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Abstract 

A framework for the qualitative representation of positional information in a two-dimensional 
space is presented. Qualitative representations use discrete quantity spaces, where a particular 
distinction is introduced only if it is relevant to the context being modeled. This allows us to build 
a flexible framework that accommodates various levels of granularity and scales of reasoning. 
Knowledge about position in large-scale space is commonly represented by a combination of 
orientation and distance relations, which we express in a particular frame of reference between 
a primary object and a reference object. While the representation of orientation comes out to 
be more straightforward, the model for distances requires that qualitative distance symbols be 
mapped to geometric intervals in order to be compared; this is done by defining structure relations 
that are able to handle, among others, order of magnitude relations; the frame of reference with 
its three components (distance system, scale, and type) captures the inherent context dependency 
of qualitative distances. The principal aim of the qualitative representation is to perform spatial 
reasoning: as a basic inference technique, algorithms for the composition of positional relations 
are developed with respect to same and different frames of reference. The model presented in this 
paper has potential applications in areas as diverse as Geographical Information Systems (GIS), 
Computer Aided Design (CAD), and Document Recognition. @ 1997 Elsevier Science B.V. 
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1. Introduction 

Qualitative information is often mistaken to be vague or inexact, but it is not. On 
the contrary, it can be more efficient and provide more meaning than pure quantitative 
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information. For example, saying that Alaska is 1.5 18.800km2 is sufficiently exact 

quantitative information about size and distances in Alaska, but very likely it is not 

meaningful in relation to the spatial knowledge of the average listener. On the other 

hand, saying that Alaska alone is bigger than all the states of the East coast from 
Maine to Florida is cognitively more immediate. Comparative information in a familiar 

frame of reference is the key in this example. Therefore, qualitative answers arc often 
cognitively more eloquent than quantitative ones and in most cases it is not obvious 
how to infer qualitative information from quantitative data, since the quality of things is 

context-dependent. 

A qualitative answer is on purpose limited to the kind of distinctions that are of 
interest in a certain context and eliminates unnecessary details. Therefore, a qualitative 

representation uses a discrete quantity space which has normally a natural ordering 
associated with it and for which qualitative arithmetic algebras have been devised [66, 

671. Qualitative reasoning has been applied mainly to scalar quantities and only recently 

to space, which is multidimensional in nature, giving rise to the subfield of qualitative 

spatial reasoning [ 10, 11,3 11, The delay in the development of qualitative models and 

reasoning techniques for spatial domains is partly due to the convincement that “it 
seems unlikely that such inference schemes will be useful for tasks that require full 

higher-dimensional manipulations” [ 20, p. 4271. 

Recent work in qualitative spatial representations has made more evident that the 

application of quantity spaces in more than one dimension can lead to promising results. 

In fact, several aspects of spatial information are currently being investigated [ 111. In 
general, the description of a scene of objects in space involves spatial aspects that have 

an expression both in terms of inherent characteristics of each object and in the context 
of other objects. The inherent characteristics of an object are its topology (holes and 

separations) and its extension (size and shape), while, with respect to other objects, 

topological, orientation, and distance relations have to be considered. 
The aim of this study is the qualitative representation of positional information, 

which is one of the basic cognitive spatial concepts and thus important in all application 
domains of spatial knowledge. For objects that can be modeled as points (because 
their extension can be disregarded with respect to the distances that are involved), 

positional information is determined by the orientation and distance relations [ 151. This 
has an obvious correspondence in quantitative terms, where positional information can 
be expressed using polar coordinates: the distance from the origin and the angle between 

the radius and a reference axis. 
Knowledge about locations in large-scale space are learned not only through senso- 

motoric experience of the domain, but also from symbolic representations such as maps, 

and from facts inferred from experience in other spatial domains [ 61. Thus, positions 
in space are likely to be represented in the mind in a mixture of imaginal and propo- 
sitional formats, which can be suitably modeled in terms of qualitative concepts. It has 
been suggested that spatial knowledge is hierarchically organized in the human mind 
[ 8,301. People have too little short-term memory to support a whole map “in the head”. 
Therefore, spatial knowledge is inferred from the representation of global features and 
relations. There are mainly two kinds of spatial knowledge: route and survey knowledge. 
Route knowledge is more elementary and it is made up of order information between 
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known landmarks. Survey knowledge is more elaborate and has the characteristics of 
a “view from above” on a spatial situation. That is, it is independent of a particular 

order of visited landmarks and, thus, keeps people from getting lost when they leave 

a known route. Another common categorization of spatial knowledge distinguishes be- 

tween egocentric (centered on observer), allocentric (relative to distinguished reference 

structures), and geocentric (relative to coordinated system of reference frames) views 
[ 301. Positional information, as we intend it in this paper, is survey knowledge made 

up of orientation and distance relations, which depending on scale can be egocentric, 

allocentric or geocentric. Both orientation and distance might depend on many other 
factors, like the objects’ sizes, point of view, etc., so that it is not enough to express 

them in terms of isolated relations. We shall rather need to introduce frames of reference 

to take into account those internal and external factors. Furthermore, cognitive studies 
show the existence of multiple frames of reference [46]. For example, when someone 

emerges from a subway system or a driver gets off a highway to enter a local street 

network, there is a sudden change in the frame of reference. Distance is also crucially 

dependent on scale. For example, the meaning of close in a statement “A is close to B” 
depends not only on the actual relative position of both objects but also their relative 

sizes and other scale-dependent factors. 
In previous work, the qualitative description of space has been mostly restricted 

to topological and orientation relations. Topological relations are able to describe all 

aspects of the scene which are invariant with respect to common linear transformations 
(translation, rotation, rubber sheeting) and therefore provide a description of important 

characteristics of the objects involved in the scene [9,18,57]. However, topological 
relations alone, being independent of the position and extension of objects, are not 

sufficient to provide a full description of a scene. Orientation relations describe where 

objects are placed relative to one another, and can be defined in terms of three basic 

concepts: the primary object, the reference object, and the frame of reference. The 
orientation of the primary object is then expressed with respect to the reference object 
as it is determined by the frame of reference. The combination of topological and 
orientation relations provides a restricted form of positional information that is mainly 
useful in small-scale environments such as “the objects in a room” [ 3 1,601. For large- 

scale environments such as geographic space, however, we must also consider distance 

relations for describing positions. 
In this paper, we build a unified framework for orientation and distance relations. 

We represent the position of a primary object by a pair of distance and orientation 
relations with respect to a reference object. As mentioned above, we introduce frames 

of reference to determine what we mean by, e.g., front in the case of orientation, 
and the range of what we consider to be close or far, in the case of distance. 3 The 
frames of reference are in general different for distance and orientation, since they can 
be influenced by different factors. The framework features reasoning capabilities, i.e., 

means to find new information from what is already known. The basic step in reasoning 
with spatial relations is, given “A, rI , B” and “B, t-2, C”, to find the relation “A, r3, C”. 

’ In other words, the concept of distance varying with the scale of reasoning is embedded in the frame of 

reference. 
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This is called composition of spatial relations and is usually defined by an exhaustive 
table of all possible relation pairs [24,32]. Since relations cannot always be expected 

to be given with respect to the same frame of reference, spatial reasoning cannot just 

be plain composition of spatial relations, but must include articulation rules between 

frames of reference. Composition is needed, among others, for constraint propagation and 
relaxation in networks of spatial relations [47]. Furthermore, we need to conceptualize 
the world at various levels of granularity in order to reason in terms of simpler concepts. 
Here, Hobbs [35] theory of granularity fits in neatly: An indistinguishability relation 
between elements allows us to build equivalence classes that are elements of a coarser 

theory. Coarser theories can be hierarchically structured, but in general their structure is 

a lattice. The framework developed in this paper forms part of a wealth of qualitative 

spatial reasoning techniques with applications in, for example, Geographical Information 
Systems (GISs), conceptual design in CAD systems, and document recognition. In 

general, whenever a human being needs to interact with a system dealing with spatial 
knowledge, qualitative approaches are important. In a GIS devoted to vehicle navigation, 

for example, driving instructions need to be qualitative in nature and need to be extracted 
from the quantitative data available or derived from other qualitative information. 

Since the representation of orientation was previously described elsewhere [ 3 11, in 

what follows we will concentrate mainly on distances. We do, however, summarize the 

previous work on orientation in Section 2. In Section 3, we develop a framework for 
the qualitative representation of distance, by defining the structure of the distance do- 

main at different levels of granularity and by analyzing the mapping between qualitative 
distances and geometric intervals; furthermore, we introduce a general notion of frame 

of reference for distances, which captures contextual information. Qualitative spatial 

reasoning is exploited in Section 4. Basic inference mechanisms are proposed with par- 

ticular attention to the composition of two distance relations, that we then integrate with 
varying relative orientation to yield qualitative positional information. Also, articulation 

rules to mediate between different frames of reference and levels of granularity are 
discussed. A comparison with other approaches to qualitative position is presented in 
Section 5. Conclusions and further work are discussed in Section 6. 

2. A qualitative approach to orientation 

Orientation relations describe where the objects are placed relative to one another. 
From a cognitive point of view, body centered orientations can be seen as the result 

of body construction and the environment we live in. The vertical axis is determined 

by earth gravitation, which defines up and down. The front/back distinction arises from 
the corresponding asymmetry of the human body. The left/right distinction, finally, 
corresponds to the body symmetry along the sagittal axis. 

Orientation distinctions are also clearly reflected in language [ 371. A large number 
of prepositions such as on top of, in front of, in back of, behind, etc., make reference to 
an orientation with respect to an axis. 

Orientation relations can be derived formally from the fundamental observation on 
how three points in the plane relate to each other. Let us call them point of view, 



E. Clementini et al. /Art$cial Intelligence 95 (1997) 317-356 321 

AlbacklB 

BlfrontlA 

A[left]B 

B[right]A 

A 1 left-back 1 B 

B [ right-front I A 

A 1 left-front] B 

B [ right-back I A 

Fig. 1. Orientation relations at a level with eight distinctions 

primary object, and reference object, respectively: the point of view and the reference 

object are connected by a straight line such that the primary object can be to the 

left, to the right or on that line. This is what we call the basic (or first) level of 
granularity for orientation relations. In particular, if the three objects lie on the same 
line, the case is called collinearity. There are various levels of orientation relations of 

different granularities, partitioning the plane in several cone-shaped regions. From the 
basic level, which partitions the plane in two half-planes, we can consider the level with 

four partitions (second level), eight partitions (third level), and so on. 4 Depending on 

the context, different sets of relation names are used. In the context of local, small-scale 

environments (but also in procedural descriptions in large-scale environments) relations 

such as the following (at a level with eight distinctions) are used: front (f), back (b), 
left (l), right (r), left-buck (lb), right-buck (rb), left-front (If), and right-front (rf)- 

see Fig. 1. 5 In the context of geographic space, where a fixed reference point such as the 
North Pole exists, the usual geographic labels are used to name the relations: north (N) , 
south (S), east (E), west (W), north-east (NE), north-west (NW), south-east (SE), 

south-west (SW). It is, of course, possible to have finer orientation distinctions, but 
neither the formal properties of the model nor its usability depend on the number of 
distinctions being made. 

