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Abstract

It is known that observations of a real-valued random variable defined over a smooth manifold M can be
used to make inferences about M, at least when M is a curve or surface. We refine and extend the underlying
asymptotic results and remove the condition dim M �2. New examples of nonsmoothness in marginals are
described in detail for dim M = 3, 4, and methods are given for calculations in general.
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1. Introduction

First, we review the problem of making inferences about a random variable from observations
of marginal distributions. The problem is not easy, indeed not even well-posed, without some
simplifying assumptions. Depending on the assumptions, there are well-established mathematical
subjects dealing with this kind of task.

For � a countably additive measure on a measure space M, the marginal measure �f with
respect to a measurable function f : M → V is given by

�f (B) = �(f −1(B)),

where V is another measure space, and B is measurable in V. We are particularly interested in
cases where V is R with Borel measurable sets. It is well-known that � is usually not determined
by marginals of finitely many fj : M → R, even when M and the fj are given.
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Example 1. Let M be Euclidean m-space Em, with the sigma algebra of Borel subsets, and �
a signed measure given by a rapidly decreasing [11] density � : Em → R, namely �(A) =∫

A
�(x) dx for any A ∈ S. If f : Em → V is the restriction of orthogonal projection onto a

proper vector subspace V of Em, �f has density �V where

�V (y) ≡
∫

f −1(y)

�(x) dx.

Defining the Fourier transform �̂ : Em → C of � by

�̂(�) ≡ (2�)−m/2
∫

Em
e−i〈�,x〉�(x) dx,

the Fourier transform of �V is proportional to the restriction of �̂ to V. So marginals of � with
respect to f1, f2, . . . , fk , corresponding to proper subspaces V1, V2, . . . , Vk , can be found from
the restriction of �̂ to ∪k

j=1Vj . Perturbing �̂ to another rapidly decreasing function with the same

values on ∪k
j=1 Vj gives another density with the same marginals. However, � can be found from

the set of all marginals of projections onto lines, by inversion of the Radon transform [3]. In
geometric tomography � is the characteristic function of a bounded open subset N of Em, and
N cannot in general be determined from finitely many marginals with respect to projections on
lines, even when N is known to be a bounded convex subset of the Euclidean plane E2. However,
most convex bounded planar sets N are determined by marginals with respect to projections in
any two nonparallel directions [2] Theorem 1.2.17.

Example 2. In Example 1 take � to be everywhere nonnegative and
∫

Em �(x) dx = 1. By the
Corollary to Theorem 2 of Gutmann et al. [5], there is a 2-valued density on Em whose marginals
with respect to f1, f2, . . . , fk are also �f1

, �f2
, . . . , �fk

. For related results in probability and
tomography, see [7–9,16].

A single marginal can be used to say more about M when � arises geometrically as follows.
Let M be a real C∞ oriented m-manifold with a positive never-zero C∞ integrable m-form �M .
Define � by

�(BM) ≡
∫

BM

�M �0

for Borel-measurable BM . If f : M → R is C∞ set

�M,f (w) ≡ �f ((−∞, w]) =
∫

f −1(−∞,w]
�M.

Then �M,f : R → [0, ∞) is nonnegative, nondecreasing and bounded. We ask

Question 1. Given �M,f what can be said about M, �M and f?

As it stands Question 1 is not well-posed, but we want to make geometrical inferences about
random variables from numerical measurements. With this in mind, some additional hypotheses
should make the task more manageable, but first some additional simple remarks:

• limw→∞ �M,f (w) = ∫
M

�M ,
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• if �M,f (v) = �M,f (w), where v < w then f −1(v, w) = ∅. So,
• �M,f (v) = 0 ⇐⇒ f (M) ⊆ [v, ∞) and �M,f (w) = ∫

M
�M ⇐⇒ f (M) ⊂ (−∞, w],

• if vi < wi and �M,f |(vi, wi) has constant value ci for 1� i�n, with

0 < c1 < c2 < . . . < cn <

∫
M

�M,

then M has at least n + 1 path-components.
Besides �M,f , additional information is needed to determine M, �M and f.As well as Examples

1, 2, consider

Example 3. Given M, �M and n�1, write �M = ∑n
i=1 �i , where each m-form �i is positively

oriented, never-zero and integrable. Define L as the disjoint union

M × {1} ∪ M × {2} ∪ . . . ∪ M × {n}
with �L restricting to �i on M × {i}. Given f : M → R define e : L → R to be f on each copy
of M. Then �L,e = �M,f .

