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Laquinimod is a novel oral drug that is currently being evaluated for the treatment of relapsing–remitting
multiple sclerosis (RRMS). Although the mode of action of laquinimod remains to be fully elucidated, current
knowledge indicates that laquinimod exerts beneficial activities both on the peripheral immune system and
within the central nervous system (CNS). The immunomodulatory properties have been deciphered primarily
from studies of laquinimod in the animal model of multiple sclerosis, experimental autoimmune encephalomy-
elitis (EAE). Data indicate that laquinimod has a primary effect on innate immunity. Laquinimod modulates the
function of various myeloid antigen presenting cell populations, which then downregulate proinflammatory T
cell responses. Further, data also indicate that laquinimod acts directly on resident cells within the CNS to
reduce demyelination and axonal damage. Results from clinical trials that tested laquinimod in RRMS demon-
strated that it reduced relapse rate and the mean cumulative number of active lesions, and had a more marked
reduction in disability progression than relapse rate. Laquinimod treatment was associated with an excellent
safety and tolerability profile. These data indicate that laquinimod will offer a valuable new treatment option
for RRMS patients.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
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Introduction

The number of drugs licensed for multiple sclerosis (MS) has
expanded rapidly. Since 2010, three oral therapies have been
approved: fingolimod (Gilenya®), teriflunomide (Aubagio®) and
BG-12 (Tecfidera®). Although efficacious, each of these medications
has been associated with potential toxicities (Bruck, et al., 2013).
Laquinimod is a novel oral agent with immunomodulatory
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properties that is currently under evaluation for the treatment of re-
lapsing-remitting multiple sclerosis (RRMS) and other autoimmune
diseases (Bomback and Appel, 2010; Comi et al., 2008; Polman
et al., 2005). Laquinimod is structurally related to roquinimex
(linomide), which demonstrated efficacy in MS (Wolinsky et al.,
2000), although its development was halted after unanticipated seri-
ous adverse events occurred in a Phase III trial (Noseworthy et al.,
2000). Laquinimod, which was identified by screening a large num-
ber of chemically modified quinoline-3-carboxamides in the MS
model, experimental autoimmune encephalomyelitis (EAE), exhibited
greater efficacy than linomide without apparent toxicities (Jonsson
et al., 2004). Laquinimod has since shown efficacy in Phase II and
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Phase III MS clinical trials, without evident immunosuppression or sig-
nificant toxicities (Comi et al., 2008, 2010; Polman et al., 2005).
Laquinimod significantly reduced relapse rate, disability progression,
development of new active MRI lesions and brain atrophy. Because
laquinimod treatment showed a greater effect on disability progression
than the relapse rate, and slowed brain atrophy, a measure that corre-
lates with disability, it is thought that laquinimod may be beneficial in
the progressive phases of MS.

Mode of action

Laquinimod is a small molecule that enters different tissue compart-
ments. In plasma, 98% is bound to proteins. From animal studies,
laquinimod concentration in the CNS reaches approximately 8% of
peripheral blood exposure in naive animals, while it peaks at 13%during
CNS inflammation (Bruck andWegner, 2011). Although precise molec-
ular targets are not well defined, current knowledge points towards
dual modes of action, in the peripheral immune system as well as in
the central nervous system (CNS) itself.

The influence of laquinimod on the immune system became evident
when it was studied in EAE, an autoimmune disease mediated by
proinflammatory myelin-reactive lymphocytes that results in CNS
inflammation and may be associated with demyelination and axonal
loss (Steinman and Zamvil, 2005). Laquinimod was shown to suppress
clinical signs in both acute and chronic EAE models (Brunmark et al.,
2002; Schulze-Topphoff et al., 2012; Wegner et al., 2010; Yang et al.,
2004). Specifically, these studies revealed that laquinimod was able
not only to prevent the development of EAE when administered from
the time of immunization, but also to inhibit the occurrence of relapses
when treatment was initiated after disease was established. Laquinimod
has also been effective in the treatment of experimental autoimmune
neuritis (EAN), an inflammatory autoimmune demyelinating disease of
the peripheral nervous system that has been used as an animal model
of Guillain–Barré syndrome (Zou et al., 2002). A common characteristic
of CNS autoimmune diseases, such as MS or its animal model, is that
autoantigen-reactive T cells must undergo several discrete steps in
order to cause disease. In EAE, T cells become activated in the peripheral
immune compartment, then differentiate into a pathogenic effector
phenotype and express appropriate adhesion molecules that permit
entry into the target organ, the CNS. Within the CNS, T cells must recog-
nize autoantigen in order to become reactivated and cause tissue injury
(Kuchroo et al., 2002; Zamvil and Steinman, 1990). Thus, laquinimod
could act in a number of different steps within this pathogenic cascade.