The frame of reference for orientation determines the “front” side of the reference 

object, and thus the labels given to the orientations based on it. One can distinguish three 
basic types of reference frames: intrinsic (when the orientation is given by some inherent 

property of the reference object), extrinsic (when external factors, e.g., motion, impose 
a particular orientation on the reference object), and deictic (when the orientation is 
given by the point of view from which the reference object is seen) [ 581. 

Orientations have a uniform circular neighboring structure on each level, e.g., at the 
level with eight distinctions 1 and lb are neighbors but 1 and b are not. In general, the 

4 An alternative approach to orientation relations proposed by Freksa and Zimmermann [27 1 distinguishes 

IS positions and orientations in a grid determined by a vector and orthogonal lines at its endpoints (see also 
Section 5). 

s Thus, in this case the orientation labels results from the transfer of distinguished body reference axes from 
an observer to the reference object. 
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set {cue, LYI , . . , a,,} denotes the II + 1 orientation relations at a level of granularity k, 
with n = 2k - 1. Given a reference object A and a primary object B, the orientation 
relation of B with respect to A is given by the function .6*~ = 8( A, B), which can 

assume any of the values (Y,. We define a function successor such that succ( LYO) = CX,, 
succ(q ) = ff2, . . .) SUCC(LY,,) = ‘~0. Analogously, we define a function predecessor 
as pred(cua) = cr,?, pred(ai) = LYO, . . ., pred( (u,,) = a,,-r Each orientation LYE has an 
opposite orientation, which is obtained applying (n + 1)/2 times the function succ to 
CX~, that is: opp(ai) = sUCC(“+1)‘2(Lyi). For example, opp(N) = S. 

The range between two orientations is defined as the number of steps necessary to 
go from one orientation to the other along the circular neighboring structure following 

the shortest possible path. This means that the range between two orientations (Y~ and 

CY; is the number of times we need to apply either the function succ or the function 
pred (depending on which requires less steps) to ai in order to obtain a,,. Interest- 

ingly, this range corresponds to the number of possible results of composing the two 

orientations involved. For example, for GAB = lb and 198~ = r, the resulting composi- 
tion BAC belongs to the set {lb, b, rb, r}. The range assumes the maximum value for 

LYE = opp(ai) and zero for CY, = a,i. On the level shown, for example, the range be- 
tween an orientation and its opposite orientation is 4. Two orientations (except for the 

basic level) are orthogonal if the range between them is (n + 1)/4. Each orientation 
a; has two orthogonal orientations: orth( ai) = (succ(“~’ )j4( Qi), pred(“+’ )i4( CY~)}. For 

example, orth( NE) = {SE, NW}. 

Reasoning with qualitative orientations involves being able to relate orientations at 
different levels of granularity, to transform between different frames of reference, to 

compute the composition of two orientation relations, and to propagate and maintain 

the resulting constraints in a network. All of these can take advantage of the circular 
neighboring structure of the orientation domain. The relation between orientations at 

different levels of granularity is not a straightforward one. For example, Hoegg and 

Schwarzer [36] have proposed a solution that introduces an internal subdivision in 16 
sectors, which is fine enough to express any of the relations of the coarser levels. The 
transformation between frames of reference corresponds to a rotation of labels, and- 
as it was mentioned above-the composition of two orientation relations corresponds 

to their range. Finally, an efficient form of constraint relaxation can be implemented 

by coarsening contradictory relations according to the neighboring structure instead of 

retracting them altogether. 
When dealing with extended objects, the area in which a given orientation is accepted 

as correctly describing the relative position of two objects (called “acceptance area”), 

becomes dependent on the size and shape of the objects. Various mechanisms have been 
proposed to determine overlapping and non-overlapping acceptance areas that also take 
the relative distance between the objects into account [ 3 11. 

3. A qualitative approach to distance 

In this section, we establish a qualitative framework for distances by looking at their 
main properties and investigating the structure of the distance domain. Analogously 
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to orientation, three elements are needed to establish a distance relation: the primav 
object (PO), the reference object (RO), and the frame of reference (FofR). We start 
by reviewing common distance concepts in mathematics and cognition (Section 3.1) . In 

Section 3.2, we define sets of distance relations that are organized along various levels 

of granularity as suggested by cognitive considerations. Distance systems are introduced 

in Section 3.3 with the purpose of comparing distance relations besides naming them: 
an acceptance function maps distance relations to geometric intervals and an algebraic 

structure allows us to add up and compare those intervals. Distance systems are then 

specialized to particular distance domains that follow a recurrent pattern (Section 3.4). 
Section 3.5 deals with frames of reference, made up by three components (distance 

system, scale, and type) which together express contextual information. In Section 3.6, 
the metric definition of distance is interpreted within our qualitative framework: the 
concept of zero needs to be substituted by the concept of the smallest qualitative 

distinction, while symmetry and triangle inequality hold in the case of same frame 

of reference only. 

3.1. Common distance concepts 

In a metric space, three axioms define the concept of distance between points: 

dist( PI, PI ) = 0 (reJLEexivi.ty) (1) 

dist( PI , P2 ) = dist( P2, PI ) (symmetry) (2) 

dist( PI , P2) + dist( P2, P3 ) 3 dist( PI, P3) (triangle inequality) (3) 

The distance between points Pi = (xi,, xi2, . . . , xi,,) of an n-dimensional vector space 
can be expressed in terms of the Minkowsky &-metric [ 531: 

(4) 

Conventional Euclidean distance, for example, is defined by the L2-metric. Similarly, 

the city block (or Manhattan) distance is defined by the Li-metric. 
Our intuitive concept of distance, however, does not rely on coordinates and in fact, 

in a qualitative framework, we do not have any way of establishing them. People’s 

concepts of space (and, therefore, of distance) are rather dependent upon many cultural 
and experiential factors [45]. What it means for A to be near B depends not only 
on their absolute positions (and the metric distance between them), but also on their 
relative sizes and shapes, the position of other objects, the frame of reference, and 
“what it takes to go from A to B”. The distance between two points can be measured in 

different ways according to different perspectives, each of them appropriate under certain 
circumstances. The measures most often adopted by humans are: spatial, temporal, 

economic, and perceptual. They produce a measure of the effort needed to go from 
one point to another in terms of, respectively, metric distance, travel time, costs to be 
invested, spatial perception. 
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Fig. 2. Isotropic and anisotropic surfaces. 

In the presence of obstacles or in structured environments (city blocks), the short- 
est path between two points might not be a straight line and thus both our metric 

and cognitive distance concepts be different from the Euclidean distance. Furthermore, 
we distinguish between distance concepts that can be depicted by isotropic surfaces 

and those that result in anisotropic surfaces (Fig. 2). On the former the movement 
effort is the same in all directions from every point, while on the latter this is not 

true. Isolines are curves connecting all the points at the same distance. In an isotropic 
space isolines are concentric circles while, in the other case, isolines are variously 
shaped closed curves. In the remainder of the paper, we consider isotropic surfaces only, 

since we assume that it is always possible to apply a transformation from the physi- 
cal domain to other domains (e.g., the costs involved) in order to obtain an isotropic 

surface. 

3.2. Naming distances 

The types of objects involved and the context in which they are embedded are decisive 
factors for establishing the set of relations to be used for naming distances, The first 

level of granularity that comes to mind distinguishes between close and far. Those 

two relations subdivide the plane in two regions centered around the reference object, 
where the outer region goes to infinity. For isotropic space, qualitative distance relations 
partition the physical space in circular regions of different sizes (where the difference 

can be even in the order of magnitude). 
In a similar way, we can introduce further levels of granularity. For example: a level 

with three distinctions close, medium, and far, a level with four distinctions very close, 
close, far, and very far, a level with five distinctions very close, close, commensurate, 
far, and very far, and so on (see Fig. 3). Notice that the names given to relations 

are arbitrary, since we do not discuss linguistic reasons to associate a meaning to a 
given term (see Section 5 for some pertinent references). Obviously, more than five 
distinctions could be introduced if necessary, since the formal properties of the distance 

domain and the applicability of the approach do not depend on the number of distance 
relations. 
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Fig. 3. Various levels of distance and orientation distinctions. These figures show typical distance/orientation 

granularity configurations, but, of course, both granularities arc essentially independent from each other. 

These concepts can be formalized as follows. Let us consider a level of granularity 
with IZ + 1 distance distinctions that partition the space surrounding a reference object 

RO, and let us name them with a finite set of distance symbols Q = {qc, 41, q2, . . . , q,,}, 

where qo is the distance closest to RO and qn is the one farthest away. Given a set of 
objects 0, the qualitative distance between a PO and a RO, both belonging to 0, is a 
function d : 0 x 0 -+ Q, which associates to the PO the distance symbol identifying 

the qualitative distance from the RO. If an object A acts as the RO and an object B 

acts as the PO, the distance between A and B is expressed by dAB = d( A, B). Since 

there is a total order on the distance symbols (qo < q1 < q2 < . . . < qn), we can define 
a function SUCC~SSOY that gives the next symbol in the list, that is: succ(qi) = qi+i for 
each i < n and succ( q,,) = q,,. Analogously, the function predecessor gives the previous 

symbol in the list, that is: pred(qi) = qi_l for each i > 0 and pred(qu) = qo. Also, a 
function ordinal can be defined as ord : Q + { 1,. . . , n + l}, such that ord(qi) = i + 1, 

and ord-‘(i) = qi-1, except ord-‘( i) = q,, for i > n, ordd’(i) = qo for i 6 1. 
Note that whereas a subscripted d AB denotes a distance variable (i.e., the distance of 

primary object B from a given reference object A), q; denotes a qualitative distance 
value. 

3.3. Distance systems 

Besides naming distances, we also need to specify how they relate to each other, 

i.e., compare their magnitudes. To this end, we consider a mapping from the distance 
symbols to l-dimensional geometric intervals representing distance ranges. Then, an 

algebraic structure over intervals with order relations is introduced with the purpose of 
comparing distance ranges. These comparative relations, which should express among 
others also order-of-magnitude relations, will be called structure relations in the follow- 
ing. 
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The three notions mentioned above are organized in distance systems. Formally, a 
distance system D is defined as 

D = <Q,d,2), 

where 

l Q is the totally ordered set of distance relations, 

l A is an acceptance function defined as A : Q x 0 + I, such that, given a reference 

object RO, d(q, RO) returns the geometric interval Si E I corresponding to the 

distance relation qi, 

l Z is an algebraic structure with operations and order relations defined over a set of 
intervals I. Z defines the structure relations between intervals. 