Example 4. If f is constant with value c then �M,f (w) is 0 or
∫

M
�M according as w < c or

w�c. So all that can be determined from �M,f is c and
∫

M
�M . Nothing can be said about the

number of components of M, its dimension or topological type.

Such cases are excluded by requiring M to be path-connected and f nonconstant.

Example 5. Let � be a probability density on R with finite mean � and finite variance �2. Take
M = Rm with

�M = �(x1)�(x2) . . . �(xm) dx1 ∧ dx2 ∧ . . . ∧ dxm

and define f : M → R by f (x) = (
∑m

i=1 xi/m). As m increases, the Central Limit Theorem
says �M,f approximates the cumulative normal distribution with mean � and variance �2/m. So
dim M , �M and f cannot in practice be inferred from �M,f .

Another simple ambiguity arises as follows. If F : L → M is a diffeomorphism of oriented
Riemannian manifolds satisfying F ∗�M = �L then �L,f ◦F = �M,f . So

• M, �M and f are knowable at best up to diffeomorphism.
• M should be path-connected.
• f should have only isolated (maybe Morse) singularities.
• �M is essentially unknowable except perhaps near critical points of f.
• information about M may nonetheless be obtainable.

There is quite a lot of evidence for this last remark [12]. When dim M = 2, �M,f has an
a.e. C∞ density �M,f ; points w∗ of nonsmoothness of �M,f are critical values of f and the
corresponding critical points are classified by asymptotic expressions for �M,f near w∗. So the
Euler characteristic of M is obtained, and then M up to diffeomorphism. For example, a histogram
with two sharp spikes and two cliffs suggests M is a torus [12]. This 2-dimensional analysis
extends to surfaces with boundary [14], and there are applications to dynamical systems [13].
There are statistical algorithms which use a phenomenon called scalability [15] to detect features
of �M,f . One might well ask what remains to be done.
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One of the contributions of the present paper is a more careful analysis of �M,f . Even when
dim M = 2, the normal forms of Theorems 1, 2 are sharper than the asymptotic estimates of
[12]. We also remove the condition dim M �2 appearing in all prior work and, in so doing, give
normal forms for singularities of �M,f for any Morse function f. Explicit calculations are given
for all such singularities when m = 3, 4 leading to essentially 5 new kinds of nonsmoothness for
marginals (Proposition 5, Examples 10, 11).

Naturally, the nonsmooth features of �M,f revealing geometrical properties of M are degraded
by standard methods of density estimation. Geometrical phenomena are also harder to detect as
dim M increases (Proposition 3, Examples 8, 9, 10, 11). A first step towards dealing with this is
the thesis of Roscoe [15] where for dim M �2 scalability of singularities in marginal densities
is noted case-by-case, and exploited to give accurate density estimates. The present paper proves
scalability of �M,f for a general class of singularities of f, including Morse singularities, without
the condition dim M �2 (Proposition 4).

The layout is as follows:

• Proposition 1 shows �M,f has a density �M,f that is C∞ except at critical values of f.
• Proposition 2 relates products and densities by convolution.
• In §3, where M is Euclidean m-space Em, � restricts to Lebesgue measure on an open neigh-

bourhood B of 0, and 0 is the only critical point of f, results are proved on smoothness of �B,f

(Propositions 3, 5) and scalability (Proposition 4).
• In §4, f is a nondegenerate quadratic form on Em (1�m�4) and Propositions 3, 4, 5 are

illustrated by graphs of �B,f .
• In §5 the study of �M,f near a point w∗ of nonsmoothness reduces to the case where M = Em,

w∗ = 0 and �M = � dx1 ∧ dx2 ∧ . . . ∧ dxm, where � is positive, C∞ and integrable.
• Example 7 and Proposition 5 are strengthened to Theorems 1, 2.