Initial signals that direct T cell activation and differentiation are pro-
vided by antigen presenting cells (APC). The myeloid subpopulations,
monocytes/macrophages and dendritic cells (DC), which represent
cells within the innate immune compartment, are well-recognized
APC. We recently reported that in vivo laquinimod treatment of mice
was associated with alterations in the frequency of these myeloid sub-
populations that included a reduction in CD4+ DC (Schulze-Topphoff
et al., 2012), potent APC for CD4+ T-cell responses (Dudziak et al.,
2007). Laquinimod treatment also promoted the development of anti-
inflammatory type II monocytes and DC, which are associated with
reduced production of proinflammatory IL-6, IL-12/IL-23 (p40) and
TNF, and increased production of anti-inflammatory IL-10. Interestingly,
transfer of monocytes from laquinimod-treated donor wild-type mice,
but not monocytes from vehicle-treated wild-type mice, ameliorated
clinical and histological signs in recipient mice that already had devel-
oped EAE. The examination of the cellular pathway involved revealed
that laquinimod treatment suppressed inducible STAT1, a transcription
factor that participates in the expression of several proinflammatory cy-
tokines, but did not alter activation of p38 MAPK that can be regulated
independently or coordinately with STAT1 (Schulze-Topphoff et al.,
2012). Laquinimod-induced alterations of APC functions resulted in
anti-inflammatory T cell polarization manifested by a reduction in the
frequencies of proinflammatory Th1 and Th17 cells in vivo, and by an
increase in regulatory T cells (Treg) (Schulze-Topphoff et al., 2012). Al-
though laquinimod-mediated alterations of T cell responses were
previously reported (Wegner et al., 2010; Yang et al., 2004; Zou et al.,
2002), Schulze-Topphoff et al. demonstrated that such immune
modulation was exerted through laquinimod's effects on APC, and not
on T cells directly. Such action of laquinimod on APC was also described
by other studies (Jolivel et al., 2013; Thone et al., 2012). Further, Jolivel
and colleagues reported a modulation of human dendritic cells by
laquinimod. Specifically, in laquinimod-treated MS patients, frequency
andproinflammatory cytokine secretionwere reduced in circulating con-
ventional CD1c+ DC, considered an equivalent of murine CD8−CD11b+

splenic DC. In addition, laquinimod-treated human monocyte-derived
DC inhibited proliferation of CD4+ T cells and pro-inflammatory cytokine
secretion. These immunomodulatory effects appeared to correspond to
an impaired NF-κB pathway in human APC (Gurevich et al., 2010;
Jolivel et al., 2013). Further, a high-throughput analysis of in vitro
laquinimod-treated peripheral mononuclear cells (PBMC) from MS
patients and healthy controls also demonstrated that laquinimod down-
regulated MHC class II genes, pivotal for antigen presentation, and
inhibited expression of inflammatory pathways (Gurevich et al., 2010).

Recent pathological and clinical studies indicate that B cells have a
critical role in the development of MS (Hauser et al., 2008; Magliozzi
et al., 2007). Ectopic meningeal B cell follicles are commonly detected
in secondary progressive MS. B cell-depleting agents have demonstrat-
ed marked efficacy in MS therapy. Recently, it was observed that B cells
provide a critical cellular function in the pathogenesis of CNS autoim-
munity that is separate from their humoral involvement (Molnarfi
et al., 2013). Specifically, mice selectively deficient in B cell MHC II ex-
pression were resistant to EAE induced by recombinant human MOG,
a T cell- and B cell-dependent autoantigen, and exhibited diminished
Th1 and Th17 responses. Further, spontaneous opticospinal EAE and
meningeal follicle-like structures were observed when transgenic
mice that express MOG-specific B cell receptor (BCR), but cannot
secrete antibodies, were crossed with MOG-specific T cell receptor
(TCR) transgenic mice. These results demonstrated that B cell APC func-
tion is necessary and sufficient for induction of CNS autoimmunity. In-
terestingly, B cells from MS patients that were exposed to laquinimod
in vitro, exhibited alterations in the expression of genes involved in
theNF-κB pathway and T cell activation (Gurevich et al., 2010). Another
study of in vitro laquinimod treatment observed a modest increase in
the frequency of IL-10 positive B cells (Toubi et al., 2012). Laquinimod
treatment of human B cells also resulted in an augmented expression
of CD86, a costimulatory molecule that has been associated with anti-
inflammatory Th2 responses (Kuchroo et al., 1995; Weber et al.,
2007). These findings suggest that laquinimod might modulate B cell
APC function. Laquinimod treatment has been associatedwith increased
numbers of splenic B cells in mice (Brunmark et al., 2002). Although
such modulation was not observed in human PBMC (Lund et al.,
2013), one might envisage that laquinimod's effect on B cells may be
tissue-dependent. B cells have also been implicated in MS pathogenic
mechanisms through the secretion of CNS autoantigen-specific antibod-
ies. Thus, it will be important to investigate whether laquinimod
influences the production of CNS antigen-specific autoantibodies.

