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Risk of HCC: Genetic heterogeneity and complex genetics
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Hepatocellular carcinoma (HCC) is a common form of cancer over the past decades, accompanied by a higher incidence and

that arises from hepatocytes and whose risk may be affected by
several known environmental factors, including hepatitis viruses,
alcohol, cigarette smoking, and others. Rare monogenic syn-
dromes, such as alpha1-antitrypsin deficiency, glycogen storage
disease type I, hemochromatosis, acute intermittent and cutanea
tarda porphyria, as well as hereditary tyrosinemia type I are asso-
ciated with a high risk of HCC. Several common conditions or dis-
eases inherited as polygenic traits e.g. autoimmune hepatitis,
type 2 diabetes, a family history of HCC, hypothyroidism, and
non-alcoholic steatohepatitis also show an increased risk of
HCC compared to the general population. Overall, the genetic sus-
ceptibility to HCC is characterized by a genetic heterogeneity; a
high individual risk of HCC may thus be caused by several
unlinked single gene defects, whose carriers are rare in the gen-
eral population, or by more common conditions inherited by
complex genetics.
� 2009 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
Introduction

Hepatocellular carcinoma (HCC) ranks among the five most com-
mon cancers worldwide [1,2]. This tumour, which arises from
hepatocytes, is often associated with liver cirrhosis resulting
from chronic liver diseases. Among the environmental risk
factors, the prevalence of chronic hepatitis B (HBV) and C
(HCV) virus infections is directly linked to the incidence of
HCC. Countries in Southeast Asia and sub-Saharan Africa, where
HBV infection is endemic, have the highest rates of HCC, but
HBV-related liver cancer cases also occur in western countries
[1,2]. Chronic carriers of HBV have up to a 30-fold increased risk
of HCC [3–5]. In western countries, the main risk factor of HCC is
represented by HCV infection, whose prevalence has increased
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mortality from HCC [5,6]. A large number of cohort and case–
control studies have shown that alcohol consumption causes
liver cirrhosis and is an independent risk factor for primary liver
cancer [7–9]. Epidemiological studies reported elevated HCC
risks associated with exposure to aflatoxins after adjustment
for HBV exposure [10]. Cigarette smoking has been causally asso-
ciated with the risk of HCC [8,11]. A multiplicative effect of
heavy smoking and heavy drinking in HCC development has
been reported [8].

In addition to environmental risk factors, individual genetic
predisposition may play a role in the risk of HCC as suggested
by the fact that in a relevant percentage of HCC cases, i.e.,
about 20% of cases diagnosed in the United States, no known
predisposing risk factors, including alcohol use or viral hepati-
tis, can be identified [6]. The role of genetic factors in the risk
of HCC is supported by strong evidence from rodent models,
which have enabled the identification of the number and chro-
mosomal location of loci affecting genetic susceptibility to
chemically induced hepatocarcinogenesis in both mice and rats
(reviewed in [12,13]).

Here, we review current evidence from epidemiological/
genetic studies in human populations, which argues for the
important role of monogenic and polygenic factors in determin-
ing the risk of HCC development. Table 1, which includes esti-
mated risk of HCC according to particular genetic factors,
summarizes this evidence.
Monogenic risk factors for HCC

Alpha1-antitrypsin deficiency

Alpha1-antitrypsin (AAT) deficiency is an autosomal recessive
disease that results from several mutations in the SERPINA1 (also
known as PI) gene located on chromosome 14q32.1 (Table 1).
This gene encodes a serine protease inhibitor, which is synthe-
sized at high levels in the liver and whose biochemical function
is the inhibition of neutrophil elastase. The common allele is
designated PIM, and the most common deficiency variants are
designated PIS (Glu264Val, frequency 0.02–0.04 in Caucasians,
expressing 50–60% of AAT) and PIZ (Glu342Lys, frequency
0.01–0.02 in Caucasians, expressing 10–20% of AAT). Because
both parental alleles are expressed, inheritance of a normal allele
protects against the effect of the second ‘‘at-risk” allele, and
severe AAT deficiency develops only when the individual bears
two at-risk alleles [14].
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Table 1. Genetic risk factors and genetic syndromes associated with the development of hepatocellular carcinoma.

