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1. INTRODUCTION 

The observation of some common characteristics of several facts related 
to measurement, evaluation, or perception (e.g., visual perception) has led 
E. R. Caianiello [2] to the formulation of a principle and a procedure, that 
are comprehensively indicated as C-calculus. 

It is quite natural to admit that a better knowledge of a single object can 
be induced by a search of its context. The aim of C-calculus is to formalize 
this point of view. 

Pattern recognition is a field where first C-calculus was mainly applied. 
The results in this area can enlighten us about further extensions. Let us 
describe briefly the procedure that, accompanied by the development of ad 
hoc technical devices, has given rise to a number of interesting results in 
pattern recognition (see, e.g., [ 1, 3,4]). 

If a black and white picture P to be processed is viewed through a 
rectangular (regular) grid, it appears decomposed into elements or cells wi, 
i = 1, . ..) IZ, for each of which it is possible to state the values of the mini- 
mum mj and maximum Mi of the grey levels in wi, where the levels are 
referred to a suitable scale. Suppose that m;‘s and Mis are the unique infor- 
mation about picture analysis. This information could not be satisfactory 
for us and we would like to attain a better approximation in such a way 
that suitable smaller intervals of the grey scale correspond to parts in wi. 
Let us translate the grid so that another decomposition of P results: let 
now w;, j= 1, . . . . m, be the general cell, [m;, Mj] the related grey interval. 
Consider now two cells wi and w,’ with non empty intersection, w = wi n w;. 
We associate the interval L whose endpoints are the maximum among 
the minima, and the minimum among the maxima, L = [max(m,, mi), 
min(M,, Mi)], to the cell w. So the grey levels of a single element m 
win w; lie in the interval L. 
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The procedure can continue and, on every element e of the picture P it 
assumes one of the two characters: (i) the sequence of intervals L related 
to the sequence of cells containing e tends to a single real number, or (ii) 
the width of L tends to a positive value (in particular it is a constant) with 
the shiftings of the grid. In the first case the procedure of picture processing 
is convergent and provides, in every detail of P, a reading as precise as one 
prefers. In the second case, the process works as a filter by eliminating from 
the reading the regions of P where L does not degenerate [335] (see 
Section 4). From this one can understand how C-calculus be a method for 
dealing with situations in which increasing degrees of precision in measure- 
ment or prediction are desired. We shall see (Section 3) that the procedure 
induced by C-calculus includes, in a suitable framework, the concept of 
integral. A mathematical model of C-calculus was proposed in [S] in a 
measure theoretical context. Our present aim is to continue the investiga- 
tion about the analytic formalization of C-calculus. 

2. PRELIMINARIES 

Let X be a non empty set and (X0) = (X7, . . . . Xi) a dissection of X, i.e., 
a finite pairwise disjoint family of non empty subsets of X such that 
(Jpzl 3$=X. 

Let us define the simple functions, 

c(x) = i ci ch,(x), d(x)= i dfChi(x), 
i= 1 r=l 

where 0 d cj d di < 1 and ch,(x) is the characteristic function of the subset 
Xp, for every x E X. The triple ((x0), c, d) is said to be a composite set, or 
briefly, a C-set in X. 

Given a function g: X+ [0, 1 ] = I and a dissection (X0) = (Xy, . . . . Xz) of 
X a C-set in X is induced as follows. Let us consider 

my = in: g(x), 
XE / 

A47 = SU$ g(x) 
XE c 

and the simple functions 

m’(x)= i mpchi(x), M’(x)= i M;ch,(x); 
i=l ,=I 

the C-set ((X0, m”, MO) is said to be induced by the function g and the 
dissection (X0). 
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Let us consider the further C-set ((X’), m’, M’) induced by g and the 
dissection (xl) = (Xi, . . . . Xi), where 

m’(x) = i rnj chi(x), 
/=I 

Let us define, for Xp n Xi # 0: 

mf = max(mp, ml), 

M’(x) = f 44; chj(x). 
j= 1 

Mt = min(MP, M,‘) 

62, = inf g(x), 
Xfn x; 

%j = 25, g(x) 
in I 

and, for Xp n Xj = a, 

The set (X1) of all non empty entries of the matrix (Xp n Xj) is a dissection 
of X. If chk denotes the characteristic function of Xp n Xj # @, the 
following composition * defines a C-set 

((Xl), ml, Ml)= ((X0), m”, MO) * ((xl), m’, M’), 

where m’(x)=Ciimichi, M’(x)=C,Michk(x), because rnj;<fi,< 
n@4;. 