Each distance relation can be associated to an acceptance area surrounding a reference 

object. In the case of isotropic space, acceptance areas are circular regions which can 
be uniquely identified with a series of consecutive intervals Sa, St,. . . ,6,, (distance 

ranges). The acceptance function A performs such a mapping from the symbolic domain 
of distance relations to geometric intervals. This mapping is necessary to calculate the 
composition of distances in the domain of intervals, rather than in the domain of distance 

relations. Then, the inverse function A’ : I x 0 + Q is used to find the corresponding 

result back to the domain of distance relations; overall: 

The composition of distances in the domain of distance relations is indicated with @ 

and will be discussed thoroughly in Section 4. 
A strict interpretation of the intervals Sa,6t,. . ,S, implies that they are separated 

by sharp boundaries and therefore there are points al, a2,. . . , a,, E W making up 

the intervals [0, al 1, [al, a2], . . . , [a,,, +oo]. This, however, is not always the case 
in reality, since cognitive considerations suggest that intervals may have indeterminate 

boundaries. Two opposite interpretations are those of non-exhaustive and overlapping 
intervals [48]. Non-exhaustive intervals apply if there exists a void space between 

the acceptance areas of two consecutive distance relations; in this case the intervals 

are [ao,al], [ax,al],. . ., [a2,1.+co] with ao,al,. . .,a2,, E Iw+ and az; > a2i_1 for 

i 3 1. Overlapping intervals apply if the acceptance areas of two consecutive dis- 
tance relations share a common region; in this case the intervals can be represented 

as [O,all,[a2,a31,..., [ a2”. +OO] with a2i < aTi- and a2i > a2i_2. Our approach is 
independent of the interpretations above, which all could be used. In fact, our model 
uses only the notion of consecutive intervals, which is inherited from the total order 

of Q. 
In the following, we discuss the algebraic structure Z = (I, +, 6, <), which defines 

a sum operation and two order relations. Let us first consider (I, +), where I is the set 
of closed intervals over lR+ and + is a binary operation that given two intervals returns 
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the minimal interval that contains both of them. Formally, the operation + : I x I + I 
is defined such that, given two intervals [a, b] and [c, d] , we have 

[a,b] + [c,dl = [min(a,c),max(b,d)l. (5) 

Such a sum is a totally-defined internal operation satisfying the associative and commu- 
tative properties and, therefore, (I, +) is a commutative semigroup. 

Let us now define the order relations for comparing intervals. To this end, we first 

introduce the length of intervals, which is a function // I/ : I 4 IF, such that 11 [a, b] 11 = 
b - a. The function length has the following properties: 

( 1) llill 2 0, Vi E 1, 
(2) Vu E JR+,i= [a,~] H llill =O, 

(3) Ilitll + Ili2Il 3 max(Ililll, Ili211), vil,i2 E 1. 

The order relation < between intervals is defined as 

il 6 i2 ++ lli11I < lli211, Vil,i2 E I. (6) 

In the case their length is equal, we say that the two intervals are congruent (g), that 

is, 

iI g i2 H lliljl = Ili211, Vil,i2 E I. (7) 

The following properties hold for the relation 6: 

i < i, Vi E I (reflexive), (8) 

il < i2 A i2 6 il =+ il LX i2, Vi,, i2 E I (antisymmetric), (9) 

ij 6 i2,i2 6 i3 * il 6 i3, Vi,, i2, i3 E I (transitive). (10) 

Therefore, the relation 6 between intervals is a quasi-order.6 It is a total order in the 

sense that, Vi,, i2 E I, we can say whether il < i2 or i2 < il. 

Besides 6, from a qualitative point of view it is important to characterize different 

orders of magnitude. A basic qualitative process is to disregard the effects of a il with 

respect to a much bigger i2. Let us consider an “indistinguishability” relation between 
two quantities such that no relevant predicate distinguishes between them [35]. Such 
relation can be defined between lengths of intervals and we indicate it with [[illI M 

lji;?ll. ’ This relation is an equivalence relation and can be used to substitute values in 

expressions. Also, the indistinguishability relation allows us to define the order relation 

“much less than” (<) as follows: 

llilll + Iii211 x Ili211 * IlilII +c lli211, (11) 

’ It is not a partial order, since l?q. (9) does not imply that il is equal to iz. Also the relation < is not 

compatible with the sum operation since, given il < i2. it does not follow that il + i3 < i2 + i3, Vi,, i2, ix E I. 
’ For example, supposing that the only relevant predicate is order of magnitude, if order of magnitude ( Ilit 11) 

= order of magnitude (Ili211), then Iti, 11 x Ili2ll. 
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that is, the relation < between two lengths holds if their sum is indistinguishable from 
the bigger one. 8 The indistinguishability relation can be defined directly for intervals 

in this way: 

it z i:! H llit]I = jji211, Vil,i2 E 1. ( 

Analogously, we define the order relation < between intervals as 

il < i2 -3 Iii, /I << Ili211, tJi1, i2 E I, ( 

and we also say that the bigger interval “absorbs” the smaller one (absorption rule) 

particular, such relation is a strict order relation since the following properties hold: 

2) 

3) 

In 

i yZ i, Vi E I (anti-reflexive), (14) 

iI << i2,i2 < i3 * il < i3, Vi,, i2, i3 E I (transitive). (15) 

Notice, however, that < is not a total order since this relation or its inverse (>>) are not 
applicable to each pair of elements in I. Mixed properties relate < and < as follows: 

. . 
il g i2 * ~1 = 12, (16) 

it << i2 * il < i2, (17) 

il < i2,i2 << i3 =s il << i.7, (18) 

iI < i2,i2 6 i3 =+ ii < i3. (19) 

We use the algebraic structure Z = (I, +, <, <) to define structure relations over the 

domain of intervals. Considering the intervals &I,&, . . . , S,, originated by the acceptance 

function A, and applying the sum operation to all possible combinations of them, we 

obtain a set of intervals A, which is a subset of I. The cardinality of A is (n+ 1) (n+2) /2. 

Specifically, we indicate a generic sum of consecutive intervals with Ah,,i = ch=, Sk for 

some h, i E [O..n], with h < i. If the sum starts from the origin (h = 0), we abbreviate 
it to Ai = )J k=. &. Therefore, a Ai is the distance range from the origin up to and 

including &. The structure relations of the distance system (which we indicate with ra) 
are the order relations holding between all intervals in A. Structure relations are needed 
in the composition of qualitative distances to evaluate the result of comparisons between 
pairs of intervals (see algorithms in Section 4.1). In the general case, the structure 
relations ?-A are arbitrary, that is, given two intervals of A, the relation between them can 

be any in the set {<, <, <, G, M, >, 3, >}. In the next subsection, we discuss structure 

relations with uniform properties. 

’ Other definitions for the relation N would imply that the transitivity property does not hold, restricting 

the kind of substitutions that can be made in expressions to fixed computations for a particular problem 

[35,48,55 1. Fo example, the relation < could be used to define “slightly less than” in this way: llil 11 < 

II41 + Ili2ll 5 lbll + llizll. *h e relation 5 is not an order relation since the transitivity property does not 

hold in general. Combining 5, its inverse 2, and =, we can define a relation “roughly equal” (TX). which is 

similar to “indistinguishable” ( TZ), but is not an equivalence relation. By negation of the relations above, we 

can define an intermediate relation: what is between “slightly less than” and “much less than” can be named 

“moderately less than”, obtaining the same set of primitive relations given in [481. 
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Fig. 4. Illustration of various distance ranges and homogeneous properties 

3.4. Distance systems with homogeneous properties 

By homogeneous we mean that the structure relations of the distance domain follow a 
recurrent pattern (for example, each range is bigger than the previous one). The genera1 

type of distance system where this is not the case is called accordingly heterogeneous. 

In the following, we identify an increasingly restrictive set of properties that can apply 

to the structure of intervals. The properties have an underlying cognitive plausibility and 
help in building composition rules (see Section 4.2). By adding more constraints in the 

composition of relations, it is possible to restrict the indeterminacy of the result. 
A first consideration is that people are more inclined to make finer distance distinctions 

in the neighborhood of the reference object, while they are less and less motivated to 
do so as the distances involved get bigger. Therefore, in most contexts it is unlikely that 
a farther distance relation maps to a smaller distance range (see Fig. 4(a) ) . 

The monotonicity restriction constrains the distance domain to increasingly bigger 

ranges (see Fig. 4(b)). 

Monotonicity. Any given interval is bigger or equal than the previous one: 

In certain contexts, people may want to exclude equally spaced intervals, and impose 

that more distant relations correspond to considerably bigger ranges (see Fig. 4(c)). 
As said above, finer distinctions near to the point of origin and coarser distinctions 

in the periphery seems more akin to the cognitive concept of distance. This can be 
conveniently formalized as follows. 



330 E. Clementini et al. /Artificial Intelligence 95 (1997) 317-356 

Range restriction. Any given interval is bigger than the entire range from the origin to 
the previous interval: 

ai 3 Ai_l, Vi > 0. (21) 

The tendency of distance ranges to become bigger and bigger can be further empha- 
sized to obtain differences even in the order of magnitude. These differences allow us to 

disregard small intervals Si with respect to much bigger S.i, with i < j, (see Fig. 4(d)). 

Orders of magnitude. For a given difference p between the orders of two distance 
relations q; and q,i, with 1 < p < (j - i), the following holds: 

(ord(q,i) - ord(qi)) 3 p + 6.j > Si, V’i, j > 0, i < j. (22) 

As the difference p decreases, we have a more restrictive rule. Thus, if p = 1, we 

impose that a given interval absorbs all the smaller intervals including the immediate 

predecessor. 

3.5. Frames of reference 

In a quantitative representation of space, the Cartesian reference system (made up 

of orthogonal graduated axes) acts as the frame of reference. In previous work on 

qualitative descriptions of orientation (see Section 2) the frame of reference was meant 
to fix the “front” side of the reference object. For qualitative distances, however, there 
seems to be no simple equivalent of the concept. Thus, in this paper, we want to 

introduce a more general “frame of reference” concept, which is able not only to specify 
the granularity and scale of reasoning but also to capture relevant contextual information. 

We propose that a distance frame of reference be made up of three components: 

FofR= (D,S,T), (23) 

where D is a distance system, S is a scale, and T is a type (see below). 
Distance systems were discussed in detail in Section 3.3. However, it is important to 

stress the fact that they carry substantial contextual information, since it is the context 
which determines the relevant distinctions and how they are structured. 