2. Densities and critical values

Given C∞ f : M → R, nonempty open B ⊆ M and w ∈ R, set

Bf,w ≡ {x ∈ B : f (x)�w}.

Defining �B,f : R → [0, ∞) by �B,f (w) = ∫
Bf,w

�M ,

�B,f (−w) + �B,−f (w) =
∫

B

�M +
∫

B∩f −1(−w)

�M, (1)

�B,f (a−1w) = �B,af (w), (2)

�B∪C,f + �B∩C,f = �B,f + �C,f , (3)

where a > 0, and C ⊆ M is also nonempty and open. If a diffeomorphism F : L → M satisfies
F ∗�M = �L then �B,f = �F−1B,f ◦F . Denote the set of critical points of f |B̄ by CB,f ⊂ B̄

and the set of regular values by RB,f ⊆ R.

Lemma 1. For CB,f compact, �B,f |RB,f is C∞.
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Proof. For w ∈ RB,f , �B,f (w) = ∫
f −1(−∞,w] �B�M where the C∞ m-manifold with boundary

f −1(−∞, w] depends smoothly on w. Indeed,

�′
B,f (w) =

∫
B∩f −1(w)

1

‖∇f ‖�f −1(w) �0,

where ‖∇f ‖ is bounded away from 0 because CB,f is compact. �

Lemma 2. Let U ⊂ B be any open neighbourhood of CB,f , where CB,f is compact. Then
�B,f − �U,f is C∞.

Proof. By (3) �B,f − �U,f = �B−Ū ,f , and by Lemma 1 �B−Ū ,f is C∞. �

Corollary 1. Let CB,f be compact. Then modulo C∞ functions �M,f depends only on the germs
of �M and of f at CB,f . If f has only finitely many critical values w1, w2, . . . wk then, for any
open neighbourhoods Uj of wj ,

�M,f −
k∑

j=1

�Uj ,f : R → [0, ∞) is C∞.

Proposition 1. Let CB,f be compact of measure 0. For some �B,f ∈ L1(R), �B,f |RB,f is C∞
and

�B,f (w) =
∫ w

−∞
�B,f (v) dv for all w ∈ R.

Proof. Given p ∈ Z+, let U(p) be an open neighbourhood of CB,f of measure less than 1
p

. Any

w ∈ R is a regular value of f |B − U(p), and so

�B−U(p),f (w) =
∫ w

−∞
�B−U(p),f (v) dv,

where �B−U(p),f is nonnegative and C∞. Without loss U(p+1) ⊂ U(p) for every p. Since
�B−U(p),f : R → R increases pointwise with p and

∫
R �B−U(p),f (w) dw�

∫
B

�, the point-
wise limit �B,f of �B−U(p),f is integrable [6, §27, Theorem B] over every interval (−∞, w]
and

lim
p→∞ �B−U(p),f (w) = lim

p→∞

∫ w

−∞
�B−U(p),f (v) dv =

∫ w

−∞
�B,f (v) dv.

Also �B−U(p),f (w)��B,f (w)��B−U(p),f (w) + 1

p
.

Taking limits
∫ w

−∞ �B,f (v) dv = �B,f (w). Notice �B−U(p),f is C∞ and agrees with �B,f on

R − f (U(p)). Since RB,f is covered by a countable set of open intervals the U(p) can be chosen
so that ∩p�1U

(p) = CB,f . Then ∪p�1(R − f (U(p))) = RB,f and �B,f |RB,f is C∞. �

In Proposition 1, �B,f |RB,f is unique and �B,f ∈ L1(R) is called the density of �B,f

(there is no density when f is constant). Since the second term on the right-hand side of (1)
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vanishes when CB,f has measure 0,

�B,f (w) = �B,−f (−w). (4)

Let N be a real C∞ oriented Riemannian n-manifold with �N integrable, and set �M×N =
�M ∧ �N . Given C∞ g : N → R define

f �g : M × N → R by (f �g)(b, c) = f (b) + g(c)

and the convolution � ∗ � of �, � ∈ L1(R) according to the convention

(� ∗ �)(w) =
∫

R
�(v)�(w − v) dv =

∫
R

�(w − v)�(v) dv.

