, Citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Elsevier - Publisher Connector

Ecological Economics 76 (2012) 8-14

journal homepage: www.elsevier.com/locate/ecolecon

Contents lists available at SciVerse ScienceDirect

Ecological Economics

‘i‘ ECOLOGICAL
ECONDMICS

Commentary

How a socio-ecological metabolism approach can help to advance our understanding

of changes in land-use intensity
Karl-Heinz Erb™

Institute of Social Ecology Vienna, Alpen-Adria University (Klagenfurt-Vienna-Graz), Schottenfeldgasse 29, 1070 Vienna, Austria

ARTICLE INFO

Article history:

Received 12 September 2011

Received in revised form 3 February 2012
Accepted 7 February 2012

Available online 1 March 2012

Keywords:

Land-use intensification

Global land use and cover change
Land-use transitions

Industrial metabolism
Socio-ecological metabolism

1. Introduction

The quantity and quality of land use directly and indirectly relates
to many “grand challenges” in sustainability science (Vitousek, 1997;
Rindfuss et al., 2004; Global Land Project, 2005; Steffen et al., 2007;
Turner et al., 2007). Land use is a major driver for habitat encroachment
and biodiversity loss (Sala et al., 2000), for the alterations of global
biogeochemical cycles (Gruber and Galloway, 2008; Postel et al., 1996;
Vitousek et al., 1997) and for soil degradation (Lal, 2004). Changes in
land use and subsequent changes in land cover play a central role in
the global carbon cycle and significantly contribute to anthropogenic
climate change (Brovkin et al., 2004; Canadell et al., 2007; McGuire
et al.,, 2001; Watson et al., 2000). On the other hand, land use provides
the nutritional basis for humans and thus of any socioeconomic system,
and is intrinsically linked to food security (Ayres, 2007; Foley et al.,
2005; Millennium Ecosystem Assessment, 2005).

Research on global land use has a long tradition, reaching back to
the work of G.P. Marsh (1865) and A. Von Humboldt (1849). It gained
momentum in sustainability research in the mid-1970s, when the
impact of land use on the global surface albedo was recognized
(Lambin et al., 2006). Since then, many aspects of land use have
been assessed, quantified and mapped across spatio-temporal scales.

Two aspects of land use changes can be distinguished: (a) Changes
in land cover, i.e. alterations of biophysical characteristics of the
Earth's surface, e.g. by expansion or contraction of a certain land use
type; a prominent example would be the expansion of agricultural
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fields into pristine forests. (b) Changes in land use intensity, denoting
changes in the levels of socioeconomic inputs (e.g., labour, resources,
water, energy or capital) and/or altered output (value or quantity)
per unit area and time. Changes in intensity need not result in
changes in land cover, but cause ecological changes within the same
land cover type.

Increasing land use intensity stands in an inverse relation to land
expansion for increasing production. Consequently, a major effect of
intensification may be to “spare” land, e.g. for wilderness conservation,
by concentrating production on other areas (Tilman, 2001). Indeed, this
effect is often assumed to be essential for many sustainability aspects, as
it allows to reduce area demand and avoid considerable carbon emis-
sions from deforestation (Burney et al., 2010) or habitat encroachment
(Green et al., 2005). In the future, safeguarding the land-sparing effect
of intensification could become decisive, given the rising nutritional
and energy demands of a growing world population, and the concomi-
tant need to protect the shrinking untouched habitats of the Earth, rich
in biodiversity and carbon. Moreover, many policies that aim at harnes-
sing land use for the goals of climate change mitigation, such as strategies
aimed at expanding bioenergy production, or at reducing greenhouse
gas emissions from deforestation and forest degradation (REDD), will
probably not be effective without the land sparing effect of
intensification.

On the other hand, many technologies required for intensification
are associated with detrimental ecological impacts, such as the accumu-
lation of toxins in food, ecosystem and soil degradation, groundwater
and air pollution, or biodiversity loss (IAASTD, 2009; Matson et al.,
1997; Millennium Ecosystem Assessment, 2005; Tilman, 2001). Such
processes negatively affect the ability of ecosystems to sustain vital
ecosystem services, thereby running the risk of jeopardizing human
well-being in the long run (Foley et al., 2005). Thus, it will become
imperative to find ways of sustainable intensification (Tilman et al.,
2002) that allow reaping its land-sparing benefits while at the same
time avoiding the detrimental social and ecological effects.