As pointed out in the Introduction, distance is crucially dependent on scale. Scale 
is commonly understood as “the proportion used in determining the relationship of a 

representation to that which it represents” [2]. In a strict sense this is only true for 
extensional or analogical representations such as maps. For other types of representa- 

tions this applies only figuratively. But scale also makes sense without reference to a 
representation: The proportion between different spatial extensions such as, for example, 
those defined by the living environment of different species (birds, mammals, insects, 

microorganisms) 9 is also commonly called scale. It is in this sense that another dic- 
tionary definition can be understood: “A progressive classification, as of size, amount, 

y More abstractly these different spatial extensions can be defined by reachability constraints. If an entity, 

given its size and life time, cannot possibly reach a limiting distance, it is bound to a given scale. 



E. Clementini et al. /Arti$cial Intelligence 9.5 (I 997) 317-356 331 

importance, or rank” [2]. In each case, however, either the possibility of going from 
one scale to another or an observer able to see or reason about two or more different 

scales at a time are required for the concept to make sense at all! 

Scale is usually thought of in a quantitative manner as in a map’s legend. This is so, 
because numbers are “featureless” and thus apt to compare what would otherwise be 

incomparable. In other words, “we turn to using quantities when we can’t compare the 
qualities of things” [ 501. However, scale can also be expressed qualitatively when we do 
have qualitative means of comparison. This can be the case both for scale as proportion 

between represented and representing worlds (e.g., when using a city map, people are 
seldom aware of a numeric scale and rather get a feeling of what the corresponding 

distance on the map means by walking around) and for scale as proportion between 

different spatial extensions (e.g., getting around the central area of a small town requires 
a different effort than doing so in a large city). Within our framework, scale plays a 
flexible role: It can put a “unit” to the length of the intervals obtained by the acceptance 

function A, if that kind of information is available. But it can also just be a member 

of a “progressive classification” (total order) that helps us to relate different frames of 

reference. 
The third and last component of a FofR is the type T, which can be either intrinsic, 

extrinsic or deictic in analogy to the treatment of orientation: 
l Intrinsic. The distance is determined by some inherent characteristics of the ref- 

erence object, like its topology, size or shape. For example, a house taken as a 
reference object can implicitly influence the distance relations with respect to itself, 
without the need of any external factors. Hence, the size of the house determines 
the acceptance area for close in a statement like “the bicycle is parked close to the 

house”. 

l Extrinsic. The distance is determined by some external factor, like the arrangement 

of objects, the traveling time, or the costs involved. For example, in a subway 

system, it might be appropriate to say that two stops are close if the time required 
to go from one to the other is short; or we may consider the two stops close 
if they lie in the same cost zone. The “canonical” frames of reference usually 

superimposed on geographic space, like the scale of a cartographic projection, are 
also part of this category. 

l Deictic. The distance is determined here by an external point of view. The most 
immediate case is the one of objects that are visually perceived by an observer. 

Of course, the observer’s position influences the distance he or she perceives. 
Deictic frames of reference include also cases in which the point of view is used 

figuratively, i.e., not in the sense of sight. Often the point of view is related to how 
an individual builds a mental map of the space. For example, a traveler may have 
a personal conviction of a distance being “far away”, independently of all other 
intrinsic and extrinsic factors. 

Having described the three components of a distance frame of reference more or 
less independently of each other, we now turn to the question of how they relate to 

each other. Although there is a characteristic mutual causality involved that makes some 
configurations more likely than others, in principle each particular component can be 
combined with any of the others. For example, a given type can have an expression 
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at different scales and in different distance systems; a given scale might host many 

different distance systems arising from various type perspectives; or the same structure 

defined by a given distance system might occur in changing scale/type contexts. 

Often the type of FofR influences the scale chosen which in turn modifies the distance 
system as explained above. In the case of an intrinsic FofR, for example, the scale is 

likely to be a function of inherent characteristics of the reference object such as its size 
(e.g., if the RO is a desk, the distance distinctions made are likely to be within the 

realm of typical office spaces). In the case of an extrinsic FofR, the scale might well 

be a reference unit such as “I km” given by external factors. Note that fixing such a 
unit does not require the distance information to be “exact”, but rather establishes the 

setting in which approximate quantities or qualitative order-of-magnitude relations can 

be understood. Finally, in the case of a deictic FofR, the scale could be a function of 
the distance between the point of view and the reference object. 

3.6. Qualitative distance axioms 

Besides having a clear quantitative meaning, the three distance axioms mentioned in 
Section 3.1 suggest the following qualitative interpretation within our framework: 

The distance of a paint to itself is zero (Reflexivity) : In a qualitative framework, 
the concept of zero is not a sharp concept like the quantitative “zero” distance, but it 
is defined by the kind of distinctions that we want to make. If two objects are both 
“close” to a reference object and both in “front” of it, they do not necessarily share 
exactly the same position. Actually, nothing can be said without considering a more 

detailed level of granularity. A qualitative theory substitutes the equality relation with 

an indistinguishability relation. We can assess if two objects share the same position 
up to the smallest qualitative distance distinction we are allowed to make in a certain 

granularity level. Therefore, the smallest distance relation (like “very close”) acts as 
the zero element. Also, when considering objects with extension, the case in which two 

objects meet at their boundary may be considered a case of distance “zero” and can be 
described by means of a topological relation as well. 

The distance between two points is symmetric (Symmetry): In Euclidean geometry 
space is assumed to be symmetric, which means that the distance between points A and 
B is the same as between B and A. In a qualitative framework, however, asymmetry 
arises, in particular, when it is not possible to exchange the role of the RO and the PO 
without changing the qualitative distance relation. If the type of the frame of reference 

is intrinsic or deictic, then the choice of the RO influences the distance system D and, 
hence, the distance between the RO and the PO. For example, the distance between 
two points might be perceived as different, depending on the direction of travel in a 
deictic frame of reference. In the intrinsic case, objects A and B taken as ROS have 
in general different properties that may determine different frames of reference. The 
adoption of a common frame of reference of the extrinsic type, instead, implies that 
symmetry holds. Summarizing, when the same frame of reference can be maintained for 
evaluating both dAB and deA, we can assume dAB = dBA, otherwise those two distances 
are different. 



E. Clementhi et al. /Artificial Intelligence 95 (1997) 317-356 333 

The direct distance between two points is either shorter or equal to the sum of the 
distances through a third point (Triangle inequality) : The triangle inequality applies at 

the qualitative level as long as the distance symbols are conceptualized as the qualitative 

equivalents of straight line distances within a common frame of reference (these are 
the assumptions made in Sections 4.1 and 4.2, which deal with composition and thus 

verify the triangle inequality). However, when modeling distances in anisotropic spaces 
or when qualitative distances are given with respect to different frames of reference, the 

triangle inequality does not necessarily hold. For example, when the direct route from 

A to C involves arduous hill-climbing (or is traffic jammed), whereas the route through 
a point B is effortless (or an expressway). 

4. Reasoning about positional information 

In this section, we concentrate on the composition of distance and orientation relations, 

as the basic step of qualitative reasoning. Given the position of an object B with respect 
to an object A in terms of qualitative distance and orientation, and the position of a 

third object C with respect to B, what we want to infer is the position of C with 

respect to A. Section 4.1 discusses composition assuming that the frames of reference 
for orientation and distance are the same in A and B, when they act as reference objects. 
In general, the result is not a single value but a range of possible resulting distances 
and orientations within lower and upper bounds. We develop three different algorithms 

to compute the composition of distances in the three basic cases of same, opposite, 
and orthogonal relative orientation. The composition of distances in the general case of 

relative orientation is treated as an interpolation of those three cases. In Section 4.2, we 
treat the special case of distance systems with homogeneous structure as an application 

of the algorithms. Finally, in Section 4.3, we remove the restriction of same frame of 
reference in the composition; this leads to a revised algorithm in the case of opposite 

orientation, while the remaining two algorithms are still valid. 

4.1. Composition of distance and orientation relations 

The position of an object B with respect to an object A is represented by the pair 
(~,JB, O*B). Given three objects A, B, and C, if we know the two pairs (dAB, 0~8) 

and (dsc, OBC ) , their composition is the pair (d AC, BAC ) . Such a composition is the 
qualitative counterpart of the sum of two vectors. 

The following considerations help to clarify the interplay of distances and orientations 
in the composition process. Given two objects A and B, and moving the orientation of 
the third object C while keeping fixed its distance from B, let us indicate with Ce, 

Cl, . . . . C4 the third object at different positions (see Fig. 5). The following set of 
inequalities holds: 

d(A,C4) < d(A,C3) < d(A,Cz) < d(A,CI) < d(A,Co). (24) 

That is, the resulting distance d AC varies as an inverse function of the range between 
the orientations 13~n and I~BC. 
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Fig. 5. interplay of distance and orientation relations for fixed dec 

Fig. 6. Interplay of distance and orientation relations for fixed HBC 

Referring to Fig. 6, we have the third object C at increasing distances from B. Again, 
let us denote with Cc, Cl, . . . , C4 the third object at different positions. The following 

set of inequalities holds: 

B(A, Co) < B(A, CI > < B(A, C2) < B(A, C,) < @A, Cd). (25) 

That is, the resulting orientation varies as a direct function of the distance dAc. Notice 

that if one distance is much shorter than the other, the orientation of the longer distance 
will prevail; if the distances dAB and dBC are similar, an orientation in the middle of 
the range between BAB and BBC will be the most likely resulting orientation. 

From the considerations above, the role of comparison versus naming in composition 
becomes apparent: given that typical descriptions are a mixture of qualitative names or 
classes (e.g., “far”) and comparisons (e.g., “but closer than”) we must maintain and 

reason internally with both positional relations and comparative information and try to 
use naming only as a final step in a particular context. 

Unlike the quantitative sum of vectors, the composition of positional relations cannot 
be expressed as a formula to compute the resulting position, since angles are only 
available as orientations and lengths are only available as distance symbols. 
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Fig. 7. Adding distances 
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In the following, we investigate how to compute the composition (d*C, 0,~ ) . To 

that end, we refer to the three basic cases of same (0~ = GAB), opposite (0~c = 

opp( 0,~) ) , and orthogonal (19 ~c E orth( 0AB) ) orientation. Same and opposite orienta- 

tion correspond to the biggest and smallest resulting distance, respectively (see Fig. 5) ; 
orthogonal orientation is an intermediate case. Criteria to reduce the indeterminacy of 

the result, as well as algorithms to compute the composition in the three basic cases 

mentioned above are the main contributions of this section. 

