
literature alone. In addition, it is advised to perform studies on
mild and severe mouse models of I/R injury and to validate
results generated with these models on clinical material.
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Hepatic hepcidin expression is decreased in cirrhosis and HCC

genesis, we aimed at deciphering whether Hamp expression is
already decreased in early hepatocarcinogenesis. We observed
that mice treated with the carcinogen diethylnitrosamine
(DEN), to induce hepatocarcinogenesis, showed decreased hepa-
tic Hamp expression already in an early stage of tumor develop-
ment (Fig. 1A). Hamp expression was also reduced in tumor
tissues, compared to matched adjacent normal liver tissues, in a
later stage of murine tumorigenesis (Fig. 1B).

To test the relevance of the observed decreased hepcidin in
rodent HCC for human disease, we analyzed a large human Gene
Omnibus (GEO) dataset (GSE14520 [5]), mostly consisting of hep-
atitis B virus (HBV)-related HCC samples. Hamp expression was
strongly decreased in the majority of tumors compared to normal
liver samples (Fig. 1C). This is in line with results from a small
HCC cohort with mixed etiology [6]. Interestingly, serum
hepcidin levels were shown to be decreased in patients with
chronic hepatitis C [7]. To test for hepatic hepcidin expression
in cirrhosis, we analysed two additional datasets containing
cirrhotic liver samples. Cirrhotic tissues showed lower Hamp
expression compared to healthy liver samples in an HBV-related
cohort (Fig. 1D) as well as in HCV-infected patients (Fig. 1E).
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To the Editor:
Recent evidence published in this Journal showed the protective
role of the iron homeostasis regulator hepcidin (Hamp) in iron
overload-related liver diseases [1]. The study by Lunova et al. ele-
gantly demonstrated that the knockdown of hepcidin promotes
hepatic inflammation and fibrogenesis after feeding mice an
iron-rich diet [1].

It is well known that perturbations of the iron metabolism, as
it is the case in hemochromatosis, can lead to hepatocellular car-
cinoma (HCC). HCC represents the second most common cancer-
related death worldwide and displays also the end-stage of liver
diseases related to chronic viral or non-viral hepatitis.

As hepcidin deficient mice were more prone to develop fibro-
sis [1], which is itself a risk factor for HCC, deregulation of Hamp
might also play a role in the progression of chronic liver disease
to HCC development. Also alcohol intake, another risk factor for
HCC development, lowers hepatic Hamp expression in a murine
model of alcoholic steatohepatitis [2].

Regarding HCC, low Hamp levels have been reported in late
stage murine and rat tumors [3,4]. As this downregulation might
display a late, secondary, rather than an initial effect of carcino-
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Furthermore, Hamp mRNA levels were even lower in tumor tissue
(Fig. 1D and E). Interestingly, hepatitis C virus (HCV) has been
described to suppress hepcidin expression via generation of reac-
tive oxygen species [8]. With HBV also inducing oxidant stress,
this might also be true for HBV. Furthermore, Hamp expression
can be transcriptionally activated by the tumor suppressor p53
[9]. As p53 is frequently suppressed in HCC [10], downregulation
of hepcidin might be linked to p53 suppression.