However, the interrelation between intensification and expansion
of land use is far from trivial. Empirical analyses of Rudel et al. (2009)
on the interrelation between past trajectories in cropland expansion
and intensification resulted in inconclusive findings. At the national
scale, land use intensification was paired with a decline or stasis in
cropland area between 1970 and 2005 only in countries that “exter-
nalized” agricultural production (e.g. grain imports) or preserved
land with explicit land conservation programs (Rudel et al., 2009).
These counterintuitive findings may be explained not only by large
data gaps and uncertainties (Grainger, 2009), but also by feedback
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loops of higher order, such as a rebound effect of consumption to
increased production, that overcompensated the land-sparing effect
(Lambin and Meyfroidt, 2011). This altogether casts doubts on the
straightforward interpretations or scenario-based extrapolations of
the beneficial effects of land intensification strategies.

These feedback loops of land transitions are active across a wide
range of spatial and temporal scales (Global Land Project, 2005;
Lambin and Geist, 2005; Bennett and Balvanera, 2007; Erb et al.,
2009b; Lambin and Meyfroidt, 2011). To take such feedbacks into
account is indispensable, but it poses a formidable challenge to land
change science (Turner et al., 2007), as it requires innovative
methods and new perspectives that allow for the construction of
sound causal chains between the various factors, mechanisms, deter-
minants and constraints that underpin land-use intensification
processes.

In this commentary, I discuss the potential contribution of an
extension of the socioeconomic metabolism concept (Ayers and
Simonis, 1994; Ayres, 1989; Fischer-Kowalski and Hiittler, 1998) by
accounts that create an integrated picture of socio-ecological flows
(Erb et al., 2008; Haberl et al., 2004; Krausmann et al., 2004) to global
land system science. Such an approach could help to develop an
analytical framework for conceptualizing and reporting on the
complex, systemic interactions related to land use intensification,
including feedbacks between production and consumption. It thus
might give guidance for data collection and analysis, and so enhance
the understanding of the interplay between land expansion and
intensification.

2. Barriers to Understanding Land-Use Intensity

Immense research efforts are currently focusing on analyzing land
cover changes and their role in the Earth system. Much fewer
attempts exist to quantify and map changes in land use intensity, in
particular at the global scale (Lambin et al., 2000, 2001). This is
surprising, because land-use intensification represented a major focus
of land use research in the past (Allen, 2001; Boserup, 1965;
Brookfield, 2001; Netting, 1993; Shriar, 2000; Turner et al., 1977), but
the attention paid to this aspect of land use change decreased in the
last decades. However, changes in land use intensity are hugely impor-
tant in terms of its socioeconomic as well as ecological effects, as global
empirical analyses reveal (Tilman, 1999; Tilman et al., 2002): Since the
early 1960s, intensification has brought about 2.7 fold increases in the
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global agricultural production of crucial products such as cereals,
made possible by tremendous surges in agricultural inputs and new
crop varieties. In contrast, harvested area, central focus of many land
change studies or land-use transition conceptualizations, has remained
almost stable (FAOSTAT, 2011; Fig. 1).

In my perception, the interplay of three major characteristics of
the current mainstream in land-use research contributed to this
changing focus of land-use research. These mutually interdependent
aspects are the following.

1) The widespread availability of wall-to-wall fine-scale land-cover
datasets, which are particularly abundant nowadays due to
advances in remote sensing, draws attention on changes in land
use that coincide with changes in land cover and subsequently
distract from studies of other land use changes. Land cover data,
i.e. data on the biophysical characteristics of Earth's surface, have
been decisive for the progress of land use science (Turner et al.,
2007), insofar as such studies have helped to depict land-use
change as a process of global significance (Turner et al., 1990;
Foley et al, 2005; Millennium Ecosystem Assessment, 2005,
etc.). While widespread availability of land-cover data for land
change research has brought the study of land-cover change into
focus, it also diverted attention from the study of phenomena
such as intensification, because most changes associated with
intensification are not related to changes in land cover and thus
not detectable by remote sensing (Verburg et al., 2011). Tellingly,
such changes in land-use intensity are commonly referred to as
“subtle” changes (Veldkamp and Lambin, 2001), despite the fact
they can have far-reaching consequences, such as massive
changes in greenhouse-gas emissions related to management
changes on cropland or in the livestock sector (e.g. Steinfeld
et al., 2006).