Same orientation 
Let us first suppose that the orientation of B with respect to A is the same as the 

orientation of C with respect to B: 0 BC = OAB (see Fig. 7). As said before, we cannot 
always find a unique result for the composition of qualitative distances, but rather a 

logical disjunction of possible results. However, since the disjunctive result must be 
made up of consecutive distances, we proceed by finding a lower and an upper bound 

for the resulting distances. 

In the case of same orientation, since we are adding two “positive quantities,” the 
composition of them cannot be less than the bigger distance. Therefore, for the lower 
bound we have that: 

L&d/x) 2 max(dAB,dac), (26) 

while for the upper bound we can say that UB(dAc) 6 qn. 
In order to find more restrictive upper and lower bounds for the result of composition, 

we introduce Algorithm 1 (see also Fig. 8)) which takes the two distances dAB = qi and 
dsc = qj, as well as the structure relations among intervals rA as input. lo The algorithm 

first applies the absorption rule to check whether the interval Aj can be disregarded with 

respect to Si; if SO, LB = UB = qi. Otherwise, to find the upper bound, Aj is compared 
to &+I in order to see if Aj’S outer limit falls within Si+t. Via recursive calls, the test is 

repeated for the sum of all successors of Si until Aj becomes smaller than this sum. The 
algorithm terminates since, at most, such a sum will eventually include the infinitely big 

&. The lower bound is computed by comparing Aj-1 with 6i. If Aj-1 is bigger, then 
the lower bound must necessarily overcome qi. The check is repeated recursively with 
the sum of 6i and all its successors until A,j_1 becomes smaller. 

I” As mentioned in Section 3.3, the knowledge given by rd supports the evaluation of predicates. In the case 

of Algorithm 1, these am dj < 6;. dj < dint, and Aj-1 < Ai,,. 
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Fig. 8. Composition of distances for same orientation 

Algorithm 1. Algorithm for computing the composition of distance relations (same 

orientation). 

begin 

&Mqi, q,j, rLl); 
if A,j < Si then UB c qi; LB c qi 

else FindUB( Si+ 1, i + 1, UB) ; 
FindLB( Si, i, LB) fi; 

0AC + 6AB; 

OWutt LB, 1 UBI , 6AC ) 

where 

pr~c FindUB( Ainc, k, var US) E 

if A,; < Ainc then (UBI + qk 

else FindUB( Ainc + Sk+, , k + 1, UB) fi. 

proc FindLB( Ai”c, k, var LB) s 
if A,j_1 < Ainc then LB + qk 

else FindLB( Ainc + Sk+, , k + 1, LB) fi. 

end 

Opposite orientation 

Now, let us consider the composition of distances in the case of opposite orientation, 
that is, 6~c = opp( 6,@) (see Fig. 9). A coarse upper bound is given by the maximum 
of the two distances since the case of opposite orientation corresponds to the difference 
between two “positive quantities”. Therefore: 

(27) 

Similarly, for the lower bound we have that LB(dAc) > qo. 
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Fig. 9. Subtracting distances. 
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Fig. 10. Composition of distances for opposite orientation (qi > qj ). 

Algorithm 2 finds more restrictive upper and lower bounds for the result of com- 

position. It handles separately the three cases qi > qi, qi < q,i, and qi = qj, which 
correspond to three different resulting orientations: equal to f?~s, BBC, or the logical 
disjunction of them, respectively. Below, we illustrate how the algorithm manages those 

three cases. 
Case qi > qj. Algorithm 2 first applies the absorption rule to check whether the 

interval Aj can be disregarded with respect to 6;; if so, LB = UB = qi. Otherwise, to find 
the lower bound (procedure FindLB), A,i is initially compared to 8i-i to see whether 
LB = qi-1; if not, the test is repeated, via recursive calls, for the sum of all predecessors 

of 6i-t until A, becomes smaller. The procedure FindUB finds the upper bound exactly 
in the same way with the only difference that the initial test compares Aj-1 to 6i (see 

Fig. 10). 
Case qi < q,i. Algorithm 2 first applies the absorption rule to check whether the 

interval Ai,,i can be disregarded with respect to So; if so, LB = UB = qo. Otherwise, 

to find the ‘lower bound (procedure FindLBopp), Ai_l,,,i_l is initially compared to 60 
to see if LB = qo; if not, the test is repeated, via recursive calls, for the sum of 
all successors of 60 until Ai+l,.j_I becomes smaller. The strategy implemented by the 

procedure FindLBopp can be informally explained as follows. Since the first distance 
is smaller than the second one, the first piece of the distance dBC reaches the object 
A and the remaining part goes beyond A: to calculate how much C overcomes A, the 
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Fig. I I. Composition of distances for opposite orientation ( y; < qj) 

sum of So and its successors is compared to Ai+l.,,i_l. The procedure FindUBopp works 
exactly as FindLBopp with the only difference that the initial test compares Ai,,j to 61 

(see Fig. 11). 
Case qi = qj. Algorithm 2 first sets LB = qo, hence it proceeds to compute the upper 

bound (procedure FindUBeq). S,i is initially compared to 60 to see if UB = qo; if not, 

the test is repeated, via recursive calls, for the sum of 60 to its successors. 

Algorithm 2. Algorithm for computing the composition of distance relations (opposite 

orientation). 

begin 

InPut( qi, q.j, rA 1; 

case 
Ai > AJ: 

Ai < Aj: 

endcase; 

eAC = eAB; 
if A,i < Si then LB t qi; UB c qi 

else FindLB( 6i_ 1, i - 1, LB) ; 
FindlJB( 6i, i, UB) fi; 

BAC = 8BC; 

if Ai,,,i < 60 then LB +- qo; UB + qo 
else FindLBopp( 60, 0, LB) ; 

FindUBopp( 8, , 1, UB) fi; 

eAC = eAB v h?C; 

LB + qo; 

FindUBeq(Go,O, UB); 

ChtpUt(LB, UB, @+,C) 

where 

PIWC FindLB( Ainc, k, var LB) E 
if Al < Ai”, then LB + qk 

else FindLB( Ainc + Sk-1 , k - I, LB) fi. 
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Fig. 12. Composition of distances for orthogonal orientation. 

P~OC FindUB( Ai,c, k, var UB) z 
if A.i_1 < Ainc then UB +- qk 

else FindUB( Ainc + Sk-1 , k - 1, UB) fi. 

P~C FindLBopp( Ainc, k, var LB) E 
if Ai+I,,i-l < Ainc then m t qk 

else FindLBopp( Ainc + Sk+] , k + 1, LB) fi. 

proc FindUBopp ( Ainc, k, var UB) E 
if Ai..i < Ainc then UB + qk 

else FindUBopp( Ainc + &+I , k + 1, UB) fi. 

proc FindUBeq ( Ainc, k, var UB) s 
if 6.i < Ainc then UB + qk 

else FindUBeq( Ainc + &+l , k + 1, UB) fi. 

end 

Orthogonal orientation 
Let us consider the composition of distances in the case of orthogonal orientation, 

that is, BBC E orth(OAB). In this case, the upper bound tends to be smaller than in the 
case of same orientation and the lower bound is always the biggest of the distances qi 
and q,j. Algorithm 3, which is a modified version of Algorithm 1, computes the upper 
and lower bounds of distance composition for orthogonal orientation, 

To find the upper bound, the procedure FindUB takes into account the following three 
cases: Ai << Ai,,, Ai >> Ai”c, and Ai “is comparable to” Ai,c. These three cases are 
depicted in Fig. 12, where we also introduce an auxiliary point H corresponding to the 
intersection of the segment BC (or its imaginary prolongation) with the radial distance 

A;+.1 from A. The segment BH can thus be used to decide under which circumstances 
the upper bound might exceed the current range (in which case a further recursion step 
will be necessary). To see how this works consider the first step of recursion where 

4°C = Si+t * 



340 E. Clementini et nl./Art@cial Intelligence 95 (1997) 317-356 

If di << 6i+l (Fig. 12(a) ), then the segment BH is “slightly” bigger than Si+l, due to 
elementary geometric considerations. Therefore, only a value for Aj greater than 6i+l can 

(but not necessarily) increment the resuiting distance (next recursive call). Otherwise 

the upper bound is qi+l. 
If Ai > a;+, (Fig. 12(b)), then the segment BH is much bigger than &+I; hence, it 

is unlikely that A,; is able to increment the resulting distance unless A,j is much greater 
than Si+ I. 

In the intermediate cases, that is, when Ai is comparable to 6i+l (Fig. 12(c) ), the 

segment BH is bigger than St+,. Hence, Aj needs to be considerably bigger than Si+l in 

order to overcome the boundary of the next distance range, otherwise the upper bound 

is 4i+l. 

Algorithm 3. Algorithm for computing the composition of distance relations (orthog- 

onal orientation). 

begin 

mput( qi, q,j 9 rA > ; 

if A,j < 6; then UB + 9i 
else FindUB( &+, , i + 1, UB) fi; 

if A, 3 Ai then LB + 9i 
else LB + 9j fi; 

case 

A,j >> Ai: BAC * OBC ; 
A,j < Ai: OAC t- BAB; 
else 0.~3 < 0~ < 0~ 

endcase; 
Output( LB, UB, OAc) 

where 

P~OC FindUB( Ai”,, k, var UB) z 
case 

Ai < Ai”,: if A, < Ainc then UB + 9k 
else FindUB( Ainc + &+l , k + 1, UB) fi; 

A; > Ainc: if l( A,j >> Ai,,) then UB +- 9k 
else FindUB( Ainc + &+I, k + 1, UB) fi; 

else if ( Aj < dine) V (A,j M Ai,,) 
then UB +- 9k 
else FindUB( Ainc + &+I, k + 1, UB) fi 

endcase. 

end 

Composition for generic orientation 
As long as the granularity level of orientation relations makes only four distinctions, 

the application of the algorithms just described is straightforward. If more distinctions are 
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Fig. 13. Composition for intermediate orientation. For eight orientation distinctions (a), a combination of 

Algorithms 1 and 3 is used for 08~ = ot and Algorithm 2 is used for 0s~ = crs. For sixteen orientation 

distinctions (b), the combination of Algorithms 1 and 3 is used for orientations a( through LYE, Algorithm 3 

is used for cys, and Algorithm 2 is used for cr6 and a~. 

made, however, there are intermediate orientation relations between same, orthogonal, 
and opposite orientation, for which we have to decide which algorithm gives the best 

approximation. 
For that purpose, it is useful to consider three subranges for intermediate values of 

BBC, referring only to the upper half-plane, since all considerations are symmetrical on 

the axis defined by AB: 

(i) eAB < @EC < ff 
_L 

, 

(ii) a 1 < &c 6 ff*, 

(iii) a* < BBC < opp(&B), 
where c& E Orth(BAB) and cz* is a particular orientation relation such that the angle 

between the two lines AB and BC is approximately 120’. ‘I Depending on the number 

of orientation distinctions, (Y* is chosen such that most of its cone lies before 120”. For 
example, for eight distinctions LY* is LYE, and for sixteen distinctions (Y* is as. 

