x) function the straightforward so
lution of the initial system (2.2) completely coincid
with exact solution, indeed.

Unfortunately, things are not so simple for t
heavy quark mass functionB(x), which should be
determined with the help of the exact solution (2.
on account of the solution (4.1). Substituting it fi
into the relation (2.5) and then using the relation (2
and doing some tedious algebra, one finally obtain

(4.2)ν̃(x)= 1− 2m̄2
Q

(x + m̄2
Q)

2
+ 2m̄2

Q

(x + m̄2
Q)

3
+ �DA(x),

where

�DA(x)=D2
A(x)+ 2DA(x)− 2x

(x + m̄2
Q)
D′
A(x)

+ 2x

(x + m̄2
Q)

2
DA(x)+ 2xDA(x)D

′
A(x)

− 2(3+ 2x)

(x + m̄2
Q)
DA(x)+ 2(1+ x)D2

A(x).
(4.3)
So the general solution (2.3) becomes

B2(c, m̄Q;x)

= (
1− 2m̄2

Q

)
exp(−2x)

c∫
x

exp(2x ′)
(x ′ + m̄2

Q)
2
dx ′

+ 2m̄2
Q exp(−2x)

c∫
x

exp(2x ′)
(x ′ + m̄2

Q)
3
dx ′

(4.4)+ �DB(c, m̄Q;x),
where

(4.5)

�DB(c, m̄Q;x)= exp(−2x)

c∫
x

exp(2x ′)�DA(x ′) dx ′.

The first two integrals can be explicitly express
in terms of the corresponding integral exponen
functionEi(x), so one has

B2(c, m̄Q;x)
= (

1− 2m̄2
Q

)
e−2x

×
[

e2x

(x + m̄2
Q)

− e2c

(c+ m̄2
Q)

− 2e−2m̄2
Q
[
Ei

(
2
(
x + m̄2

Q

))
−Ei(2(

c+ m̄2
Q

))]]

+ 2m̄2
Qe

−2x
[
− e2c

2(c+ m̄2
Q)

2
− e2c

(c+ m̄2
Q)

+ 2e−2m̄2
QEi

(
2
(
c+ m̄2

Q

))
+ e2x

2(x + m̄2
Q)

2
+ e2x

(x + m̄2
Q)

− 2e−2m̄2
QEi

(
2
(
x + m̄2

Q

))]
(4.6)+ �DB(c, m̄Q;x).

It is convenient to separate the dependence on
constant of integrationc, so after some algebra on
obtains

B2(c, m̄Q;x)

= 1

(x + m̄2
Q)

+ m̄2
Q

(x + m̄2
Q)

2
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− 2e−2(x+m̄2
Q)Ei

(
2
(
x + m̄2

Q

))
(4.7)+ �DB(c, m̄Q;x)+ D̃B(c, m̄Q;x),

where

D̃B(c, m̄Q;x)

= − 1− 2m̄2
Q

(c+ m̄2
Q)
e2(c−x)

+ 2e−2(x+m̄2
Q)Ei

(
2
(
c+ m̄2

Q

))

(4.8)

− 2m̄2
Q

[
1

2(c+ m̄2
Q)

2
+ 1

(c+ m̄2
Q)

]
e2(c−x).

Evidently, by no means the exact solution (4.7) c
be reduced to the free quark propagator solu
(3.28) for theB(x) function, except, maybe, of th
asymptotical regime (see below). It is regular at ze

It identically vanishes in the PT limit̄g2 → 0, as
it should be, since in this casec = x → ∞ uniformly
(see general solution (2.3)). In the heavy quark m
infinite limit (mQ → ∞ andḡ2 fixed), the quark mo-
mentum also goes to infinity (i.e.,x→ ∞ see, for ex-
ample Eq. (3.33)). In this case the constant of in
grationc remains finite, and therefore the composit
D̃B(c, m̄Q;x) also vanishes. Using further the asym
totics of the integral exponential functionEi(z) as fol-
lows:

(4.9)Ei(z)= ez
[

1

z
+ 1

z2
+O

(
1

z3

)]
, z→ ∞,

from Eq. (4.7) one obtains

(4.10)

B2(c, m̄Q;x) ∼
x,m̄2

Q→∞
m̄2
Q

(x + m̄2
Q)

2
+ �DB(c, m̄Q;x).

Choosing negative sign in the square root, one fin
obtains

B(m̄Q;x)
∼

x,m̄2
Q→∞

− m̄Q

(x + m̄2
Q)

(4.11)

×
[
1+ (x + m̄2

Q)
2

m̄2
Q

�DB(m̄Q;x)
]1/2

,

where �DB(m̄Q;x) does not depend onc and its ex-
plicit expression is not important here. Thus, only
the uniform limitx, m̄2
Q → ∞ the heavy quark propa

gator may become the free one up to the composi
�DB(m̄Q;x), similar to Eqs. (3.28).