2) Methodologically, most studies of land use and land cover are
based on classification systems that assign a discrete, homogenous
land-use type (class) to each gridcell or polygon, i.e. they are
based on nominal scales (Stevens, 1946). Thus, land-use change
is conventionally measured as the change of the area and spatial
distribution of land characterized by a well-defined combination of
management and land cover, e.g. urban, crops, grazing or forestry.
The advantage of such a basic approach is evident: area covered by
a defined land-use class can be quantified, mapped, and thereby
traced through space and time. Nominal-scale data allow analyzing
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Fig. 1. Changes in land use intensity play an essential role in land-use transitions and can be more pronounced than changes in land cover. Global growth in the production of cereals
since 1961 has depended almost exclusively on intensification (i.e. nitrogen input, tractors, yields and many other factors not shown here), whereas the expansion of harvested area
has played an insignificant role. Please note that fertilizer consumption is drawn against the secondary axis. Sources: left: iconic scheme for conceptualizing land use transitions,

redrawn after Foley et al. (2005), right: FAO 2007.
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changes of areas covered by a defined land-use category, i.e. by the
transition of a defined area of land from one class (e.g., grazing
land) into another (e.g., cropland).
However, besides difficulties of unambiguous allocation and delin-
eation (e.g. of agroforestry or grazing; Erb et al., 2007; Verburg et
al.,, 2011), nominal scales are not well-suited to analyzing contin-
uous, functional processes. Intensity changes entail changes within
a land-use class that leads exactly to such processes. By their very
nature, these processes need to be measured on ratio scales
(Stevens, 1946), i.e. scales that measure the magnitude of continu-
ous quantities (e.g., flow of energy or materials, work input etc.).
3) The intensity with which land is used is prominently influenced by
socioeconomic processes, options and capabilities. Thus, natural
science based approaches are not sufficient for conceptualizing,
quantifying and understanding land-use intensity and intensifica-
tion processes. While many social-science based studies on the
processes and trajectories of land-use intensification exist, such
data and analyses are scarce at the global scale (Liverman and
Cuesta, 2008), possibly owing to the dominance of land cover data.
However, in order to make progress in the field of land use intensifi-
cation, genuinely integrated approaches are required, that combine
knowledge from various disciplines in the social and natural sciences.

Some aspects of these shortcomings have already been identified
and addressed in land use science so far, mainly offering partial
solutions. For example, the intricacies related to nominal scales have
been discussed for land cover datasets and led to the establishment
of continuous field data (DeFries et al., 1995; Hansen et al., 2003).
The need to counteract the under-representation of social sciences in
research dealing with global environmental change is conceptually
addressed in the seminal “socializing the pixel” research strand
(Geoghegan et al.,, 1998; Rindfuss et al., 2004). Combinations of
biophysical and socioeconomic information allowed to develop classi-
fication schemes of the land system in spatially explicit, socio-
ecological terms, creating e.g. typologies of human-environment
systems (Ellis and Ramankutty, 2008; Kruska et al., 2003; Leff et al.,
2004). Such approaches have gained particular attention as they
bring the integrated nature of the land system into focus (Alessa and
Chapin, 2008; Verburg et al., 2009). However, these studies also suffer
from the problems caused by using nominal scales, being unable to
grasp gradients of land use intensity. Another strand of research
aims at counterbalancing the dominance of land cover data by recon-
ciling land-cover data with land use information from agricultural
census statistics, with varying purposes and outcomes. Some of this
research led to the generation of land-use maps (Erb et al., 2007;
Goldewijk et al., 2007; Klein Goldewijk et al., 2011; Leff et al., 2004;
Pongratz et al., 2009; Ramankutty et al., 2008; Siebert et al., 2005;
Wood and Skole, 1998) which are widely used in studies of, e.g., the
human impact on the global climate system (Verburg et al., 2011),
but still focus on the extent of land use types, and not on the intensity
of their use. A limited number of these land use datasets, however,
present indeed information on aspects of land use intensity, such as
crop yield per harvest event (Monfreda et al., 2008) or cropping inten-
sity (number of crop harvests per year; Portmann et al., 2010; Siebert
et al., 2010); these datasets, however, are restricted to cropland.

3. A Socio-Ecological Metabolism Approach to Land-Use Intensity

Approaches aimed at improving our understanding of land-use
intensity, intensification and its interplay with socioeconomic area
requirement, and land cover change require moving beyond simple
accounts of the extent of selected land-use types.