For the first subrange, both Algorithms 1 and 3 could be used. Lower and upper 

bounds inferred by Algorithm 1 are greater than those given by Algorithm 3. The most 
constrained answer to the composition can be obtained by taking LB from Algorithm 1 
and UBfrom Algorithm 3. For &c < cr*, the resulting distance dAC is always greater 
than the biggest distance between dAB and dBc (Eq. (26)), while, for &c > LY*, the 
resulting distance dAc is always less than the biggest distance between dAB and dBc 

(Eq. (27) ) . Therefore, Algorithm 3 is the most appropriate for the second subrange and 

Algorithm 2 for the third subrange. The choice of the algorithms for the intermediate 
orientation relations is illustrated in Fig. 13 for the case of eight and sixteen orientation 
relations. 

” The value 120” corresponds to the angle for which the three distances cl,~s, dso, and d,~c arc equal 
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Table 1 
Resulting distances for the monotonicity restriction (same 

orientation, five distance symbols) 
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43 
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42 43 

43 44 
44 
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41,42.43 
424344 
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92.43 

q2mq4 
42 43 44 
43.44 

44 

43.44 

4344 
43.44 
q3.q4 

q4 

44 

q4 
44 

44 

44 

Table 2 

Resulting distances for the range restriction (same orien- 

tation, five distance symbols) 

83 40 41 42 43 94 
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41 
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44 
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43Ji4 

44 

43.q4 

q3.q4 
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94 

q4 

q4 

44 

44 

44 

Table 3 

Resulting distances for the orders of magnitude restriction 

(p = 2, same orientation, five distance symbols) 

CD 40 41 q2 q3 94 
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44 
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Y4 

43 
m 

mJ!4 

qw74 

Y4 

94 

q4 

Y4 
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4.2. Composition for homogeneous distance systems 

This section constitutes an application of the general algorithms developed above to 
the special case of homogeneous structure relations (see Section 3.4). Due to space 
limits, only the “same orientation” case is treated. By considering the restrictions given 
by Eqs. (20)) (2 1)) and (22) (monotonicity, range restriction, and orders of magnitude 

with p = 2), Algorithm 1 gives the resulting distances shown in Tables 1, 2, and 3, 
respectively, for a system with five distance symbols. 

Notice that the upper bound becomes progressively more restrictive. By considering 
the monotonicity restriction (Eq. (20)), since an interval is at least as big as its 
predecessor, the upper bound may be formulated as 

UB(dAC) = ordd’(ord(dAB) + ord(dsc)). 
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By considering the range restriction (Eq. (2 1) ), the composition of two distances can 
at most be one step bigger than the maximum of the two distances. The upper bound 
becomes: 

UB(d,& = succ(max(dAs,dac)). (29) 

The orders of magnitude restriction (Eq. (22)) allows us to disregard the effect of 
the smaller relation. The upper bound can be expressed as 

lord(dAB) - ord(dec)I 3 P 3 UB(dAc) = ma(dAB,&c). 

4.3. Composition between different frames of reference 

The qualitative description of distances among a set of objects is reasonably assumed 

to be given according to different frames of reference. A “basic” type of qualitative 

reasoning is therefore to relate the distances to each other and be able to infer new 

information. Ideally, we would like to transform all distance descriptions to the same 

(“canonical”) frame of reference. However, different distance frames of reference refer 
to different granularities or scales, thus making a transformation into an implicit frame 
difficult. We rather must restrict ourselves to using articulation rules [35] that state 

how two particular frames of reference compare. This comparative information, which 
consists mainly of order information between reference magnitudes, can further constrain 

the relations maintained in the constraint network, and suggests deferring naming to those 
cases where it can be done in a disambiguating context. From the definition of frames 
of reference given in Section 3.5 it follows that articulation rules must relate mainly the 
distance systems and scales of the frames involved. The frame type does not need to 

be explicitly related, since it already determines the scale factor and is thus contained 
in it. The distance systems must be compared as to the sets of relations involved and 

their structure (e.g., the order-of-magnitude relations between the distances). Note, 
however, that it might not always be feasible to find all comparative relations between 
distance ranges in different frames of reference. In general, only similar distance systems 

might be successfully related to each other, and some might be incomparable to each 

other. 

Two particular cases are of interest: different scales and same distance system, and 
same scale and different distance systems. As an example of the first special case suppose 

you get the following answer to the question “How far is it to the Partnachklamm?“: 
“It’s about an hour by car with a 30 min walk up hill.” Both the distance to be 
traveled by car and the distance to be covered on foot afterwards are given w.r.t. a 
set of distinctions that we could call “qualitative time” (the labels being 5min for 
a very short distance, 30min for a close distance, 1 h for a middle far distance, and 
anything >I h for places far away; notice that these are “qualitative” in the sense that 
5 min could correspond to 2 min 23 set actual time, and 30min could turn out to be 

41 min actual time). The scale, however, is a different one in each case, I h by car 

being something in the order of 100 km, whereas I h on foot amounts to more or less 
5 km. In order to reason about distances in this case it is not necessary to give all 
the structure relations, that is, if we know that scale S’ is smaller than scale S”, then 
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each 8; is smaller than the corresponding 8:. Note that as far as geographic positional 
information is concerned, the half hour walk can be neglected, and we can conclude 

that this place is about 100 km away from our present location. As far as the time and 

physical effort to get there is concerned, of course, the half hour walk is a significant 
component. 

The second special case is illustrated by the statements: “It is only 5 min to the bakery. 
All other stores are also close by.” Here the scale is the same in the two sentences, as 

implied by an assumed means of transportation (e.g., on foot), but different distance 

systems are used in each. In the first sentence, the “qualitative time” system described 

above is used, whereas in the second sentence, a simpler and less specific close/far 
distinction is made. 

Let us consider the composition of two distance relations expressed in two different 
frames of reference F’ and F”. Given three objects A, B, C, with d*B = qi in the frame 

of reference F’ and dBC = qy in the frame of reference F”, the result of the composition 
is dAc, expressed in the frame of reference F’. In the most general case, both scales 

and distance systems are different in F’ and F”. In order to perform the composition, 

we need to know the structure relations between the different distance ranges in F’ and 
F”. If A’ is the set of intervals of the first distance system and A” is the set of intervals 
of the second distance system, the structure relations we need to consider are the order 

relations between each interval in A’ and each interval in A”, indicated with rA’,A”. 
Then, Algorithms 1 and 3 can be applied providing rA’,A” in place of r-4 as input, while 

Algorithm 2 needs an adaptation described below and given in Algorithm 4. Such an 
algorithm distinguishes three cases: Ai z A;, Ai > A;, and Aj < A:!. The first case 

(Al z A(i’) replaces the case Ai g Aj of Algorithm 2, because when we have different 

frames of reference it is unlikely to have the equality of distance ranges. The second 
case ( Aj > A:!) is the same as in Algorithm 2, while the last case (Al < A,:!) needs two 

additional procedures FindMin and FindMax to estimate the part of distance dsc that is 
equal to dAB in the frame of reference centered in B. This is not a problem in the case 
of same frame of reference where the distance of A with respect to B is equal to qi (i.e., 

object A falls into the interval comprised between Ai- and Ai (see Fig. 11)). With 

different frames of reference, such a distance cannot be determined with uncertainty 
smaller than 6,. The procedures FindMin and FindMax find two indices x and y such 

that the interval A2+,,,y ’ /, contains the ObJect A with A,+,,.) > 6;. Hence, the procedures 

FindLBopp and FindUBopp take the intervals A~f+,,,j_, and A:+, ,,j, respectively, as the 
part of distance dsc that goes beyond A. 

Algorithm 4. Algorithm for computing the composition with different frames of ref- 

erence (opposite orientation) 

begin 

Inpdqj, q;, rA’,A” ) ; 

case 
A; z A:!: BAC = OAB V Oec; 

LB +- q;; 
FindUBeq( S&O, US); 
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A; > A;: OAC = 6AB; 

if A.7 << 8: then LB +- qj; UB + q: 

else FindLB(6i_,,i- 1,LB); 

FindlJB(Gi, i, UB) fi; 

Aj < A;: 6AC = BBC; 

FindMin( Sg, 0, x) ; 
FindMux(A~+,,x+ 1,~); 

if A;+,..,; <<IS:, thenLB+-qb; UB+qb 

else FindLBopp ( 86 , 0, LB) ; 
FindUBopp( S{ , 1, US) fi; 

endcase; 
Output(LB, UB, 6AC ) 

where 

proc FindMin( A&, k, var x) E 
if A!’ 1°C =A;_, thenxtk 
else if A$, > Ai_, 

then x t k - 1 
else FindMin( Ai;, + SF+, , k + 1, x) fi. 

proc FindMux( Ai;, , k, var y ) s 
if (A;;, M A;) V (A;;, > A;) 

then y +- k 

else FindMax( Af,, + St+,, , k + I, y ) fi. 

proc FindLB( Aj,, , k, var LB) s 
if A; 6 Ai”, then LB +- q: 

else FindLB( Ai”, + S:_, , k - 1, LB) fi. 

proc FindUB( A[“,, k, var UB) s 
if A:_, < A(,c then UB t q6 

else Findl.JB( A,!,, + Sg_, , k - 1, UB) f~. 

proc FindLBopp( Al,,, k, var LB) E 

if Ajl,m,,,i-, < Ai,, then LB t q: 

else FindLBopp( A:,,, + Si+ , , k + 1, LB) fi. 

proc FindUBopp( A;,,, , k , var UB) E 

if A:jml,,i < A,!,, then UB t qi 

else FindUBopp( A:,, + SL.,, , k + 1, UB) fi. 

proc FindUBeq( Al,,, k, var UB) -_ 

if 87 < Ai”, 
then UB +- qk 

else FindUBeq ( Al”, + Si+ , , k + 1, UB) fi. 

end 

34s 
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5. Related work 

This section reviews some of the literature on the subject of the representation of 
distance and orientation, and in particular on their combination to handle positional 
information. We look into studies in the fields of cognitive science and linguistics as 

well as into previous work in AI, in particular in the areas of qualitative reasoning and 
fuzzy logic. 