Let C be a nonempty open subset of N.

Proposition 2. Suppose CB,f and CC,g are compact of measure 0 in M and N respectively. Then

�B×C,f�g = �B,f ∗ �C,g.

Proof. (B × C)f�g,w = ∪y∈B({y} × C ∩ g−1(−∞, w − f (y)]). By Fubini’s Theorem,

�B×C,f�g(w) =
∫

B

(∫
C∩g−1(−∞,w−f (y)]

�N

)
�M =

∫
B

�C,g(w − f (y))�M

=
∫

B

∫ w−f (y)

−∞
�C,g(v) dv�M

=
∫ ∞

−∞

(
�C,g(v)

∫
B∩f −1(w−v)

�M

)
dv

=
∫ ∞

−∞
�C,g(v)�B,f (w − v) dv. �

Corollary 2. Suppose CB,f and CC,g are compact of measure 0 in M and N, respectively, that
�B,f is Cp and �C,g is Cq . Then �B×C,f�g is at least Cp+q .

3. Euclidean singularities

Now we are going to look at singularities of marginal densities and scalability in the special
case where � is locally constant. The asymptotic expressions in [12] follow from the analysis in
such a case where dim M = 2. Our present more general arguments work without the dimension
restriction.

Let M be Euclidean m-space Em, with Euclidean norm ‖‖m and m-dimensional Lebesgue
measure 	m. For 	m-integrable � : Em → (0, ∞) identically 1 on some open neighbourhood
U of 0 containing the open ball B = Bm(
) of radius 
 > 0 and centre 0, set �M(x) =
�(x) dx1 ∧ dx2 ∧ . . . ∧ dxm. Then

	m(Bm(
)) = �m
m, where �m ≡ �
m
2

�(1 + m
2 )

.

For w ∈ R, and nonsingular linear T : Em → Em satisfying T −1B ⊂ U , we have

�T −1B,f ◦T (w) = | det T |−m�B,f (w). (5)
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Example 6. Take m = 1 and f (x) = xq , where q ∈ Z+. For w /∈ (−
q, 
q), �(−
,
),f (w) = 0.
For q even and w ∈ (−
q, 0), �(−
,
),f (w) = 0. For q even and w ∈ (0, 
q), �(−
,
),f (w) =
2w

1
q . For q odd and w ∈ (−
q, 
q), �(−
,
),f (w) = w

1
q + 
. For q �2, �(−
,
),f is unbounded

in any neighbourhood of 0.

Example 7. For m�1 let f (x) = ‖x‖2
m. Then �B,f (w) = �mw

m
2+ , where w+ ≡ max{w, 0}. So

�B,f is C[ m
2 ]−1. By Lemma 2 this holds even if B is not contained in U. Define g : En → R

by g(z) = −‖z‖2
n. Then �C,g is C[ n

2 ]−1 for an open neighbourhood C of 0 in En. By Corollary

2 �B×C,f�g is C[ m
2 ]+[ n

2 ]−2. By Lemma 2 �D,f�g is also C[ m
2 ]+[ n

2 ]−2, where D is an open
neighbourhood of 0 in Em+n�Em × En.

Proposition 3. Let f : Em → R be a nondegenerate quadratic form of index 0�n�m, where
f (0) = 0. Then �B,f (w) has at least [m−n

2 ] + [n
2 ] − 2 and at most [m

2 ] continuous derivatives at
w = 0.

Proof. By (5) and Lemma 2 there is no loss of generality in supposing f is represented by a
diagonal matrix with entries ±1 with respect to the standard basis of Em. Then the lower bound
on numbers of derivatives follows from Example 7. For the upper bound, consider first the case
where m = 1 and n = 0, namely f (x) = x2. Example 7 also deals with this simple situation, but
a closer look will be useful:

Let � : R → [0, ∞) be C∞, identically 1 on [−
, 
], and with support in [−2
, 2
]. The
Fourier transform of �∗ ≡ ��(−
,
),f is given by

√
2��̃

∗
(�) =

∫ 


0
x−1/2e−ix� dy +

∫ 2




�∗(x)e−ix� dy.