As intensification denotes increase in socioeconomic inputs to and/
or outputs from land, and thus closely refers to socioeconomic materi-
al or energy flows, the metabolism approach (Adriaanse et al., 1997;
Ayres, 1989; Fischer-Kowalski and Haberl, 2007; Fischer-Kowalski

and Hiittler, 1998; Schandl and Schulz, 2002) seems to be particularly
suited to overcome some of the above-discussed barriers to under-
standing land use intensification.

This concept, adopted from biology (for a review see Fischer-
Kowalski and Hiittler, 1998 and Schandl and Schulz, 2002) has gained
attention in interdisciplinary research fields that fall under the
umbrella of sustainability science (Clark and Dickson, 2003; Kates et
al., 2001). It aims at the study of the biophysical (material and energy)
exchange relationships between societies and their natural environ-
ment. The socioeconomic metabolism concept is embedded in a concept
of socio-ecological systems that conceptualizes society as a hybrid of the
cultural system of recursive communication, and biophysical structures
such as the human population, artefacts and livestock. Interaction
process between nature and culture can only proceed indirectly, via
these biophysical structures of society. In consequence, sustainability
can be understood as a characteristic of the interactions between society
and nature (Haberl et al., 2004), and material and energy exchanges
between social and natural systems become a vital element to observe,
monitor and analyze (for a more elaborate exposition, see Fischer-
Kowalski and Weisz, 1999 and Fischer-Kowalski and Rotmans, 2009).

The metabolism concept and its methodological tool box ‘Material
Flow Analysis’ (MFA) allow for biophysical accounts of the socioeco-
nomic system and so contribute to a ‘reintegration of the natural sci-
ences with economics’ (Hall et al., 2001). The very strength of the
metabolism concept is that it introduces an unambiguous and mean-
ingful system boundary between social and natural systems, strictly
following the law of conservation of mass, and consistently related
to economic accounts. This has proven useful in guiding data collec-
tion and analyses, and MFA has recently been implemented in envi-
ronmental reporting schemes of national and international
institutions (EUROSTAT, 2001; OECD, 2008; Weisz et al., 2007).

MFA consistently collects, derives or models information on stocks
and flows of material, energy or substances (e.g. carbon, nitrogen,
water) between socioeconomic and natural systems. This feature
bears already a high potential to study vital aspects of land intensifi-
cation, as it allows for consistent accounts of socioeconomic inputs
and outputs related to land use. In many studies on land-use intensi-
fication, two aspects of intensification are studied separately, despite
the fact that they are intrinsically linked: (a) input intensification, i.e.
attempts that analyze inputs to the land system., such as fertilizer,
energy, or labour, and (b) output intensification, studying outputs of
the land systems, such as cropland yields (Lambin et al., 2000;
Shriar, 2000). Often, it is implicitly assumed that increases in inputs
result in increased outputs, but empirical data to corroborate (or
contradict) this belief is rare (Netting, 1993; Shriar, 2000). Notwith-
standing said notion, systematically linking inputs to outputs yields
remarkable insights into processes of intensification. For example,
intensification in agrarian societies increases the productivity of
land and reduces that of labour (Boserup, 1965; Chayanov, 1986).
Industrialization changes this trend: labour productivity increases
dramatically, but at the expense of deteriorating energy efficiency,
as revealed by studies of the energy return on investments (EROI;
i.e. the amount of energy output divided by energetics inputs;
Pimentel et al., 1973; Krausmann et al., 2003).

However, the socioeconomic metabolism concept is not sufficient
for studying the process of land use intensification in its entirety.
Many aspects of land use intensification go beyond input or output
flows, but directly relate to alterations of ecosystem properties. This
requires an extension of the socioeconomic metabolism to a socio-
ecological metabolism approach that consistently integrates ecological
stocks and flows (also called “MEFA framework”; Haberl et al., 2004;
Krausmann et al.,, 2004; Erb et al., 2008). Such an approach allows
providing biophysical information on socioeconomic activities and link-
ing this information to ecological processes in a meaningful manner.