Through functional alterations induced in APC, laquinimod
treatment modulated the differentiation and associated cytokine
production of CD4+ T cells. The drug inhibited T cell secretion of pro-
inflammatory cytokines such as interferon-gamma (IFNγ), interleukin
(IL)-17, granulocyte-macrophage colony-stimulating factor (GM-CSF)
and tumor necrosis factor-alpha (TNFα) (Jolivel et al., 2013; Schulze-
Topphoff et al., 2012). There has been report of laquinimod-induced in-
creased CD4+ T production of the anti-inflammatory cytokine IL-4, sug-
gesting that laquinimodmight drive a shift towards Th2 T cell responses
(Gurevich et al., 2010), although other data have questioned such a shift
(Jolivel et al., 2013; Toubi et al., 2012). Nevertheless, an increased fre-
quency of Treg was observed in the spleen of laquinimod-treated
mice, further supporting its potential to induce anti-inflammatory
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T cell polarization (Aharoni et al., 2012; Schulze-Topphoff et al., 2012).
Such an increase was not detected in PBMC from treated MS patients
(Lund et al., 2013). However, it must be acknowledged that, in murine
studies, laquinimod-induced immune modulation was evaluated
following antigen-specific T cell activation, obtained upon direct immu-
nization with myelin peptides or proteins, a situation obviously not en-
countered in MS. Interestingly, it was observed that laquinimod
treatment of human monocyte-derived dendritic cells altered more
profoundly the production of certain lymphocytic cytokines, when
human T cells were stimulated in an antigen-specific manner (Jolivel
et al., 2013). Therefore, evaluating whether laquinimod treatment of
MS modulates cell function in the absence of active antigenic stimula-
tion may be more challenging.

Following polarization, T cell migration represents a key step in CNS
inflammation. Laminar flow analyses revealed that laquinimod treat-
ment reduced the responsiveness of VLA-4, a key adhesion molecule
in T cell migration (Wegner et al., 2010). Specifically, the ability of
the CCR7-binding chemokine, CCL21, to stimulate VLA-4 adhesiveness
to its natural ligand, VCAM-1, was inhibited in splenic T cells isolated
from immunized mice that received treatment. Interestingly,
laquinimod treatment was also associated with a significant reduction
of CNS inflammation, as demonstrated by decreased numbers of
T cells (Schulze-Topphoff et al., 2012; Wegner et al., 2010). In line
with these observations, the in vitro secretion of several chemokines
participating in the recruitment of leucocytes to inflammatory tissue
sites, includingMIP-1α, MIP-1β andMIG,was reduced after laquinimod
treatment. Such modulations were observed in mature murine bone
marrow-derived dendritic cells, human mature monocyte-derived
dendritic cells, as well as conventional CD1c+ dendritic cells upon lipo-
polysaccharide stimulation (Jolivel et al., 2013). Whether laquinimod
acts similarly in vivo is unknown.