For � > 0, on substituting v = √
x� and integration by parts, the right-hand side is

2�− 1
2

∫ √

�

0
e−iv2

dv + 1

i�
(�∗(
)e−i� +

∫ 2




�∗′

(x)e−ix� dx)

= 2�− 1
2

√
�

2
(1 − i) + 1

i�

(

− 1

2 e−i� +
∫ 2




�∗′

(x)e−ix� dx

)

= 2

√
�

2
(1 − i)�− 1

2 + O

(
1

�

)

as � → ∞. Arguing similarly, as � → −∞,

√
2��̃ ∗ �̃(−
,
),f = |�̃∗

(�)| = |�|− 1
2 + O(|�|−1) as |�| → ∞. (6)

By (4), (6) is unaltered when f is replaced by −f .
In general, by Proposition 2, �B,f = �1∗�2∗. . .∗�m where �i = �(−
,
),±g and g(x) = ±x2.

Setting �̄ ≡ 	�(−
,
)m,f with 	 ≡ �m, we have (2�)
m
2

˜̄� =
(2�)

m−1
2 	̃ ∗ �̃(−
,
)m,f = �̃ ∗ �̃ ∗ . . . ∗ �̃ ∗ �̃(−
,
)m,f = (2�)

m−1
2 |�|− m

2

+O(|�|− m
2 −1)
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by (6). So 	�(−
,
)m,f = �̄ has at most [m
2 ] continuous derivatives. Write

�(−
,
)m,f = 	�(−
,
)m,f + (1 − 	)�(−
,
)m,f .

By Lemma 1, �(−
,
)m,f is C∞ except at w = 0. Since 	|(−
, 
) is identically 1, �(−
,
)m,f is

at most C[ m
2 ]. So �B,f is at most C[ m

2 ], by Lemma 2. �

Definition 1. A function � : R → R is scalable of order � at c ∈ R when, for any a > 0,

�(aw + (1 − a)c) − a��(w)

is C∞ in w ∈ R.

If � is Cr and scalable of order � at c, then r �� and �(r) is scalable of order � − r at c.
Scalability is used in algorithms of Roscoe [15] for detection of geometrical features: singular
histograms are identified up to smooth local changes of coordinates, by calculating covariances
of observed and ideal marginal distributions. Scalability permits the use of one ideal marginal at
any convenient scale, for each kind of singularity being investigated.

Lemma 3. Let f : Em → R and g : En → R have 0 as the only critical point. If �B,f is scalable
of order � at c ≡ f (0), and �C,g is scalable of order � at d ≡ g(0), then �B×C,f�g is scalable
of order � + � + 1 at c + d .

Proof. By Proposition 2, �B×C,f�g = �B,f ∗ �C,g . So for a > 0,

�B×C,f�g(aw + (1 − a)(c + d))

=
∫

R
�B,f (v)�C,g(aw + (1 − a)(c + d) − v) dv

= a

∫
R

�B,f (au + (1 − a)c)�C,g(a(w − u) + (1 − a)d) du

= a

∫
R
(a��B,f (u) + �B(u))(a��C,g(w − u) + �C(w − u)) du,

where �B and �C are C∞. The right-hand side is

a�+�+1(�B,f ∗ �C,g)(w) + a�+1(�B ∗ �C,g)(w) + a�+1(�B,f ∗ �C)(w)

+a(�B ∗ �C)(w),

where the last three terms are C∞ in w. �

Lemma 4. If f : Em → R is positively homogeneous of degree q > 0, �B,f is scalable of order
m
q

at 0.

Proof. By homogeneity, x ∈ Bm(
) ∩ f −1(−∞, w] when, for any a > 1,

a
1
q x ∈ Bm(a

1
q 
) ∩ f −1(−∞, aw].