a In megabases; Ensembl release 54.
b For syndromes, AR, autosomal recessive; AD, autosomal dominant or co-dominant.
c Fold change in odds ratios or standardized mortality ratios with respect to the general population.
d UN, unknown.
e Not available.
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Patients with AAT deficiency can develop pulmonary emphy-
sema and liver disease. The mechanism of disease is probably
related to the altered protease/anti-protease balance. Indeed,
liver injury leading to liver cirrhosis in individuals with the PIZZ
genotype presumably results from toxic effects of the abnormal
SERPINA1 molecule accumulating within the endoplasmic reticu-
lum of liver cells. However, only 12–15% of individuals with this
genotype develop liver disease, suggesting a role for modulating
factors (genetic or environmental). AAT deficiency is associated
with an increased risk of HCC, especially in males, with an odds
ratio (OR) of 5.0 observed in Swedish patients with AAT defi-
ciency as compared with the general population [15] (Table 1).

Glycogen storage disease type I

Glycogen storage disease type I (Von Gierke’s disease) is caused
by the impairment of glucose-6-phosphatase (G6Pase) activity,
with consequent excess glycogen storage in the liver. Two sub-
types of this disease are recognized: type Ia, in which there is a
complete absence of G6Pase; and type Ib, in which there is a defi-
ciency of the glucose-6-phosphate translocase (G6PT) at the
endoplasmic reticulum membrane [16] (Table 1). The clinical fea-
tures are generally similar in both subtypes: hepatomegaly, fast-
ing hypoglycemia, lactic acidosis, hyperlipidemia, hyperuricemia,
and growth retardation [16]. Mutations in G6Pase and G6PT
account for �80 and �20% of glycogen storage disease type I
cases, respectively, and the disease is inherited as an autosomal
recessive trait [16]. Liver functions are usually normal or show
only minor deviations, and cirrhosis does not develop. By their
second or third decade of life, patients with type I glycogen stor-
age disease develop hepatocellular adenomas with a prevalence
increasing with age and ranging from 16% to 75% (total of 129
cases with adenomas out of 487 patients in seven literature ser-
ies; mean prevalence 26%) [17,18]. A number of glycogen storage
disease type I patients develop HCC [19,20] (Table 1).

Hemochromatosis

Hemochromatosis is a common inherited disorder of iron metab-
olism, characterized by excessive gastrointestinal iron absorption
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and by consequent increased iron storage in all organs except for
the brain and nervous tissue. Fibrous tissue reaction develops at
the site of iron deposition; limited liver dysfunction is present in
early stages but may develop into hepatic cirrhosis followed by
HCC. The hemochromatosis gene (HFE) is located on chromosome
6p21.3 and hemochromatosis is inherited as an autosomal reces-
sive trait (Table 1). About 90% of individuals with hemochroma-
tosis are homozygous for a founder mutation that leads to a
single-base change resulting in the substitution of tyrosine for
cysteine at position 282 (C282Y) of the HFE protein [21,22].
While the C282Y mutation in the HFE gene is quite prevalent,
with 0.5% of Caucasian adults revealing homozygosity for the
mutation in a general screening, approximately 30% of homozy-
gous individuals do not present the clinical features of hemochro-
matosis [23]. The risk of HCC in hemochromatosis patients is
approximately 20-fold higher than in the general population
[24,25].