The C-set ((Xl), m’, Ml) is indicated as the C-product of ((X0), m”, MO) 
and ((X’), m’, M’). The operation * is commutative [S]. Observe that the 
C-product of two C-sets induced by g is not, in general, a C-set induced 
by g. 

The validity of * can be extended. In fact, let ((Xl’), m”, M”) be a C-set 
in X induced by g and the dissection (X”) = (Xy, . . . . Xi), with chl the 
characteristic function of Xi, h = 1, . . . . q. Let, analogously, 

rn$ = max(mt, rni) 

M$ = min(Mk, MI:). 

If (X2) = (Xt.h), the triple ((X2), m*, M2), with m’(x) = Cijh m& ch&(x), 
M’(x) = Ciih M$, ch&(x) is a C-set, because m2(x) < M2(x). Assuming this 
extension, C-product is associative and the validity of * can be extended to 
a finite number of C-sets. 

Let Cg denote the subset of all C-sets in X whose elements are C-sets 
induced by g or their C-products. (Cg, *) is a commutative monoid whose 
identity is (X, 0, l), the C-set having the one element dissection, where 0 
and 1 are the constant functions taking values 0 and 1 in X, respectively. 

W/165/2-16 
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Consider now the sequence, 

c, = ((X0), m”, MO) 
c, = ((Xl), m’, M’) = ((X0), m”, MO) * ((X”‘), ,(I’, M”‘) 

= Co * ((X”‘, m (1). MCI’) 

Ck = ((X”), mk, Mk) 

= ((Xk-‘), mkp’, Mk-‘) * (Xck), mck), Mck)) 

=c,-, * (($“I), mck), Mck)) 

(1) 

The sequence { Ck} is said to be induced by g. If X9 is the general non 
empty element of the dissection (Xk), then for every XEX~ it is 

m’(x) <m’(x) < ... <mk(x)<g(x)<Mk(x)G ... <M1(x)6Mo(x) (2) 

with m”(x) = C, rnt ch:(x), Mk(x) = C, A4: ch:(x). 
Therefore the sequences {mk(x)} and {Mk(x)} converge in every point 

of X. Let us set 

m(x) = likm mk(x), M(x) = lip Mk(x). 

It is, by (2), 

m(x)6 g(x) 6 M(x), x E x. 

It is worth sketching some interpretation. The sequence { Ck} represents 
a reading of the set X, depending on the function g. Equation (1) deter- 
mines the transition from the state (k- 1)th to the kth. 

The reading at the kth state is “not worse” than all previous readings 
because the gap M’(x)-m’(x) in every x does not increase with i. 

3. CONVERGENCE 

For every x E X there is a unique element XFk of the dissection (X”) that 
contains x, and a sequence of nested intervals 

If0 2 . . . 2 qk 2 . .) I:k = Crnfk2 Mfkl 

is determined. It is known [S] that given the real intervals [a, 61 and 
[a’, b’], the function d, defined by d( [a, b], [a’, 6’1) = max( (a’ - al, lb’ - bl ) 
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is a distance defined in the family of the real intervals. If the sequence {I$} 
converges to a non degenerate interval, then we say that {C,} is of the first 
kind in x. If {la} converges to a real number r, then (C,> is said to be 
of the second kind in x or the related procedure of C-products is said to be 
a convergence case. 

Of course, one of the two cases necessarily occurs. If {C,} is of the first 
(second) kind for every x in a subset A of X, then {C,> is said to be of the 
first (second) kind in A. Furthermore (C,) is, by definition, uniformly of 
the second kind in A G X, if 

lip 4Lk(x), g(x)) = 0 

holds uniformly with respect to x E A. 
The following result is related to the convergence case in a dense subset 

of x. 

PROPOSITION 1. Let X be a topological space and CC,} = 
{ (( Xk), mk, Mk)} a sequence induced by g, where all elements in the dissec- 
tions are open sets in X. If ( Ck } is of th e second kind uniformly in a dense 
subset Y of X, then (C, $ is of rhe second kind in X. 

Proof If Y is dense in X, then there is a common point to Y and the 
non empty open set Xt. Then it is, for x and x’ in a given element of the 
dissection Xtk, 

Mtk(x) - mtk(x) = @k(d) - mfk(X’). (3) 

As (Ck > is of the second kind uniformly in Y, for every E > 0, then there 
exists EE N such that 

k > E implies Mk(X) - m”(Z) < E, VXE Y. 