So

�B,f (w) = 	m(Bm(
) ∩ f −1(−∞, w]) = a
− m

q 	m(Bm(a
1
q 
) ∩ f −1(−∞, aw])

= a
− m

q (�B,f (aw) + �C,f (aw)), where C ≡ Bm(a
1
q 
) − Bm(
).
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Since f |C has no critical points, �C,f is C∞, by Lemma 1. So �B,f (aw) − a
m
q �B,f (w) is C∞

for a > 1. The same holds for a ∈ (0, 1) on replacing a by a−1, and the identity is trivial when
a = 1. �

Comparing Lemmas 3, 4, we obtain

Proposition 4. For i = 1, 2, . . . , r let fi : Emi → R be positively homogeneous of degree qi > 0
with 0 the only critical point. Setting m ≡ ∑r

i=1 mi ,

f ≡ f1�f2� . . . �fr : Em1 × Em2 × . . . × Emr �Em → R

for any bounded neighbourhood B of 0 ∈ Em, �B,f is scalable at 0 of order

r∑
i=1

mi

qi

+ r − 1.

Our definition of scalability is a little different (and Proposition 4 establishes the property in
greater generality) than in [15].

For m, n�0 let Sm,n : Em × En → Em+n be the standard identification:

Sm,n(y, z) = (y1, y2, . . . , ym, z1, z2, . . . , zn).

Define fm,n : Em+n → R by fm,n(x) = ‖y‖2
m − ‖z‖2

n, where x = Sm,n(y, z). (The significance
of fm,n is due to the Morse Lemma, which says that, near a nondegenerate critical point, a smooth
function can be written in the form fm,n after suitable C∞ reparameterization.) We have

�B,fm,n(w) = 	m+n((f
−1
m,n[−
2, w]) ∩ B),

where B ≡ Bm+n(
) and 
 > 0. By Lemma 1 �B,fm,n is C∞ except at w = 0. The coordinate-
switch � : Em × En → En × Em induces an orthogonal transformation

Tm,n ≡ Sn,m ◦ � ◦ S−1
m,n : Em+n → Em+n.

As in Example 7, �B,fm,0(w) = �mw
m
2+ . For t > 0 and integers m, n�1, define

Im,n(t) ≡
∫ t

0
coshm−1 s sinhn−1 s ds = 1

2m+n−2

∫ t

0
(es + e−s)m−1(es − e−s)n−1 ds.

Proposition 5. For m, n�1, and |w| < 
2 set I ∗ ≡ Im,n(t
∗) or In,m(t∗) according as w�0 or

w�0, where t∗ ≡ − 1
2 ln 2|w| + ln(

√

2 + w +

√

2 − w). Then �B,fm,n has density

�B,fm,n
(w) = mn�m�n

2
|w|m+n

2 −1I ∗.
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Proof. For w > 0, Sm,n(y, z) ∈ B ∩ f −1
m,n[−
2, w] when

z ∈ Zy ≡ {z : (‖y‖2
m − w)+ �‖z‖2

n �
2 − ‖y‖2
m} ⊂ En.

Then 	n(Zy) = �n((

2 − ‖y‖2

m)
n
2 − (‖y‖2

m − w)
n
2+). By Fubini’s Theorem,

�B,fm,n(w) = m�m�n

⎛
⎝∫

√
w+
2

2

√
w

((
2 − r2)
n
2 − (r2 − w)

n
2 )rm−1 dr

+
∫ √

w

0
(
2 − r2)

n
2 rm−1 dr

)
.

It follows that �′
B,fm,n

(w) is

mn�m�n

2

∫ √
w+
2

2

√
w

(r2 − w)
n
2 −1rm−1dr

= mn�m�n

2
w

m+n
2 −1Im,n

(
−1

2
ln 2w + ln

(√

2 + w +

√

2 − w

))
.

For w < 0, by (4), �′
B,fm,n

(w) = �′
B,fn,m

(−w) and the result follows. �

In accordance with (4), �B,fm,n
(w) = �B,fn,m

(−w) for w �= 0. In particular �B,fm,m
is even.

4. Euclidean examples

In the following examples take |w| < 
2.