The analytical strengths of the socio-ecological metabolism con-
cept can be illustrated with the accounting framework and indicator
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‘human appropriation of net primary production’ (HANPP; Vitousek
et al., 1986; Haberl et al., 2007; Erb et al., 2009a). This indicator has
attracted attention as a metric for the scope of the “human domination
of ecosystems” (Vitousek, 1997). HANPP integrates two distinct
effects of land use on one of the most fundamental ecological process,
i.e. the flow of carbon or energy, in one account: (a) human-induced
changes in productivity due to land conversions and (b) biomass
harvest. The latter is a widely used surrogate indicator for output
intensification in agriculture (see Neumann et al., 2010). The integration
of this output intensification parameter with the associated land-use
related alterations of ecological flows allows for two distinct perspec-
tives at the same time: an ecological perspective that quantifies and
monitors impacts on ecological flows on basis of a comparison of the
hypothetical natural (‘undisturbed’) with the actually prevailing state.
And a socioeconomic perspective that observes the amount of biomass
gained from ecosystem, i.e. the provision of ecosystem services, as well
as the associated collateral flow of energy, i.e. the unintended productiv-
ity losses due to land conversions. This integration of socioeconomic and
biophysical perspectives (Krausmann et al., 2009) renders HANPP a
useful framework to analyze drivers as well as impacts of changes in
land-systems, in particular the link between biomass production and
biomass consumption across scales (Erb et al., 2009b; Haberl et al.,
2009a; Imhoff et al., 2004).

However, the focus of HANPP on energy flows alone is not sufficient
when studying land-use intensification. Other aspects of intensification,
such as the frequency of crop rotation cycles or alterations of ecosystem
structures, have to be taken into account. Nevertheless, as HANPP
provides un-weighted accounts of energy, biomass or carbon flows in

the ecological and socioeconomic systems, it can be consistently
integrated with such information (see e.g. Erb et al., 2008).

Socio-ecological analyses are not restricted to a certain spatial
scale, but have been used to study society-nature interactions across
a wide range of scales, from the global (Haberl et al., 2007) to the
local level (Griinbiihel et al., 2003; Singh et al., 2001) and so allow
for nested approaches. Furthermore, the stringent system boundary
and data on flows between different compartments in natural and
socioeconomic systems have been found to be well-suited starting
points for the develop agent-based models, able to scrutinize the
role of local decision making in the land system (Gaube et al., 2009;
Haberl et al., 2009b) These features render the metabolism approach
predestined to study interrelations between decision-making, institu-
tions, social, economic and political framework conditions, land-use
change and biophysical flows, important for sustainability science's
quest for sustainable solutions (Ostrom, 2007).

A socio-ecological metabolism approach allows studying the full
cycle of land-use intensification, including its feedbacks (Fig. 2):
Socioeconomic inputs to ecosystems, structural changes within
ecosystems, and changes in outputs of ecosystems to society, as well
as the underlying socioeconomic cost-benefit relations, constraints,
feedbacks, and thresholds. An example from the seminal work by E.
Boserup (1965) can be used to illustrate these interlinkages: shorter
cropping cycles in swidden agriculture, resulting from higher popula-
tion numbers and increased food demand, prevent natural forest
ecosystems from fully recovering from shifting cultivation and so
gradually lead to a dominance of herbaceous cover; this renders the
use of clearing fires ineffective and, consequently, makes the use of
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Fig. 2. Conceptual framework for research on land-use intensity. Socioeconomic and ecological systems are coupled through direct input and output flows (input and output
intensification) and indirect effects, such as alterations of biogeophysical conditions or effects on the availability and quality of other ecosystem services not related to output, or
indirect socioeconomic impacts on the natural systems, such as changes in atmospheric conditions. While natural science approaches focus on patterns and dynamics of ecosystem
processes, social science approaches focus on patterns, dynamics and organization of socioeconomic systems. Only integrated approaches such as a socio-ecological metabolism

approach are able to grasp the full cause-effect chains related to land-use intensification.
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other technologies such as the hoe or plough necessary. These
changes, in turn, trigger socioeconomic changes, such as the augmented
provision of resources that may allow for a larger population, but also
trigger changes in social organization, e.g. those that accompany the
transition from hunter and gatherers to sedentary agriculture. Socioeco-
nomic effects not related to land-use, as well as external perturbations,
play an equally important role in this cycle, for example the human-
induced increases in atmospheric CO, or the occurrence of droughts
(Verstraete et al., 2009).

The strength to take these feedback loops between society and
ecosystems into account can be illustrated taking the forest transition
(Kauppi et al., 2006; Mather, 1992; Rudel et al., 2005), a phenomenon
that denotes the return of forests after periods of deforestation in many
countries, as an example. Whereas a straightforward interpretation of
this phenomenon would stress the “improved” environmental perfor-
mance, e.g. at the national scale, such as the associated considerable
carbon sink, a socio-ecological metabolism approach would allow to
scrutinize the related feedback loops and underlying mechanisms:
agricultural intensification (Erb et al., 2008) or externalization effects
due to trade (Kastner et al., 2011; Meyfroidt et al., 2010) reduce domes-
tic area demand that allows for forest re-growth. Thus, the emerging
carbon sink is not result of an explicit land use strategy, but part of a
baseline development in many countries, intrinsically build upon the
availability of (cheap) fossil fuels. Moreover, the biophysical focus
allows to study aspects that cannot be captured with mere economic
accounts, such as biophysical constraints, minimum nutritional levels,
or overconsumption and their effects to human health (de Boer and
Aiking, 2011).