SO, by (319 {ck} is of the second kind also in x. 

In order to study sequences { Ck} of first or second kind (in suitable 
subsets of X), let us introduce some measure theoretical hypotheses. 
Throughout the present paper (X, A, p) will denote a measure space with 
A a a-algebra of subsets of X and ZJ a totally finite positive measure. 
A C-set induced by a measurable dissection is indicated as a measurable 
C-set. Let us consider measurable C-sets and put 
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where 112: = inf2 g(x), at = sup9 g(x). (The index So will be replaced with 
s, whenever po.&ible.) The followi& inequalities hold for every k 

L(g,Xk)~L(g,Xk)~O(g,Xk)~U(g,Xk) 

h, Xk) - t(g, Jf”) 6 Ug, Xk) - Ug, X”) = c 10’:) d: 6 p(X), 
(4) 

with dk=M:-m,k. For every dissection (A’“) each of the couples 
(E(g, X i ), o(g, Xk)), and (L(g, Xk), U( g, Xk))k defines separated classes. 
Moreover if S = g.l.b.,( U(g, A’“)) = l.u.b.,k(L(g, Xk)), then, by (4), 
S=Jgdp. 

Let us consider some examples of sequences of the second kind. We 
observe first that if g is continuous on a complete metric space X and the 
diameter of (Xk) tends to zero as k + co, then the sequence (Ck) is of the 
second kind in X. 

PROPOSITION 2 (Compare [5]). Let { Ckj he a sequence of measurabk 
C-sets. If for every E > 0 there exists k’ EN such that 

k>k’ implies 1 p(Xt) d: <E 

then 
(if g is integrable and the sequences {m”(x)] and (Mk(x)) converge 

in the mean to g in X; 
(ii) the sequence (C,} is of the second kind almost everywhere in X. 

The following proposition provides for a preliminary information on the 
kind of given special sequences. 

PROPOSITION 3. Let g: X-r I a measurable function and (( Yk), mk, Mk) 
a sequence of measurable C-sets induced by g and (Y(O)), with 
(Y(k)) = ( Yy, . ..) Y$‘). 

Zf, for every j = 1, . . . . pk, there exists i, = I, . . . . 2k + 1 such that 

Y’k’EXk= xE/y: i.- 1 
J 9 { 

i<g(x)<A 
2k I 2k ’ 

then the sequence of C-sets 

co = (Y(O), , m(O), M$,‘)) 

C, = ((Y’), rn.:,, M-k) = C, * ((Y”‘), rn:‘), M-L”) 

(5) 

Ck = (( Yk), rnt, Mt)) = Ckp 1 * (( YCk)), m.? M.?‘), 
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(where ml”’ = cj inf g(x) chj(x), MI”’ = cj sup g(x) chj(x), the infima and 
suprema are taken over the YjkJ’~ and ch, is the characteristic function of 
Y,!“‘) is uniformly of the second kind in X. 

In order to prove Proposition 3, let us mention the following lemmas: 

LEMMA 1 (Compare [7]). Let f he a measurable non negative function 
defined in X. Then there exists a non decreasing sequence { f,Jx)} of non 
negative simple functions such that 

lim .f,(x) = f (x), VXEX. (6) 

If f is bounded, then (6) holds uniformly in X. The sequence {f,,} is defined 
by 

I n for f(x) > n. 

LEMMA 2. Let f be a non negative measurable function defined in X. Then 
there exists a non increasing sequence of simple functions {h,} such that 

lim h,,(x) = f(x), uniformly in X. (7) n 

Indeed, let us set M = sup, f(x) and 

! 
i i- 1 

7 
h,(x) = 

2 
for -<f(x)<+, i=l,...,n.2” 

2” 

M+$ for f(x) 2 n. 

It is easy to see that the sequence {hJx)> is decreasing and as it 
holds 0 < g,(x) - g(x) d l/2”, (7) follows by choosing n > M. It is worth 
observing, from Lemma 2, that: 

A. If 

O<f(x)< 1 (8) 

then 

0 d h,,(x) < 1, n> 1. 
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B. Under hypothesis (8) the following representations are allowed for 
.L and 4, 

f&c)= ; 7 chi,,(x) 
i=I 

(9) 

h,(x) = c 6 chi,m(x) 
r= I 

(10) 

n > 1, where chi,, is the characteristic function of the ith element in the 
dissection (X”) defined as in (5). 