Example 8. �B,f1,0(w) = 2w
1/2
+ and �B,f0,1(w) = 2
 − 2((−w)+)1/2 (Fig. 1).

Example 9. �B,f2,0(w) = �w+, and �B,f0,2(w) = �
2 − �B,f0,2(−w) (Fig. 2). For f1,1 the
density spikes at w = 0 (Fig. 3):

�B,f1,1
(w) = − ln(2|w|) + 2 ln

(√

2 + w +

√

2 − w

)
.

Fig. 1. Graph of �B,f1,0
in Example 8.
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Fig. 2. Graph of �B,f2,0
(cliff) in Example 9.

Fig. 3. Graph of �B,f1,1
(spike) in Example 9.

Fig. 4. Graph of �B,f3,0
in Example 10.

Fig. 5. Graph of �B,f2,1
(shark tooth) in Example 10.

Example 10. �B,f3,0
(w) = 2�w

1/2
+ and�B,f0,3

(w) = �B,f3,0
(−w).�B,f2,1

(w) = �
√

2(
2 − w)

−2�
√

(−w)+ (Fig. 4). The graph of �B,f2,1
in Fig. 5 has the appearance of a shark tooth: reflection

in the vertical axis gives the graph of �B,f1,2
.
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Fig. 6. Graph of �B,f4,0
in Example 11.

Fig. 7. Graph of �B,f3,1
in Example 11.

Fig. 8. Graph of �B,f2,2
in Example 11.

Example 11. �B,f4,0
(w) = �2w+, and �B,f0,4

(w) = �B,f4,0
(−w) (Fig. 6). For �B,f3,1

(w),
where w �= 0 we obtain

�

(√

4 − w2 − w ln

(
|w|


2 +
√


4 − w2

))

whose graph is shown in Fig. 7, and then �B,f1,3
is obtained by reflection (Fig. 8). For w �= 0,

�B,f2,2
(w) = �2

2
(
2 − |w|).
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5. Riemannian singularities

The examples in §4 show singularities of �M,f when � is locally constant. In general, when �
is not locally constant, we can replace the nonzero density � by �(w∗) in some neighbourhood
of a critical point w∗ of f. This approach, taken in [12], is sufficient for some asymptotic results.
The present section goes further, giving normal forms for �M,f near points of nonsmoothness.

By the Morse Lemma [10, Lemma 2.2] near a nondegenerate critical point of f we can take
M = Rm and f = fn,m−n : Em�Rm → R where 0�n�m. Also

�M = �dx1 ∧ dx2 ∧ . . . ∧ dxm,

where � : Rm → (0, ∞) is C∞ and integrable. Let On,m−n be the space of linear transformations
of Rm of determinant ±1 preserving the quadratic form fn,m−n. For T ∈ On,m−n �B,fn,m−n =
�T −1B,fn,m−n◦T . For convenience we include a proof of the following well-known result [4, p. 248
Lemma 2.1]:

Lemma 5. Let � : (−
, 
) → R be C∞ and even. For some C∞ 
 : (−
2, 
2) → R,

�(v) = 
(v2) for all v ∈ (−
, 
).

Proof. By Hadamard’s Lemma [10, Lemma 2.1] �(v)− �(0) = v�1(v) where �1 : (−
, 
) → R

is C∞ and odd. Again by Hadamard’s Lemma, since �1(0) = 0, �(v) − �(0) = v2�2(v) where
�2 : (−
, 
) → R is C∞ and even. Continuing in this way, for any integer k�1,

�(v) =
k−1∑
j=0

v2j�2j (0) + v2k�2k(v),

where �0 ≡ �, and each �2j : (−
, 
) → R is C∞ and even. Define 
0 : [0, 
2) → R by


0(u) = ∑k−1
j=0 uj�2j (0) + uk�2k(

√
u). For 1� l�k − 1, limu→0+ 
(l)

0 (u) = l!�2l (0). Denoting

the continuous extension of 
(l)
0 : (0, 
2) → R to [0, 
2) by 
l ,


0(u) =
k−1∑
j=0

1

j ! 
j (0)uj + uk�2k(
√

u).