Porphyrias

Hepatic porphyrias are a group of inherited diseases resulting
from defects in the heme biosynthesis pathway. Acute intermit-
tent hepatic porphyria (AIP), the most common form of por-
phyria, is clinically characterized by occasional acute attacks of
abdominal pain, gastrointestinal dysfunction, and neuropsychiat-
ric symptoms. Cirrhosis is not frequent in patients with AIP, but
morphologic abnormalities of hepatocytes at liver biopsy and
altered liver biochemical function have been reported [26]. The
disease is inherited as an autosomal dominant trait and is related
to a deficiency in enzymatic activity of hydroxymethylbilane syn-
thase (HMBS) (also known as porphobilinogen deaminase) result-
ing from several coding or non-coding mutations in the HMBS
gene, which maps on chromosome 11q23.3 [26,27]. Compared
with the total population, the risk of HCC is increased >30-fold
in AIP patients [28,29] (Table 1).

Familial porphyria cutanea tarda (PCT) is transmitted as an
autosomal dominant trait. The disease is due to several missense
or insertion/deletion types of mutations in the uroporphyrinogen
decarboxylase gene (UROD), causing deficiency of the relevant
enzyme activity [30,31]. UROD maps on chromosome 1p34. PCT
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is associated with subacute hepatitis and liver cirrhosis [32]. Sev-
eral early studies that preceded the discovery of HCV indicated a
100- to 200-fold relative risk of HCC in PCT patients [33,34],
whereas a more recent study reported lower risk estimates, i.e.,
5.3 [32] (Table 1). A meta-analysis of the prevalence of HCV infec-
tion in PCT patients concluded that HCV infection is the most
common triggering factor for PCT, since HCV infection is found
in approximately 50% of PCT patients, i.e. a much higher rate than
that reported in the general population [35]. This suggests a path-
ogenic role for HCV in inducing PCT or increasing the susceptibil-
ity of patients to other triggering factors such as iron overload or
alcohol abuse.

Tyrosinemia type I

Hereditary tyrosinemia type I is an autosomal recessive disorder
caused by a deficiency of the last enzyme in the catabolic path-
way of tyrosine, fumarylacetoacetate hydrolase (FAH), located
on chromosome 15q23–q25 [36] (Table 1). The disease is a dev-
astating disorder of childhood that causes liver failure, neurologic
crises, rickets, and HCC. The accumulation of tyrosine catabolic
intermediates due to the enzymatic deficit is believed to be the
cause of the disease, resulting either in acute hepatic failure in
infancy or in a chronic liver disease associated with cirrhosis
and HCC development [36]. The risk of HCC is very high, with
about 40% of patients who survive beyond 2 years of age develop-
ing HCC in childhood [37].
Polygenic risk factors for HCC

Autoimmune hepatitis

Autoimmune hepatitis (AIH) is a fairly uncommon disease that
results from the progressive destruction of the hepatic paren-
chyma through a loss of immune tolerance towards hepatocytes;
the origin of such immune deregulation remains unknown. In AIH
patients, liver histology shows portal and periportal inflamma-
tion. AIH does not follow a Mendelian pattern of inheritance,
and no single genetic locus has been identified in disease causa-
tion [38]. A significantly elevated risk of hepatobiliary malignan-
cies, consisting mostly in HCCs, has been found in AIH patients
[39] (Table 1). Confirmed associations with autoimmune hepati-
tis are limited to polymorphisms at the human leukocyte antigen
(HLA) locus on chromosome 6p21.3 [38]. Several small studies
have proposed candidacy of chromosomal regions outside the
HLA as modifiers of AIH risk and outcome, but the associations
of these regions have not yet been confirmed.

Diabetes

In type 2 diabetes, which is associated with the insulin-resistance
syndrome, it has been hypothesized that autocrine stimulation of
the insulin-like growth factor (IGF) pathway as a result of the
high insulin concentrations in these patients might promote
hepatocarcinogenesis [40]. Accordingly, a meta-analysis of
results mainly pertaining to type 2 diabetes and derived from dif-
ferent populations, different geographic locations, and a variety
of control groups, observed a pooled HCC risk estimate of 2.5;
either in cohort studies or in a subset of case–control studies
showing low statistical heterogeneity [41] (Table 1). Several
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genome-wide association studies (GWAS) have identified �20
loci that modulate risk of type 2 diabetes. Most of the loci have
been implicated in regulation of insulin secretion in response to
increase in insulin resistance or body weight. The increased risk
associated with each risk variant is small [42,43].