In addition to its modulatory action on the immune system,
laquinimod therapy demonstrated potential neuroprotective properties
by modulating the production of brain-derived neurotrophic factor
(BDNF) that is essential for the development and maintenance of the
CNS (Kalb, 2005), and also mediates axon protection in EAE (Bruck
and Zamvil, 2012; Linker et al., 2010). In EAE, which was associated
with a significant decrease of BDNF mRNA expression, laquinimod
treatment restored BDNF production to levels that were seen in naive
mice (Aharoni et al., 2012; Thone et al., 2012). In patients with RRMS,
laquinimod treatment induced direct and sustained upregulation of
bioactive brain-derived neurotrophic factor (BDNF), as demonstrated
by the evaluation of serum levels (Thone et al., 2012). Further, the
therapeutic administration of laquinimod treatment to mice after they
developed EAE appeared beneficial to the CNS (Aharoni et al., 2012;
Wegner et al., 2010). Although demyelination and acute axonal injury
were observed in both laquinimod- and vehicle-treated groups,
laquinimod induced a significant reduction of lesions. Similar levels
of axonal loss within lesions were however identified in both groups.
In the cuprizone-induced demyelination model, laquinimod treat-
ment prevented demyelination, microglial activation, axonal tran-
sections, reactive gliosis and oligodendroglial apoptosis, regardless
of whether CNS infiltrating immune cells were present (Bruck
et al., 2012). Of CNS resident cells, astrocytes appeared to be the
principal cell type affected by laquinimod treatment in cuprizone-
induced CNS demyelination. These cells exhibited decreased produc-
tion of proinflammatory factors and reduced NF-κB activation upon
in vitro laquinimod treatment.

Clinical studies

Several clinical trials have evaluated the pharmacological effects of
laquinimod, including two Phase I studies, two Phase II studies associat-
ed with extensions of up to 42 months, and two Phase III clinical trials
(Table 1). The clinical Phase I studies were funded by Active Biotech
AB (Lund, Sweden), where laquinimod was initially developed.
Although neither of these Phase I studies were published, the results
were briefly discussed and summarized by Polman et al. (2005). Those
Phase I investigations provided safety and pharmacokinetic data that
guided the selection of 0.1 and 0.3 mg oral daily doses for the first
Phase II study, a 24-week, multicenter, double-blind, randomized,
placebo-controlled trial in patients (n = 209) with RRMS or secondary
progressiveMS (SPMS) (Polman et al., 2005). The study design included
three groups: patients administered placebo, and patients treated with
laquinimod at 0.1 mg daily or 0.3 mg daily. Patients were required to
have an EDSS (Expanded Disability Status Scale) score no greater than
5.5 and active disease as defined by specific MRI criteria. The primary
objective of the studywas to determine the difference in the cumulative
number of active lesions (new gadolinium-enhanced [GdE] and new T2
lesions) between the placebo group and the 0.3-mg laquinimod group
over the 24-week treatment period. MRI scans were obtained at base-
line, weeks 4, 8, 24, and 8 weeks post discontinuation of therapy with
triple dose gadolinium infusions used for the detection of enhancing le-
sions. The results showed that the mean cumulative number of active
lesions was reduced significantly by 44% in the 0.3-mg laquinimod
group compared with placebo. There was no significant difference in
the cumulative number of active lesions between the 0.1-mg group
and the placebo group.With regard to the second objective, laquinimod
showed a favorable safety profile based on clinical and laboratory vari-
ables. Overall, both doses of laquinimod were well tolerated and the
proportion of patients with adverse events was similar in the three
groups.

The Phase IIb study was a 36-week, multicenter, double-blind,
placebo-controlled trial of patients with RRMS (n = 306), initiated
to evaluate efficacy, tolerability, and safety of 0.3 and 0.6 mg
laquinimod doses (Comi et al., 2008). The primary efficacy outcome
measure was the cumulative number of GdE lesions over the
last four scans at weeks 24, 28, 32 and 36. In the 0.6-mg group, a sig-
nificant 40.4% reduction in the cumulative number of GdE lesions
compared with placebo was observed. However, there was no statis-
tically significant reduction in the 0.3-mg group compared with
placebo. Further, patients who received a 0.6-mg dose also had a
statistically significant 51% reduction in the cumulative number of
new hypointense T1 lesions compared with placebo. Again, a signif-
icant reduction was not observed in the 0.3-mg group. Consistent
with the initial Phase II study (Polman et al., 2005), both doses of
laquinimod showed an excellent safety profile.