5.1. Cognitive science 

There have been many psychophysical studies of the perception of distance and related 

cognitive issues. Downs and Stea [ 151 identify several characteristics of cognitive maps 
such as their incompleteness, the tendency to schematization and associated distortions 
and augmentations as well as significant intergroup and individual differences. Thus, 

the resulting representation resembles rather a collage of bits and pieces of spatial 
information rather than a map [ 641. 

Cognitive distances in urban environments have been studied by Lee [ 43 1, Briggs [ 6 1, 

and Canter and Tagg [ 71 among others. Briggs [ 61 identifies four levels of hierarchically 
organized knowledge: Knowledge of points, knowledge about the relative proximity of 
pairs of nodes (one-dimensional), knowledge of relative location (two-dimensional), 

knowledge of sets of nodes and their interlinking paths (region clustering). 

Studies of intercity distances [ 59,621 have suggested the influence of factors such as 

the attractiveness of and familiarity of the subjects with origin, goal, and interconnecting 

paths, as well as the kind and number or barriers along the way and the magnitude of 

the geographic distance. 
In his extensive review of the psychological literature on the perception and cogni- 

tion of environmental distances (i.e., those that cannot be perceived in entirety from a 

single point of view and thus require moving around for their apprehension) Monte110 
[ 511 identifies several processes as well as sources for distance knowledge. In gen- 

eral, knowledge of environmental distance depends on perception or awareness of body 
movement or change of position (based on vision, vestibular sensation, motor efference 

or auditory processes). Processes by which distance knowledge is acquired and used 

include working-memory, non-mediated, hybrid, and simple-retrieval processes. Knowl- 
edge about distances might be derived from many sources, including environmental 
features (turns, landmarks, barriers), travel time and travel effort. Not a single process 

or source can account for human distance knowledge. Rather, “there are alternative pro- 
cesses that account for distance knowledge in different situations, and multiple, partially 
redundant knowledge sources that differentially influence it as a function of scale and 

availability” [ 5 1, p. 131. 
One of the best studied factors is the influence of the number of environmental fea- 

tures in the perception of distance for which four main hypotheses are put forward: 

feature-accumulation hypothesis, segmentation hypothesis, scaling hypothesis, analog- 
time hypothesis. Each of these provides a seemingly different explanation for the in- 
fluence of this factor, but at the same time unveils characteristics of cognitive distance, 
which we attempt to model in our framework. The feature-accumulation hypothesis, for 
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example, states that the number of features makes a difference because “longer distances 
contain more features”. The qualitative model is compatible with this hypothesis as a 

larger number of environmental features leads to more distinctions being made. Simi- 
larly, the scaling hypothesis aims at explaining why the relative magnitude of estimated 

distances increases as physical distance decreases by observing that subjective distances 

near reference points tend to be exaggerated, and that features break the path to be 
estimated into smaller distances. This is related to the logarithmic distance phenomenon 

[ 291, which is modeled in the qualitative framework through appropriate structure rela- 

tions. 
The “asymmetry of cognitive distances” (i.e., the distance between two points being 

perceived as different depending on travel direction) often mentioned in the literature 
is not as straightforward as it might seem to be. Everyday experience often presents us 
with actual distance asymmetries (due to road conditions, rush hour schedules, etc.), 
which should not be confused with psychological asymmetry illusions due to percep- 

tual, organismic, or affectional factors. Furthermore, common sense spatial knowledge 
allows us to distinguish between “longer distances” and “when it takes longer in the 

other direction”, while being aware that actual distance is the same in both ways. Our 
model is perfectly capable of dealing with distance asymmetries by explicitly storing 

different distances (with respect to different frames of reference) for each way when 

required. 

Travel time is frequently proposed as source of distance knowledge, in particular when 
travel occurs over larger scales: “Cognized distances increase with, and are directly 
related to time required to traverse path.” [28]. However, no straightforward relation 
between time and distance can be established: neither their simple equation nor ‘distance 
equal to time times speed’ explain the data available from psychological experiments 
satisfactorily. 

5.2. Linguistics 

The basic dichotomy of “proximity” and “distality” has been studied from a linguistic 

point of view by Bierwisch [ 41, Herweg [ 341, and Wunderlich and Herweg [ 681 among 

many others. 
Pribbenow [ 541 distinguishes five linguistic distance concepts: “inclusion” (accep- 

tance area restricted to projection of reference object), “contact/adjacency” (immediate 

neighborhood of RO), “proximity” and “geo-distance” (surroundings of RO), and “re- 
moteness” (defined as complement of the proximal region around the RO). A similar 
system of distinctions in English described by Jackendoff and Landau [ 371 consists of 
3 degrees of distance: interior of reference object (in, inside), exterior but in contact 
(on, against), proximate (near), plus the corresponding “negatives” (“farther away 
than”) : interior (out of, outside), contact (ofs of,, proximate (far from). Furthermore, 

prepositions such as among and between also convey some distance information. 

The qualitative approach to the representation of spatial knowledge is heavily inspired 
by the way spatial information is expressed verbally. In particular, the relational nature 
of spatial expressions has a direct correspondance in the qualitative relations. Also the 
semantics of such a relation is not seen in a direct relation between the objects involved, 
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but rather, as in language, the reference object is used to define a region in which 
the primary object is located. However, the relation between the inventory of spatial 

constructs of a language and the possible combinations of basic spatial concepts is not 

a one-to-one mapping [ 54,631. For example, some prepositions might correspond to 
several different spatial relations depending on the context in which they are used [ 331. 

Many other aspects discussed in this paper, such as the asymmetry of distances 
between primary object and reference object, have been observed in linguistic studies 
(“The standard expression of spatial location is strikingly asymmetrical.” [ 37, p. 1071). 

The fact that distance and orientation interact to provide further positional constraints, 

for example, can also be seen in spatial prepositions like in buck of and behind, which 

share the same orientation but indicate different distances (in buck of is restricted to 

proximal distances, whereas behind is unrestricted). 

5.3. Early Al-approaches 

Previous work in AI on the representation of positional information has used a variety 

of approaches, some of them combining both qualitative and quantitative information. ‘* 
The SPAM program [ 491, for example, combines topological information represented 

propositionally with metric information represented by “fuzzy maps”, where information 
is stored in terms of “fuzz ranges”, e.g., [ 5.0,7.0] [2.0,3.0] for an x/y coordinate 

pair. ‘s In this system, frames of reference are associated with each object, establishing 

the origin of the coordinate system, its scale and orientation. In fact, the distinction 
between frames of reference and objects is replaced by an hybrid construct called “frob”, 
which can be dealt with uniformly. Positional information is derived from relations 
between frames of reference, i.e., the origin of one frame of reference in terms of the 
other, the difference between their orientations, the ratio of their scales. Even though 

separate frob trees index position, orientation and scale finding minimum and maximum 

bounds for those quantities is computationally inefficient. 
Another system which is primarily concerned with information about the relations 

between the boundaries of objects but that nevertheless allows the computation of relative 

position is MERCATOR [ 12,131. A grid of vertices connected by arcs of fuzzy length 
is used to represent the boundaries of objects. Here pairs of distances and directed edges 
(i.e., orientations) expressed each as fuzz ranges (as in SPAM) are used to relate the 

shapes of objects to the grid of edges. The system is able to determine the relative 
position of extended objects but again the interval bounds representation of lengths and 
orientations is awkward and limited. For example, it is not possible to represent a square 

of unknown dimensions. 
It should be mentioned, that positional information might not be needed at all. In 

structured environments (i.e., where roads define the possible paths between loca- 

I2 For descriptions of the mathematical coordinate-based representation of position and the corresponding 

transformation mechanism (e.g., for translation, rotation, and scaling) see Appendix 1 in [3] or Section 6.3 

in [141. 

‘s This way of dealing with uncertainty is different from both the qualitative approach presented in this paper 

and the fuzzy approaches discussed in the next section. It also leads to more complicated algorithms. 
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tions) incidence relations between roads and places are all that is needed for nav- 
igation. The TOUR system [41] uses topological route maps, consisting of places, 
paths and regions to assimilate spatial information and reason about the movement of a 
robot in such an environment. The world state is represented using predicates such as 
on_path( PP, XI, X2, . . . , X3 ) to indicate that places XI, XZ and so on occur on path PP 

in that order; border( RR, PP, S) to state that path PP is on the border of region RR, 

where S indicates if the paths’s forward direction goes clockwise or counter-clockwise 

around RR; star(X, (PPl,Sl),. . . (PP,, Sk)) to indicate that paths PP, through PPk 

meet at place X, where .I$ denotes forward or backward direction on a path. I4 Together 

with actions such as turn and go-to this representation can be used to assimilate a 

cognitive map while wandering around and to plan a route for moving from one place 

to another. 
In open large-scale spaces a simple type of positional information is sufficient to 

navigate, provided there are visible landmarks available. The QUALNAV system [44] 

exploits the fact that, given any two visible landmarks, the current position can be 
either on the “left of”, on the “right of” or “on” the directed virtual connecting line 

between the landmarks. Thus, seeing the landmarks in a particular order already provides 

some positional information. Furthermore, combining such observations it is possible to 

determine positional regions and to plan a route from a start to a goal position as a 
series of “crossings” of virtual connecting lines. 

5.4. Qualitative physics 

The motivation for qualitative reasoning arose predominantly from research on engi- 
neering problem solving (see, for example, the two special issues on the topic published 
in the journal Artificial Intelligence in 1984 and in 1991, respectively [5,67]), which 

sought techniques for automating engineering practice for a variety of important tasks 

(such as, for example, circuit analysis, qualitative explanation of physical systems, and 
complex mechanical systems [ 201) . Most work in the area has concentrated on model- 

ing processes as opposed to the descriptive approach needed to handle space. However, 
two examples of contributions relevant to our work deal with qualitative vectors: Kim 
[40] represents angles (and, hence, orientation) in terms of quadrants and inclination. 

This approach allows to define a qualitative vector arithmetic. A qualitative description 

of distances, however, is outside the scope of Kim’s paper. Weinberg et al. [65] pro- 
pose a qualitative vector algebra suitable for reasoning with qualitative estimates of the 
magnitudes and the direction of vectors in the plane, the latter expressed by the angle 
w.r.t. the x-axis (polar notation). They apply this algebra to a comparative analysis 
of how angles between objects change as objects move, and describe a problem solver 
that deals successfully with translational 2D mechanical systems. A drawback of their 

model is that it does not support different levels of granularity both for magnitudes and 
directions. More recent approaches in qualitative physics emphasize on representing the 

spatial extent of objects. For example, Rajagopalan 1561 proposes a qualitative descrip- 

I4 This simplified description of TOUR follows Davis 1141 rather than the original paper, which includes 

among other things local reference frames. 
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tion of the spatial extent of an object in terms of its extremal points, in order to simulate 
the effects of translational and rotational motion of objects in a magnetic field [42]. 