In type 1 diabetes, the risk for HCC remains controversial, with
some studies reporting an increased HCC risk in these patients,
whereas other studies do not confirm such associations. For exam-
ple, Adami et al. [44] observed a significant association between
type 1 diabetes (defined by a history of diabetic ketoacidosis)
and HCC risk; the standardized incidence ratios was 4.1 for men
and of 1.8 for women. A case–control study of insulin-dependent
and non-insulin-dependent diabetes also revealed a similar excess
risk of HCC (OR�4) [45]. In contrast, another study detected no
excess risk of HCC associated with type I diabetes [46].

Family history of HCC

In Sweden, where the prevalence of environmental risk factors
for HCC is low, family history of HCC has been described, and her-
itable factors would likely contribute to the risk of HCC, possibly
modified by environmental factors [47] (Table 1). Since familial
aggregation may depend on environment rather than on shared
genes, the Swedish study tested the family environmental risk
by estimating the spouse HCC risk; however, no spouse-case cor-
relation was observed for liver or biliary cancer, suggesting that
the environmental effects shared between spouses are small
and that the study detected true genetic effects modulating
HCC risk.

A study on pedigree from China found that familial aggrega-
tion could be explained by the interaction of HBV infection and
a major gene [48] and, recently, a locus providing genetic suscep-
tibility to HCC has been mapped on chromosome 4q25 in Chinese
families [49]. A subsequent family-based association analysis to
finely map this linkage region in these families with HCC and
HBV surface antigen (HBsAg)-positive index cases pointed to a
linkage near the 3’-phosphoadenosine 50-phosphosulfate syn-
tase-1 (PAPSS1) gene [50] (Table 1). Functional characterization
of the PAPSS1 candidate gene and identification of functional
variants await further studies.

Hypothyroidism

Hypothyroidism is the most common thyroid disorder in the
adult population, particularly among older women; overall, its
prevalence is about 4% but it reaches 12.1% for those 80 years
or older [51]. A recent case–control study to investigate the asso-
ciation between hypothyroidism and HCC risk showed that a
long-term history of hypothyroidism (>10 years) was associated
with a statistically significant high risk of HCC in women, after
adjusting for demographic factors, diabetes, hepatitis, alcohol
consumption, cigarette smoking, and family history of cancer
[52] (Table 1). These findings may be explained by the essential
role of thyroid hormones in lipid mobilization, lipid degradation,
and fatty acid oxidation. No confirmed associations between
genetic polymorphisms and risk of hypothyroidism are available.

Non-alcoholic steatohepatitis

Non-alcoholic steatohepatitis (NASH) is a common liver disease
in which hypothyroidism has been implicated, since it may cause
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hyperlipidemia and weight gain [53]. NASH may progress to cir-
rhosis and it has recently been associated with an increased risk
of HCC [54], although a precise risk estimates from population-
based studies are not yet available (Table 1). HCC was a signifi-
cant independent risk factor for mortality in NASH patients, with
hazard ratio of 7.9 [55]. Genetic associations between several
polymorphisms and NASH have been reported, but none have
been replicated in large studies.

Evidence for the biological plausibility of a causal link between
NASH and HCC comes from a study in mice showing that ablation of
the NEMO subunit of the IkappaB kinase (IKK) gene in liver paren-
chymal cells led to the spontaneous development of HCC preceded
by chronic liver disease resembling human NASH; control mice did
not develop NASH or hepatocellular tumours [56]. A strain–diet
interaction in mice has also been demonstrated, with susceptible
mice showing morphological characteristics of NASH (steatosis,
hepatitis, fibrosis and cirrhosis), dysplasia, and HCC upon long-
term feeding with a high-fat diet [57].
Porphyrias
(1p34)