It is instructive to present explicitly a few firs
terms of the expansion (3.14) for theB(x) function by
substituting it directly into the general solution (2.3
on account of the known already expansion for
A(x) function. Omitting all the tedious algebra on
obtains

B2
0(x)= 1− e2(c−x),

(4.12)B2(x)=
[−x − 1+ e2(c−x)(c− 2)

]
B−1

0 (x),

and all odd terms are zero. In order to reprod
the free quark propagator case, one has to go a
to the limit x → ∞ and fixed c. Neglecting then
the exponentially suppressed terms and choosing
negative sign in front of the square root, i.e.,B0(x)=
−1, one obtainsB2(x) = x + 1 and so on. Summin
up, one gets the free quark propagator solution (3.
indeed. However, even in this case there is a solu
with opposite sign, corresponding apparently to
free heavy antiquark propagator. Concluding, let
remind that it is a general feature of nonlinear syste
like the initial system (2.2), that the number
independent solutions is not fixeda priori.

5. Conclusions

We have shown that the quark propagator in
covariant gauge QCD reveals several desirable
promising features, so our conclusions are:

(1) The quark propagator has no poles, ind
(quark confinement).

(2) It also implies DBCS, i.e., a chiral symmetry
certainly dynamically (spontaneously) broken for lig
quarks, while a chiral symmetry preserving solution
forbidden.

(3) The chiral limit physics (i.e., the Goldston
sector) can be exactly evaluated, since we have fo
exact solution for the quark propagator in this case

(4) We develop an analytical formalism, the s
called chiral perturbation theory at the fundamen
quark level, which allows one to find solution for th
quark propagator in powers of the light quark mass
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Each correction satisfies the differential equati
which can be formally solved exactly.

(5) We develop also an analytical formalism, wh
allows one to find solution for the quark propagator
the inverse powers of the heavy quark masses. It
incides with the free quark propagator up to terms
order 1/m̄3

Q. So this solution automatically possess
the heavy quark flavor symmetry up to terms of or
1/m̄Q.

(6) We have proved that the exact solution for
A(x) function coincides with the direct solution o
the initial system (2.2), obtained by using the abo
mentioned expansions in the inverse powers of
heavy quark masses.

(7) At the same time, the exact solution (4.7)
the heavy quark mass functionB(x) by no means can
be reduced to the free heavy quark propagator.
it is not coincided with the solution obtained by t
expansions in the inverse powers of the heavy qu
masses.

(8) There is no doubt left that by using the expa
sions in the inverse powers of the heavy quark ma
from the very beginning, we are loosing some pie
of the important information on the structure of t
nonlinear system (2.2) itself. So its direct solution, o
tained by using the straightforward expansions in
inverse powers of the heavy quark masses, has a
ticular character. Evidently, such straightforward so
tion does not take into account the response of the
uum, which determines the modification of the qua
propagator, while the exact solution (4.7) does t
this response into the consideration.

(9) The general solution (2.3) does not dem
strate the principal difference in the analytical stru
ture for light and heavy quarks propagators. Also at
fundamental quark level the heavy quark mass li
is not Lorentz covariant. That is why in the case
heavy quarks we will use the general solution (4
rather than solutions (3.30) and (3.36). To take i
account the vacuum’s response is important even
heavy quarks.

(10) Our approach makes it possible to calcul
physical observables from first principles. All resu
will depend only on the renormalized coupling co
stant (which has the dimensions of mass) and the
responding constant of integration. A physically we
motivated scale-setting scheme is only needed to
them.
-

Our general conclusion is that 2D covariant gau
QCD implies quark confinement and dynamical bre
down of chiral symmetry without explicitly involv
ing some extra degrees of freedom. The only dyn
ical mechanism responsible for them, which can
thought of in 2D covariant gauge QCD, is the dire
interaction of massless gluons [7,8]. This interact
is a main dynamical effect not only in 2D QCD but
4D QCD as well, i.e., in QCD itself. However, to d
rectly generalize the quark confinement mechanism
2D covariant gauge QCD to 4D QCD is impossib
The problem is that in former theory the coupling co
stant, having the dimensions of mass, plays the
of a mass gap, which was introduced and discus
by Jaffe and Witten (JW) in Ref. [12]. In latter th
ory the coupling constant is dimensionless, and th
is none of the characteristic scales in QCD Lagrang
If QCD confines then such a characteristic scale is v
likely to exist, and it is notΛQCD, of course, which
can be considered as responsible for the nontrivia
dynamics in QCD (scale violation, asymptotic fre
dom). A possible way how to introduce a mass gap
sponsible for the nontrivial NP dynamics in QCD h
been described in Ref. [13]. Its possible relation to
above-mentioned JW mass gap is also discussed t
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