Table 1 gives some examples to illustrate how a socio-ecological
metabolism approach might allow identifying systemic interrelations
of a higher order, such as problem shifts or rebound effects, relevant
for forging sustainable strategies around land use.

4. Outlook and Conclusions

The formulation of land use strategies aimed at harnessing beneficial
aspects of land use for sustainability goals needs to be based on a
thorough understanding of the underlying mechanisms and driving
forces, taking the spatial and temporal interrelation of the different
feedback loops into account.

Many mechanisms and processes of essential aspects of land-use
transitions remain under-researched to date. Neither databases nor
conceptualizations are currently available at sufficient quality and
quantity to allow for integrated analyses of land-use intensification.
The socio-ecological metabolism concept allows to generate compre-
hensive accounts, including direct (e.g. metabolic) and indirect (e.g.
alterations of ecosystem structures) interactions between society

Table 1

and ecosystems as well as their feedbacks. Such accounts have a
high potential to contribute to bridging the critical chasm between
social and natural sciences related to global environmental change
research (Liverman and Cuesta, 2008), as they integrate socioeconomic
as well as ecological processes.

A socio-ecological metabolism approach could significantly
contribute to the many ongoing initiatives dedicated to the observation
and monitoring of the Earth system, such as the Global Earth Observing
System of Systems (GEOSS), Global Terrestrial Observing system
(GTOS), or the Integrated Global Observing System (IGOS; to name
but a few), that currently struggle with the many requirements related
to the establishment of an integrated, comprehensive and sustained
earth observing system (Grainger, 2009; Turner, 2011). Increasing the
spatial resolution of the existing observing systems and sensors is,
often implicitly, suggested as a response to these challenges. Such
efforts, however, although promising in many instances, will not only
be cost-intensive in terms of data acquisition, handling and interpreta-
tion, but are also not well-suited to operationalise land use intensity. A
metabolism approach, in contrast, would allow introducing a comple-
mentary, integrated perspective, as well as a stringent system boundary
that is well-suited to inform and guide data collection and analysis on
critical dimensions of land use transitions.

The need for interdisciplinary perspectives is growing, as the
grand sustainability challenges are. The metabolism concept provides
analytical tools that allow to advance our systemic understanding of
the many trade-offs related to land use intensification, placed at the
very heart of ecosystem functioning and human well-being. These
improvements of our understanding are a prerequisite for forging
strategies that aim at reaping the benefits of land intensification
while simultaneously avoiding detrimental social and ecological
effects.
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The strength of the socio-ecological metabolism approach, illustrated with examples of current land use strategies.

Land use strategy Intended benefit

Caveat introduced by a socio-ecological perspective

Land use intensification

Burney et al., 2010)

Organic farming
resources, reduced carbon emissions

Bioenergy

Reducing Emissions from Deforestation Reduce carbon emissions, generate income in rural

and Forest Degradation in Developing communities
Countries (REDD)

Allows land sparing, benefits for biodiversity, carbon
sequestration/conservation (see e.g. Green et al., 2005;

Reduces resource use, in particular of non-renewable

Substitutes for fossil energy, reduces emissions

Intensification can result in increased consumption due to increased
resource availability, triggering further land use intensification and
expansion.

Allows to generate a more realistic counterfactual to the assumption that
consumption levels would stay the same in the light of altered production.
If not paired with reduced consumption, the increased area demand of
organic farming can reverse the carbon saving effect, by triggering
deforestation or reduce afforestation/regeneration, increased climate
impact.

Conflict with other land uses; land expansion/deforestation elsewhere, thus
increased global emissions; impacts upon food security, in particular of
population living from subsistence agriculture.

Land use conflicts can result in considerable leakage and intensification/
land expansion elsewhere. Might decrease net income, self-sufficiency and
food security in rural areas due to increased dependency on external mar-
kets. Additionality and permanence depending on drivers and constraints
of land use intensification in non-forested ecosystems.
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