The beneficial effects of oral laquinimod in these Phase II studies
prompted the development of two global, multicenter, multinational,
2-year, placebo-controlled Phase III trials of 0.6 mg laquinimod in pa-
tients with RRMS. The ALLEGRO (Assessment of Oral Laquinimod in
Preventing Progression in Multiple Sclerosis) study was a randomized
(1:1) double-blind, placebo-controlled Phase III trial designed to evalu-
ate the efficacy, safety and tolerability of oral 0.6 mg laquinimod versus
placebo in the treatment of patients (n= 1106)with RRMS (Comi et al.,
2012). Recruitment criteria included an EDSS score no greater than 5.5
and either one or more relapse in the previous year, or two or more in
the previous two years in association with at least one gadolinium-
enhancing lesion. The ALLEGRO study showed that treatment with
laquinimod as compared with placebo was associated with a modest,
but significant, reduction in the mean (±SE) annualized relapse rate
(ARR), used as the primary end point, and a reduction in the risk of con-
firmed disability progression (11.1 vs 15.7%). The mean cumulative
number of gadolinium-enhancing lesions and new or enlarging lesions
on T2-weighted images appeared significantly reduced in patients
receiving laquinimod compared to those receiving placebo (1.33 ±
0.14 vs 2.12 ± 0.22 and 5.03 ± 0.08 vs 7.14 ± 0.07, respectively). Fur-
ther, laquinimod-treated patients showed reduced brain atrophy, ob-
served in both white and gray matter at 12 and 24 months, as
compared with placebo. Laquinimod also slowed thalamic atrophy at
month 12 and month 24 and reduced the number of permanent black
holes at 12 and 24 months evolving from active lesions. These findings



Table 1
Clinical and imaging results in laquinimod trials.

Clinical study Groups (daily dose) Patients started/
completed (n)

Primary endpoint ARR Disease progression
(% patients)

Mean cumulative number
of GdE lesions ± SE

Mean cumulative number
of T2 lesions ± SE

Brain volume
change (%)

Ref.

Phase II Placebo 67/64 Cumulative number of GdE lesions n.d. n.d. 9.4 ± 17.3⌘ n.d. n.d. Polman et al. (2005)
LAQ 0.1 mg# 68/65 6.4 ± 9.7

[−32%]
n.s.

LAQ 0.3 mg# 74/69 5.2 ± 9.9
[−44%]
p = 0.0498

Phase IIb Placebo 102/91 Cumulative number of GdE lesions 0.77 ± 1.25 n.d. 4.2 ± 9.2≈ 2.4 ± 3.3≈ n.d. Comi et al. (2008)
LAQ 0.3 mg≠ 98/92 0.76 ± 1.02

n.s.
3.9 ± 5.5
p N 0.1

2.5 ± 3.2
p N 0.1

LAQ 0.6 mg≠ 106/100 0.52 ± 0.92
[−32%]
p = 0.0978

2.6 ± 5.3
[−40.4%✧]
p = 0.0048

1.6 ± 3.7
[−44%]
p = 0.0013

Phase III
ALLEGRO

Placebo 556/427 Annualized relapse rate 0.39 ± 0.03 15.7%∞ 2.12 ± 0.22§ 7.14 ± 0.07§ −1.30 Comi et al. (2012)
LAQ 0.6 mg 550/437 0.30 ± 0.02 [−23%]

p = 0.002
11.1%
[−36%]
p = 0.01

1.33 ± 0.14
[−37%]
p b 0.001

5.03 ± 0.08
[−30%]
p b 0.001

−0.87
[−33%]
p b 0.001

Phase III
BRAVO

Placebo 450/359 Annualized relapse rate 0.34 ± 0.03 10%¥ 2.34 ± 0.25§ 13.03 ± 1.1§ −1.03 Vollmer et al. (2014)
LAQ 0.6 mg 434/353 0.28 ± 0.03

[−18%]
p = 0.075

7%
[−40.6%]
p = 0.042

1.84 ± 0.19
[−21.5%]
p = 0.069

10.88 ± 0.85
[−16.5%]
p = 0.078

−0.75
[−28%]
p b 0.001

IFNβ-1a IM 447/378 0.26 ± 0.02
[−26%]
p = 0.007

8%
[−28.3]
p = 0.17

0.90 ± 0.10
[−61%]
p b 0.001

6.37 ± 0.51
[−51%]
p b 0.001

−1.14
[+11%]
p = 0.14

LAQ laquinimod, ARR annualized relapse rate, GdE gadolinium-enhancing, SE standard error, n.s. not significant, n.d. not determined. [_] Treatment effect compared with placebo in percent.
p values were calculated in comparison with placebo group.