Writing m = k − l, 
l (u) = ∑m−1
i=0

1
i!
l+i (0)ui +O(um). So by the Whitney Extension Theorem

[11, Theorem 1.5.6] 
0 extends from [0, 
2) to a C∞ function 
 defined on (−
2, 
2). �

Theorem 1. Let B = Bm(
). For w < 0, �B,fm,0
(w) = 0. For 0 < w < 
2,

�B,fm,0
(w) = m

2
�m
(w)w

m
2 −1,

where 
 : (−
2, 
2) → (0, ∞) is C∞. For w ∈ (0, 
2) and any x ∈ Em with ‖x‖ = √
w,


(‖x‖) =
∫

Om

�(T x) dT ,

where integration is with respect to normalized Haar measure on the orthogonal group Om.
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Proof of Theorem 1. Om ≡ Om,0 is compact and leaves B invariant. Because fm,0 is Om-
invariant � can be replaced in the integral for �B,fm,0(w) by its Om-average �av : Rm → (0, ∞).
Because �av is Om-invariant �av(x) = �̄(‖x‖) where �̄ ≡ �av|R × {0}�R → (0, ∞) is C∞
and even. For w ∈ (−
2, 0) evidently �B,fm,0(w) = 0. For 0�w < 
2

�B,fm,0(w) = m�m

∫ √
w

0
um−1�̄(u) du.

So for 0 < w < 
2 �B,fm,0
(w) = m

2 �mw
m
2 −1�̄(

√
w) and the formula for �B,fm,0

follows from
Lemma 5 (with a little care 
 remains positive). �

By (4) �B,f0,m
(w) = �B,fm,0

(−w). So it remains only to investigate �B,fn,m−n
when 0 < n <

m. For T ∈ On,m−n and any open neighbourhood B of 0

�B,fn,m−n = �T −1B,fn,m−n◦T = �B,fn,m−n◦T + �T −1B−B,fn,m−n◦T

−�B−T −1B,fn,m−n◦T ,

where the last two terms on the right are C∞ by Lemma 2. So �B,fn,m−n − �B,fn,m−n◦T is C∞.
Suppose � is rapidly decreasing [1, X.6]: by Lemma 2 this can be enforced at the expense
of adding a C∞ function to �B,f . Define C∞ On,m−n-invariant (but not rapidly decreasing)
�av,n,m−n : Rm → (0, ∞) by taking �av,n,m−n ◦ Sn,m−n(y, z) as

∫∞
−∞

∫
On

∫
Om−n

� ◦ Sn,m−n(T (y) cosh s + U(z) sinh s, T (y) sinh s + U(z) cosh s) dT dU ds∫
Rm �(x) d	m

,

where integration over T ∈ On and U ∈ Om−n is with respect to normalized Haar measures.
Notice �av,n,m−n = �av,m−n,m. Then �̄n,m−n ≡ �av,n,m−n ◦ Sn,m−n|R × {0} × Em−n�R →
(0, ∞) is C∞ even and integrable. So by Lemma 5 �̄n,m−n(v) = 
n,m−n(v

2) where 
n,m−n :
R → R is C∞ and 
n,m−n = 
m−n,n.

Theorem 2. For 0 < n < m, let B be the unbounded open neighbourhood f −1
n,m−n(−
2, 
2) of 0

in Rm. Let BE ⊂ B be the open Euclidean ball in Em with centre 0 and radius 
. For 0 < |w| < 
2,

�B,fn,m−n
(w) = �B−BE,fn,m−n

(w) + 
n,m−n

(√|w|
) n(m − n)�n�m−n

2
×|w|m

2 −1In,m−n(t∗),

where t∗ ≡ − 1
2 ln 2|w| + ln(

√

2 + w +

√

2 − w) and In,m−n is defined for Proposition 5.

Proof of Theorem 2. Becausefn,m−n and B areOn,m−n-invariant� can be replaced by�av,n,m−n

in the integral for �B,fn,m−n(w). Now compare with Proposition 5 (where � is constant). �

Note that by Lemma 2 �B−BE,fn,m−n
is C∞.
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