In conclusion, these findings in the DEN mouse model and
three human HCC cohorts strongly support a role of hepcidin
deficiency not only as a model for iron-related liver disease, but
also for other liver diseases leading to HCC. Therefore, hepcidin
knockout mice presented by Lunova and colleagues [1] might
be an interesting model to study progression of various liver dis-
eases towards HCC.
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Fig. 1. Hamp levels in murine and human HCC. (A) Hepatic Hamp expression in non-tumorous murine liver tissue, 6 months after intraperitoneal injection of 5 mg/kg BW
diethylnitrosamine (DEN) at the age of 2 weeks, compared to untreated control (co). Data are presented as individual values and box plots with median (—) and mean (h) of
untreated control (co, n = 8) and DEN-treated (DEN, n = 11) animals. (B) Hamp expression in adjacent non-tumorous murine liver tissues and matched tumor tissues (n = 6),
8 months after DEN injection as described in (A). Hamp expression was normalised to 18s expression (A and B). (C–E) Gene expression of Hamp in human datasets GSE14520
(adjacent non-tumor samples n = 247, tumor samples n = 239) (C), GSE25097 (healthy samples n = 6, cirrhotic samples n = 40, adjacent non-tumor samples 243, tumor
samples n = 268) (D), and GSE14323 (healthy samples n = 19, cirrhotic samples n = 41, adjacent cirrhotic non-tumor samples n = 17, tumor samples n = 47) (E), downloaded
from Gene Omnibus (GEO) and normalised using log2-RMA. Data are shown as individual values of expression. The statistical significance was determined by Mann-
Whitney U test (A), paired sample t test (B), subsequent to confirmation of normal distribution, or Kolmogorov-Smirnov test (C–E).
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Reply to: ‘‘Hepatic hepcidin expression is decreased
in cirrhosis and HCC’’

Hepcidin in chronic liver disease and hepatocellular carcinoma:
The plot thickens

To the Editor:
We read with interest the letter by Kessler et al. [1] that demon-
strated decreased hepcidin levels in various stress situations as
well as in hepatocellular carcinoma. Lowered hepcidin levels seen
in diethylnitrosamine-treated mice nicely complement earlier
data on mice subjected to thioacetamide-induced liver fibrosis
or administered Lieber-DeCarli diet (an experimental model of
alcoholic liver disease), and suggest that diminished hepcidin
levels represent a common reaction to various liver stresses
[1–3]. Similarly, observations predominantly made in hepatitis
B-infected patients extend previous findings, obtained in subjects
with chronic liver disease due to hepatitis C infection or excessive
alcohol intake, which all display reduced liver hepcidin levels
[1,4]. Most importantly, in an elegant molecular analysis, Kessler
et al. also showed that hepatocellular carcinomas exhibit dimin-
ished hepcidin expression, that was previously reported only in
smaller studies.

Since hepcidin represents the central negative regulator of
iron metabolism [4], these data reinforce the hypothesis that
chronic liver disorders may promote development of acquired
iron overload again triggering the progression of liver fibrosis
and/or development of hepatocellular carcinoma. As an underly-
ing mechanism, iron overload has multiple deleterious down-
stream effects, such as formation of reactive oxygen species,
mitochondrial or lysosomal injury [5,6]. However, while several
reports demonstrated an association between increased hepatic
iron load and progression of liver fibrosis and/or HCC develop-
ment [7], no such studies are available for hepcidin. This is rather
surprising given the availability of multiple assays that can con-
veniently assess hepcidin serum levels. However, the extent to

which these assessments can accurately reflect liver hepcidin
expression or iron content in complex clinical settings, compris-
ing multiple confounding factors, remains to be clarified. Never-
theless and without any doubt, such studies are of obvious
medical and biological interest, although their interpretation will
likely be complicated.

In that respect, the regulation of hepcidin production is
complex and is affected, not only by iron metabolism, but also
by various hepatic factors; by inflammation, erythropoietic drive,
hypoxia etc. [4]. Moreover, hepcidin has a short half-life and
displays a circadian rhythm [8]. Even more challenging will be
to dissect whether the altered hepcidin levels represent a cause
or consequence of liver disease/fibrosis progression. Finally, the
deleterious effects of iron metabolism in liver carcinogenesis
are further modulated by complex genetic factors at both the
constitutional and functional levels; indeed, multiple genetic
traits seem to impact hepatic iron content in patients with
chronic liver disease [9]. While in-depth transcriptomic analyses
reveal that expression of the HAMP gene could participate in a
refinement of molecular classification of HCCs [10].

In conclusion, although the road ahead will likely be bumpy, it
will be challenging to uncover the complex interaction between
liver disease and iron metabolism. These interactions are now
more important than ever given the rapid emergence of
hepcidin-targeted therapeutic strategies that could be further
modulated by host- and/or tumour-related genetic factors in
the setting of personalized medicine.
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