Within this model, the relative position/orientation of objects is represented through 

inequality relations between their extremal points, and the discontinuities modeled by 

piecewise continuous variables and circular quantity spaces. 

5.5. Qualitative spatial reasoning 

Building on insights from cognitive science, linguistics, early AI approaches to the 

representation of spatial knowledge, and qualitative physics, the field of qualitative 

spatial reasoning, in which our own work can be classified, has flourished in recent 

years. We comment here only on the closest related approaches, and refer for a more 
general review of the literature to [ 11,26,3 I]. 

Freksa [25] and Freksa and Zimmermann [ 271 present an approach to qualitative 
spatial reasoning based on directional orientation information. They distinguish 15 pos- 
sible positions and orientations of a point based on the left/straight/right distinction 

w.r.t. a vector a% as well as the front/neutral/back distinction w.r.t. the lines orthogonal 
to a% on the end points of a and b. Note that this model reduces to an orthogonal set 
of orientations when used for cardinal directions, since the “b” or “north” reference 

point is considered to be either infinitely far away or cyclicly changing to south at 
the pole. Furthermore, establishing that objects are on the parallel line defined by “b” 

does not seem feasible from an egocentric perspective. Reasoning is done by applying 
primitive operators such as identity, inversion, homing, shortcut, and the inverses of the 

last two. Zimmermann [ 7 11 extends this model to combine orientation, position, and 
distance. While this particular combined model makes fewer distance distinctions than 
the model presented in this paper, Zimmermann’s general A-calculus [72] is able to 

deal with multiples of symbolic quantities and their differences and thus able to model 
homogeneous distance systems. As a matter of fact, the A-calculus could be used as an 
alternate algebraic structure Z to define a different type of structure relations between 

intervals (see Section 3.3). 

Mukerjee and Joe [SZ] propose a representation for the relative position of objects 
at arbitrary angles based on four directions and four quadrants centered on the ref- 
erence object. The representation of relative direction is grounded on intrinsic fronts, 
based on the assumption that most objects have a distinguished front, which might or 

might not be the case depending on the application type. The representation of relative 
positions is based on projecting the boundaries of the object in the direction of the 

intrinsic front to obtain its “lines of travel”. The lines of travel of two objects form a 

“collision parallelogram”, w.r.t. which the relations behind, after, inside (correspond- 
ing to qualitative areas), and back, front (qualitative points) are defined. The relative 
position of two objects is specified by the quadrant information (dir(A/B)), and the 
positional relations pos( A/B) and pos(B/A). As compared to our representation this 
approach leads to larger composition tables, which-even using various redundancies 
and symmetries-can only be marginally reduced. 

Frank [21] develops an algebra for qualitative spatial reasoning about distances and 
cardinal directions. This algebra consists of 
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l a set of distance and direction symbols (such as: close and far, and North, South, 

East, and West), 

l a set of operations (i.e., inverse and compose); and 

0 a set of axioms. 
The representation of spatial relations is based on the concept of a directed path from 

one endpoint to another. The qualitative distance system consists of a number of qual- 
itative distance values, that describe distances from the nearest to the farthest, and a 
distance function that maps a path to a qualitative distance value. Note that, as opposed 

to our approach, only equally spaced intervals are used here. Two cardinal direction 

systems based on the concepts of cone and half-plane are examined. Both systems are 
defined similarly to the qualitative distance one. The paper presents alternatives for the 

combination of distances and directions. The result of the qualitative reasoning can be 
either Euclidean exuct (which denotes a homomorphism between the qualitative rea- 
soning result obtained using the axioms of the algebra and the quantitative reasoning 

result obtained by translating the qualitative values to analytical geometry and applying 

the equivalent functions to them) or Euclidean approximate. To be able to compare 

qualitative and quantitative results, the axioms are developed to only provide a single 

answer. Frank’s experiments showed that the algebra can achieve satisfactory results 

under some restricted conditions. 

Jong [38] introduces a model for qualitative distances and one for qualitative ori- 

entations, whose combination defines the model for locational relations. Both these 

models are flexible with respect to the number of distance/direction symbols. As in 
our model, the number of distinctions about distances (granularity level for distances) 

does not influence the number of distinctions about directions (granularity level for 

directions), and vice versa. At a given level of granularity, the intervals of the Jong’s 
model satisfy the monotonicity assumption (Section 3.3). Jong introduces three dif- 
ferent models for making qualitative reasoning about distances and directions: the ull- 

answer model, the likely-answer model, and the single-answer model. The qualitative 
reasoning discussed in Jong’s thesis is based on inference rules and it is similar to 

those qualitative-based models that use composition tables to represent qualitative rea- 

soning results, see for example [ 21,24,3 11. A large part of the thesis is devoted to 
the definition of a link between the representations of qualitative and quantitative dis- 
tances/directions. 

5.6. Fuzzy logic 

Many authors, among them Dutta [ 171, Altman [ 11, and Jorge and Vaida [39] have 
suggested the use of linguistic variables [ 69,701 either to model space directly or extend 
available qualitative frameworks. Linguistic variables are “variables whose values are not 

numbers but words or sentences in a natural or artificial language”. The motivation being 

that “linguistic characterizations are, in general, less specific than numerical ones” [ 69, 

p. 31. This motivation is in the same spirit as the “making only as many distinctions as 
necessary” characterization of qualitative representations advocated in this paper. There 
are, however, important differences, which we will discuss after a more detailed review 
of some of the approaches just mentioned. 
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The work of Dutta [ 171 aims at representing spatial constraints between a set of 
objects given imprecise, incomplete and possibly conflicting information about them. To 

do so, Dutta distinguishes between position and motion spatial constraints. Position con- 
straints in turn can be “propositional” (i.e., qualitative), “metrical” (i.e., quantitative), 
a quantitatively specified range or “visual” (i.e., only graphically depictable as a fuzzy 

area). The main idea is then to transform those constraints into an equivalent possibility 
distribution, in the two-dimensional case into distributions on the X and Y axes. These 

distributions can be generally approximated by triangular shapes and thus represented 

by fuzzy numbers of the form (mean value, left spread, right spread). Spatial reasoning 

is done in this framework by computing joint possibility distributions according to the 
compositional rule of inference [ 701. 

Altman [ l] presents a treatment more specific to GIS using fuzzy regions where 
the membership function is the concentration of some feature attribute at some point. 

He argues against converting imprecise data (e.g., near) to “hard” data (e.g., less 
than 5km) at too early a stage in the analysis process, very much in the spirit of 

qualitative reasoning. Altman defines special distance and directional metrics on fuzzy 

regions as well as methods for their analysis and synthesis. The “distance” between 
two fuzzy regions is not a scalar as in other approaches but a new fuzzy set made out 

of the distances between elements in the Cartesian product of the two sets, and whose 
membership is the minimum membership of each element pair in the product. The type 

of uncertainty this deals with results from imprecision in the spatial delineation of the 

regions rather than from fuzziness in the position of point-like objects as in Dutta’s 

work. 
Jorge and Vaida [39] develop a fuzzy relational path algebra to reason about spatial 

relations involving distances and directions based on semirings. They aim at comple- 

menting qualitative distance and direction functions like those developed by Frank [ 2 1 ] 
with degree of likelihood functions corresponding to membership functions of fuzzy 

predicates. Semirings are used as algebraic structures subsuming the formal properties 
of basic fuzzy set theory and the relational and path algebras of Smith and Park [ 611 

and Frank [ 2 1 ] respectively. 
As compared to qualitative representations, fuzzy approaches do not take the structure 

of the represented domain into consideration and, consequently, do not exploit the result- 
ing neighborhood constraints. One of the sources of the uncertainty that both qualitative 
and fuzzy approaches intend to deal with is the need to express a certain relationship 
independently of the context in which it occurs. In fuzzy approaches contextual infor- 
mation is encoded in a single number, the value of the membership function, which is 

not as expressive as the elaborated and explicit frame of reference concept developed 
in this paper. The quantitative characterization of the elasticity of constraints in fuzzy 
approaches contrasts with the more flexible concept of acceptance areas or distance 
ranges and corresponding overlapping or non-exhaustive semantic interpretations in our 

qualitative model. Finally, the composition of fuzzy relations (done, e.g., by min-max 
operations) yields a single membership value rather than a disjunction of possible re- 
lations as in the qualitative case. In order to verbalize the result of such reasoning a 
defuzzification process is required in the fuzzy model as opposed to a constraint selection 

in the qualitative model. 
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6. Discussion and future research 

Positional information is a significant and important type of human knowledge. The 

aim of this paper was to develop a qualitative model for representing the position 

of objects in two-dimensional space and for performing basic spatial reasoning as a 
qualitative replacement of quantitative vector algebra. Qualitative models for more than 
one-dimensional (scalar) values have historically been considered not expressive enough 

for general use [ 201. The results of this paper, together with other results obtained in 

the emerging field of qualitative spatial reasoning [ 1 I 1, lead to a new attitude towards 

qualitative models of space, which should be seen as a viable alternative to quantitative 

models whenever quantitative information is not fully available or is not desired. 

The qualitative framework proposed in this paper is the basis for representing and 
reasoning with positional information, although it should not be considered conclusive 
by itself. A number of additional research directions can be envisioned. In this paper, we 

have not explicitly treated the case of extended objects: in fact, the extension of objects 

influences the concepts of distance and orientation, depending on the scale adopted for 

reasoning. If the distances involved at a given scale are such that the extension of the 
objects can be disregarded, we can use the point abstraction, which was adopted in 

this paper as a model situation. If the extension of the objects is of the same order 

of magnitude of the distances among them, then the morphology of the distance and 

orientation domains should be modified according to the size and shape of the reference 

object. 
Beyond the basic steps in reasoning (the composition algorithms introduced in Sec- 

tion 4), constraint propagation mechanisms should be investigated as the main source 
of spatial inference. Mechanisms similar to those proposed by [48] are needed to deal 

with assignments, constraints, and rules, in order to be able to bridge the gap between 

qualitative relations and quantitative information, whenever the latter is available. 

The framework can be customized to different application areas, reflecting both cog- 

nitive uses and technical needs of the specific field. For example, the framework could 

be specialized to the domain of vehicle navigation systems. The issue of navigation has 

been largely investigated in robotics, see for example [ 44,491. In vehicle navigation 

systems, positional information at different scales and granularity has a crucial role, 
since different issues arise to help guiding vehicles at the road level (small-scale en- 
vironment), at the city level (urban scale), and at the large region level (geographic 
scale). 

A good starting point for WWW-explorations related to the subject is the list of 
“Spatial Reasoning Resources”: http://www.cs.albany.edu/-amit/spatsites.html. 
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