# Per-protocol cohort.
≠ Intention-to-treat cohort.
✧ Based on adjusted mean.
≈ Number of lesions per scan in the last four scans.
∞ Percentage of patients with confirmed expanded disability status scale (EDSS) progression at 3 months.
¥ Percentage of patients with confirmed EDSS progression at 6 months.
§ Cumulative number of lesions at 12 and 24 months.
⌘ Cumulative number of lesions at 24 weeks.
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suggested that laquinimod might also modulate some of the more de-
structive pathological processes in RRMS patients (Filippi et al., 2013).

The BRAVO trial assessed the efficacy, safety and tolerability of
laquinimod compared with placebo in patients with RRMS and descrip-
tively compared the benefit/risk profile of laquinimod to IFN-β1a
(Avonex®). RRMS patients (n = 1331) were randomized 1:1:1 to
receive once-daily oral laquinimod (0.6 mg), placebo (once daily), or
IFN-β1a (30 μg once weekly) (Vollmer et al., 2014). The results from
the BRAVO trial indicated that laquinimod did not reach its end point,
as illustrated by the lack of statistical significance in the reduction of
relapses. However, the examination of the number of patients with
GdE lesions and of mean T2 lesion volume, both predictors of relapses,
revealed a significant imbalance between the laquinimod and the placebo
arms at baseline. When preplanned analyses were carried out to adjust
for these imbalances, there was a significant reduction in the relapse
rate for the laquinimod arm (21% reduction vs placebo, p = 0.026), as
well as a significant decreased risk of disability progression at 3 months
as measured by the EDSS (33.5% reduction vs placebo, p = 0.044) and a
reduced cumulative number of new enlarged T2 lesions (19% reduction
vs placebo, p= 0.037) (Vollmer et al., 2014). Overall, laquinimod's effects
on disability progression and brain atrophy were more pronounced than
its effect on relapses and new lesion formation (Comi et al., 2012; Vollmer
et al., 2011, 2014).

For both ALLEGRO and BRAVO studies, the most common adverse
events in the laquinimod group were abdominal pain (5.8% vs. 2.9% in
the placebo group), back pain (16.4% vs. 9.0%), and cough (7.5% vs.
4.5%). These adverse eventswere rarely associatedwith discontinuation
of the study (3% and 1% of the laquinimod and placebo groups, respec-
tively) (Comi et al., 2012; Vollmer et al., 2014). In addition, transient
elevations in alanine aminotransferase levels to greater than three
times the upper limit of the normal range were observed in 24 patients
receiving laquinimod (5%) and 8 receiving placebo (2%). An ongoing
open-label extension of ALLEGRO will provide further useful safety in-
formation. Further, continued analysis of the ALLEGRO and BRAVO
Phase III studies revealed that one third of the patients who progressed
were relapse-free, suggesting that disability progression and relapses
are not solely mediated through a common pathway (Comi et al.,
2013). Laquinimod reduced disability progression relative to placebo
with a treatment effect of 26.7% in relapsing patients and 38.9% effect
in relapse-free patients. These findings, which support an effect of
laquinimod on both inflammation and neuroprotection, combined
with laquinimod'smodest action on reducingARR, led Teva pharmaceu-
ticals to develop a newPhase III study, CONCERTO (Vollmer et al., 2013).
This latter studywill evaluate effects of two doses of laquinimod (0.6mg
and 1.2mg) or placebo in approximately 1800 peoplewith RRMS for up
to 24 months. Disease progression will be evaluated as a primary end
point.

Conclusions

In contrastwith the approvedoral therapies,which have potential se-
rious toxicities (Bruck, et al., 2013), laquinimod has an excellent safety
profile. Laquinimod has shown greater beneficial effect on disability
and brain atrophy than relapse rate, suggesting it could have efficacy
on disability progression both in RRMS and SPMS. It will be important
to determine whether the higher dose of 1.2 mg laquinimod, which is
being tested in the Phase III trial, CONCERTO (http://clinicaltrials.gov
NCT01707992), will have greater efficacy than 0.6 mg and lead to its
widespread approval. It is becoming increasingly clear that laquinimod
exerts its effects through modulation of innate immunity, and that its
treatment is associatedwith potential neuroprotection. In future studies,
it will be important to elucidate themolecular targets of laquinimod and
determine if laquinimod influences other aspects of autoimmune dis-
ease, including humoral responses. Given its unique mode of action
and its effects on disability progression, laquinimod may become an im-
portant therapy for different phases of MS.
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