We are now able to prove Proposition 3. 
Observe first that, by hypothesis (5) every element of dissection (Xk+ ’ ) 

has the representation 

(11) 

From (9), (lo), and (11) we obtain for n > 1, 

Pk + I 

m:>mj(i+“(x)= c mJ~~‘)ch,,kY,(x)~fk+,(x). 
/=I 

Analogously, 

M:(x) <kc+ L(x). 

Then Proposition 3 follows. 

4. FILTERING 

1. Our present concern is to analyze sequences of C-products of the 
first kind in a non empty subset of X. For a reason that will be illustrated 
in the next section by an application, this case is indicated as filtering case. 

Let us observe that if the sequence (C,J is of the first kind for some 
x E X, then a multifunction is defined 

G: x E X-P Z(x) = lim Zf = [m(x), M(x)] 

depending on g and the sequence of C-products, where m(x), M(x), and I’: 
are defined in Sections 2 and 3. (For definitions and results on multi- 
functions see [6, 91.) 
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PROPOSITION 1. Let g: X -+ [O, 1 ] be a function and (C,} a sequence of 
C-products. Then G is measurable. 

Proof: It is sufficient to show that for every [a, b] c R, G-‘( [a, b]) is 
measurable. where 

G-‘([a,b])={xEX: [m(x),M(x)ln[a,b1#0}. 

Indeed, let us observe first that 

Cm(x), M(x)1 n [a, bl = 0 iff M(x) < a or m(x) > b; 

therefore 

Because 

m(x) = lim m”(x) and M(x) = lip kP(x) 

are measurable functions, then the set (12) is measurable. 
Then the measurability of G follows. Let us observe that for every 

XE X, from the proposition above it follows the existence of a Castaing 
representation for G 

G(x) =cl i,j s,,(x), 
t?tN 

i.e., the set {s,(x)},,~ is dense in G(x), where (s,) is a sequence of 
measurable selections of G. 

2. It is worth stating some regularity properties of G under suitable 
more restrictive hypotheses. 

Before we do this let us recall the following result. 

PROPOSITION 2 (See [9]). Let G: Xs R” -+ R” be a uniformly bounded 
compact valued multifunction. Then G is continuous tf and only tf for every 
XEX it is 

lim haus(G(x), G(x)) = 0 
Y - x 

PROPOSITION 3. Let X be a compact in II%“‘, g : X--t [0, 1 ] a measurable 
function and {C,} a sequence of C-products induced by g, with all the 
elements of the dissection (A’“) open on X. If m(x) is upper semicontinuous 
and M(x) is lower semicontinuous, then G is continuous in X. 
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Proof: Let now X be an element of X. By definition 

haus(G(x), G(.?))=max(@(x)-m(Z)l, IM(x)-M(x)l). 

If all (Xk) are open dissections, then the functions m”(x) and Mk(x) are 
continuous. 

Then, as the sequences {&(x)} and {Mk(x)} are monotone and the 
related limits m and M are semicontinuous their convergence is uniform 
and both functions m and M are continuous in X. 

Thus 

lim haus(G(x), G(X)) = 0 
x - i 

and therefore, by Proposition 2, the continuity of G follows. 

5. A FILTERING CASE IN PATTERN RECOGNITION 

Let a digitized picture in the plane xy be represented by a matrix 
A = (au), whose entries yield the grey levels g = g(x, y) (see [ 1, 53). 

Furthermore a window is provided such that the maximum M and the 
minimum m of the grey levels are observed over the rectangular area W, 
viewed through the window. If the picture is scanned, so that the matrix A 
is completely covered, all the addends in the sum in (4), for k = 1, are 
known. 

The picture is approximated by a grid superimposed to it, which shows, 
for each area w, the bounds of the grey levels. Translate now the grid so 
that a different partition of the picture is read. The C-product of the two 
readings takes into account all pieces of information of both of them: a 
refinement of the distribution of the grey levels in the picture is obtained 
or not depending on the width of the window, the width of the translation 
of the grid, and the differences d: between the grey levels. 

Let us mention the typical filtering procedure of “the saucer on the 
chessboard Cl].” If the region viewed through the window includes strictly 
the single square, the sequence {C,} induced by the translations of the 
grid, acts as a filter because the values Mt and rnp over each region Xt 
remain constant-say 1 and 0, respectively-for every k and s. Thus only 
the saucer can be seen because the sequence of intervals Itk is the sequence 
of real unit intervals [0, 11, for every x out of the saucer and on the 
chessboard. 
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