Cirrhosis HCCTumor promotion  

Diabetes type 2Autoimmune hepatitis

NASH

ATT
(14q32.1)

Tyrosinemia type I
(15q23 - q25)

Hemochromatosis
(6p21.3)

Fig. 1. Common mechanism by which several monogenic syndromes, whose
causative gene mutations and chromosome positions are indicated, as well as
several conditions under polygenic control, increase the risk of HCC. The
single genetic defects and the polygenic conditions cause liver damage and
necrosis, resulting in liver cirrhosis that favors accumulation and/or promotion of
somatic mutations and of genetic damage and thus representing the ultimate risk
factor for HCC.
Polymorphisms associated with exposure to liver toxicants

The food contaminants aflatoxins, produced by the common fun-
gus Aspergillus, are potent hepatocarcinogens and represent an
important risk factor for HCC in some geographical regions. Afla-
toxin B1 (AFB1) undergoes metabolic activation in the liver by
cytochrome P450 enzymes to a reactive AFB1-8,9-exo-epoxide
that can bind to DNA to form the pro-mutagenic AFB1-N7-guan-
ine adduct. The principal detoxification pathway involves gluta-
thione S-transferase (GST)-mediated conjugation of the reactive
8,9-epoxide to reduced glutathione [58]. Thus, genetic polymor-
phisms in the enzymes of activation and inactivation pathways
may modulate the levels of pro-mutagenic aflatoxins, implicating
these polymorphisms in HCC risk.

The major CYP enzymes involved in human aflatoxin metabo-
lism are CYP3A4 and CYP1A2. The CYP3A5 polymorphisms show
association with levels of the mutagenic AFB1-exo-8,9-epoxide
[59], but no data are available on the association between these
polymorphisms and HCC risk. CYP1A2 genetic polymorphisms
reportedly show no significant association with HCC risk in the
overall population [60].

GSTM1 and GSTT1 exhibit a deletion polymorphism resulting
in the absence of protein in individuals homozygous for the dele-
tion. The overall results of studies on GSTs suggest a small excess
risk of HCC in individuals with GSTT1-null and possibly also with
GSTM1-null genotypes, although chance could not be excluded
due to the observed inter-study heterogeneity [61].

Ethanol, the active compound of alcohol beverages and asso-
ciated with HCC risk, is metabolized to the carcinogenic and
mutagenic acetaldehyde mainly by alcohol dehydrogenase
(ADH) and cytochrome p4502E1 (CYP2E1). This metabolite is
then detoxified by aldehyde dehydrogenase 2 (ALDH2). The over-
all analysis of susceptibility to HCC and polymorphisms of the
CYP2E1 gene revealed no significant association [62]. Results on
possible associations between ADH and ALDH2 polymorphisms
and risk of HCC remain controversial [63,64].

Ethanol also increases formation of reactive oxygen species, and
polymorphisms affecting pro- and anti-oxidant enzymes have
been studied in association with risk of alcoholic cirrhosis and of
HCC. A recent study showed that a combination of myeloperoxi-
dase and manganese superoxide dismutase polymorphisms
increases the risk of HCC in patients with alcoholic cirrhosis [65].
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A common mechanism might underlie both environmentally
and genetically induced HCC

Cirrhosis usually results as a reaction to past or ongoing liver
necrosis. Hepatocellular necrosis leads to regeneration, cell turn-
over and proliferation of hepatocytes. Inflammation accompany-
ing the hepatocellular necrosis stimulates fibroplasia. These
processes produce cirrhosis accompanied by further reactive pro-
liferation of hepatocytes. Chronic HBV/HCV infection or alcohol
abuse lead to liver cirrhosis [66]. A close association exists
between HCC and cirrhosis, with more than 70% of HCC cases
developing in cirrhotic livers, and cirrhosis is a strong predispos-
ing factor for HCC, with OR = 27.5 [66,67].

