Erratum

Erratum to: “One-loop weak corrections to γ/Z hadro-production at finite transverse momentum”

Ezio Mainaa, Stefano Morettib, Douglas A. Rossb

a Dipartimento di Fisica Teorica, Università di Torino and Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
b School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ, UK

Received 31 March 2005
Available online 7 April 2005

The results presented in Fig. 4 of the original paper mistakenly refer to a pp collider of $\sqrt{s}_{pp} = 2$ TeV instead of a $p\bar{p}$ one. The correct results for the effects of the $O(\alpha_S \alpha^2_{em})$ terms relatively to the $O(\alpha_S \alpha_{EW})$ Born results (α_{em} replaces α_{EW} for photons), as well as the absolute magnitude of the latter, as a function of the transverse momentum at Tevatron are shown in Fig. 1 below. The corrections are of order -6% for $Z + j$ production at Tevatron for $p_T \approx 300$ GeV. Since both the size of the corrections and the cross section for moderate values of p_T are similar to those for a pp collider, our conclusions that such effects will be hard to observe at Tevatron but will indeed be observable at LHC are unchanged.
Fig. 1. The transverse momentum dependence of the γ- and Z-boson cross sections in $q\bar{q} \rightarrow gV$ and $q(\bar{q})g \rightarrow q(\bar{q})V$ at LO (top frame) and the size of the one-loop weak corrections (bottom frame), at Tevatron ($\sqrt{s}_{\bar{p}p} = 2$ TeV). Notice that the pseudorapidity range of the jet in the final state is limited to $|\eta| < 3$.

Acknowledgements

We are grateful to J.H. Kühn, A. Kulesza, S. Pozzorini, M. Schulze [1] for pointing out the discrepancy with their calculation.

References