It is worth noting that the human monogenic disorders of AAT
deficiency [15], hemochromatosis [21], porphyrias [32], and tyro-
sinemia type I [36], which are all associated with an increased
risk of HCC, are also associated with the development of cirrhosis.
Moreover, several polygenic conditions associated with an
increased risk of HCC are also predisposing conditions for liver
cirrhosis, such as AIH [39], diabetes mellitus (which may be the
cause or the consequence of cirrhosis) [68], and NASH [54]. Thus,
the increased risk of HCC may not be directly linked to genetic
disorders, but instead single germ-line mutations or conditions
regulated by complex genetics may cause chronic damage (liver
cirrhosis) of the target organ, in turn causing the oncogenic muta-
tions and/or promoting preexisting endogenous or virus- or
chemical-induced mutations that lead to HCC. Indeed, experi-
mental rodent models suggest that conditions of hepatic necrosis
and regeneration, similar to those occurring in human liver cir-
rhosis, may promote carcinogen-induced hepatocarcinogenesis
[69]. Therefore, cirrhosis from any cause appears to be the com-
mon pathway by which several risk factors exert their hepatocar-
cinogenic effect (Fig. 1).
Discussion

Besides the established main role of hepatitis virus infections and
of alcohol consumption in the risk of HCC, several genetic factors
and/or syndromes also play an important role. Family-based
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Fig. 2. Proposed model of individual susceptibility to HCC. In the general
population, individuals carrying rare syndromes or a combination of susceptibil-
ity alleles (polygenic conditions) are at high genetic risk of HCC. The different
colors indicate different genetic conditions providing high susceptibility to HCC,
thus depicting a model characterized by genetic heterogeneity (Left). Individuals,
either genetically susceptible or not, may be exposed to environmental risk
factors for HCC (e.g., hepatitis virus infections, high alcohol consumption) that
may induce or favor HCC development (Right). Alternatively, some genetic
syndromes may cause HCC development in the absence of environmental risk
factors and the latter may cause HCC by themselves.

Review
studies suggest that a genetic locus on chromosome 4, encoding
the candidate PAPSS1 gene, may modulate individual risk of HCC
in HBV-positive subjects of the Chinese population [50]. The role
of PAPSS1 genetic variants in HCC risk in the general population,
in other countries, and in the absence of HBV infection remains to
be established.

The prevalence in the general population of monogenic
genetic syndromes associated with a high risk of HCC (e.g., AAT
deficiency, hemochromatosis, and others) is generally low, result-
ing in an overall minor attributable risk of HCC, although these
syndromes may provide a high risk at the individual level. In
addition to these rare syndromes, other relatively common
genetic conditions characterized by polygenic inheritance, such
as type 2 diabetes, hypothyroidism, and NASH, are associated
with an increased risk of HCC (Table 1).

Overall, present evidence suggests a scenario of individual
HCC risk that is modulated by complex genetics where ‘‘strong”
variants in several unlinked genes as well as several polygenic
conditions may provide a high lifetime risk of HCC development.
Thus, genetic heterogeneity appears to play a major role in the
individual predisposition to HCC in humans (Fig. 2).

Genetic heterogeneity also appears to operate in rodent mod-
els in which hepatocarcinogenesis susceptibility (Hcs) or resis-
tance (Hcr) loci control predisposition to hepatocellular
tumours. Indeed, in three genetic crosses with different mouse
strains, 3–4 unlinked loci per cross were mapped, with no overlap
among crosses [70–72]. Similar observations of strain-combina-
tion-specific, non-overlapping sets of loci have been reported in
rat hepatocarcinogenesis [73,74].

Most of the complex genetic factors have not yet been identi-
fied, and future large family- and population-based studies on
clinically well-characterized HCC cases may improve our knowl-
edge of the role of complex genetics in this common neoplastic
disease. Also, a better understanding of the genetic mechanisms
underlying the individual predisposition to HCC will lead to
improvements in the prevention, early diagnosis, and treatment
of this disease.
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