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Abstract
Recognizing the underwater targets by the radiated noise information is one of the most significant subjects in the area of underwater
acoustics. A novel recognition approach which consists of the algorithms of Bark-wavelet analysis, HilberteHuang transform and support vector
machine is proposed based on the theory of auditory perception. The performance of the proposed method is validated by comparing with
traditional method and evaluated by the recognition experiments for SNRs of 0 dB, 5 dB, 10 dB, 15 dB and 20 dB. The results show that the
average recognition rate of the method is above 88% and can be increased by 0.75%e6.25% under various SNR conditions compared to the
baseline system.
Copyright � 2013, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Recognition of underwater targets is significant in the
military and economic fields. The acoustic feature extraction
and classification of the signals collected by sonars are two
important procedures in underwater noise target recognition.
At present, numerous techniques have been brought forward
for these subjects, including spectrogram correlation [1], time-
frequency analysis [2,3], hidden Markov models [4e6],
wavelet transformation [7e9], and other approaches [10,11].
Since the noise signals radiated by underwater targets, such as
torpedo and vessels, consist of deterministic mechanical
sound, propeller noise and hydrodynamic noise, and are often
time-variant and non-stationary, the typical feature extraction
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methods are not suitable for its classification. It is necessary to
find new feature extraction approaches. Auditory perception
has been proposed recently, and the study shows that it is
appropriate for underwater signal processing [12e14].

In this paper, we propose an underwater noise target clas-
sification algorithm which consists of Bark- wavelet analysis
(BWA), HilberteHuang transform (HHT) and support vector
machine (SVM), in which BWA is used for auditory denoising
and enhanced SNR of the signal, HHT is used for the feature
extraction, and SVM is used for the classification. Three types
of underwater noise targets with different SNRs are used for
the recognition experiment. The results show that the proposed
method is effective.
2. Using Bark-wavelet to enhance SNR

Noise masking is a well-known characteristic of the human
auditory system. It means the fact that the auditory system is
incapable of distinguishing two signals close in the time or
frequency domains. This is manifested by an elevation of the
minimum threshold of audibility due to a masking signal,
which motivates its use in the enhancement process to mask
ction and hosting by Elsevier B.V. All rights reserved.
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the residual noise and signal distortion. Bark-wavelet com-
bines the advantages of Bark scale and wavelet analysis. It is
appropriate for the analysis of signals in noisy environment.
2.1. Bark-wavelet analysis
The perception of the human auditory system is nonlinear
to actual frequency, but linear to Bark frequency. Eq. (1)
presents the function between the linear frequency and Bark
frequency

b¼ 13 arctanð0:76f Þ þ 3:5 arctanðf =7:5Þ2 ð1Þ

where b is the Bark frequency, and f is the linear frequency.
The basic thought of constructing Bark wavelet is as follows.
First, for the minimization of time and bandwidth product,
Gaussian function is selected as mother function of Bark
wavelet. Second, for being consistent with conception of the
frequency group, the mother wavelet should have the equal
bandwidth in the Bark domain. Furthermore, their bandwidths
are the unit bandwidths, namely 1 Bark. This is consistent with
the frequency group. According to the above analysis, the
formation of wavelet function in the Bark domain is

WðbÞ ¼ e�c1b
2 ð2Þ

When the bandwidth is 3 dB, the constant c1 is selected as
4ln2. Supposing that the linear frequency bandwidth of the
signal satisfies jf j˛½fl; fk�, then the corresponding Bark fre-
quency bandwidth is ½bl; bk�. Thus, the wavelet function in
Bark domain can be defined as

WkðkÞ ¼Wðb� bl � kDbÞ;

k ¼ ð0;1;2.K� 1Þ; ð3Þ

where Db is the translation step-length of WkðbÞ, and k is the
scale parameter. According to the principle of equal bandwidth
in the Bark domain, the following equation can be obtained

Db¼ ðbk � blÞ
K� 1

; ð4Þ

where K is the total number of sub-bands, bk is the highest
Bark frequency number of signal, and bl is the lowest Bark
frequency number of signal. Considering WðbÞ ¼ e�c1b

2

, we
can obtain

WkðbÞ ¼ e�4 ln2ðb�bl�kDbÞ2 ¼ 2�4ðb�bl�kDbÞ2 ;

k ¼ ð0;1;2.K� 1Þ: ð5Þ
By substituting Eq. (1) into Eq. (5), in the linear frequency,

the Bark wavelet function can be described as

Wkðf Þ ¼ c2,e
�4½13 arctanð0:76f Þþ3:5 arctanðf =7:5Þ2�ðblþkDbÞ�2 ð6Þ

In Eq. (6), c2 is a normalized factor and can be obtained
through Eq. (7).
c2
PK�1

K¼0

WKðbÞ ¼ 1; 0< bl � b� bk : ð7Þ

We can define Bark wavelet transform in linear frequency
from Eq. (8)

skðtÞ ¼
ZN

�N

Sðf ÞWKðf Þej2pftdf ; ð8Þ

where S( f ) is the frequency spectrum of signal s(t), and sK(t)
is the Kth sub-band signal which is translated by Bark wavelet.

It should be noted that the relation between the linear fre-
quency and Bark frequency has no influence on Eq. (7), so we
can obtain

XK�1

K¼0

sðtÞ ¼
XK�1

K¼0

ZþN

�N

Wkðf ÞSðf Þej2pftdf

¼
ZþN

�N

XK¼1

K¼0

Wkðf ÞSðf Þej2pftdf ð9Þ

In Eq. (7), let c2 ¼ 1, we can obtain Eq. (10) from Eq. (9)

ZþN

�N

Sðf Þej2pftdf ¼ sðtÞ: ð10Þ

Therefore, Eq. (7) is called as the engineering perfect
reconstruction condition of the Bark wavelet.

From the above analysis we can find that Bark wavelet
transform is a nonorthogonal but self- contained, reversible
and self-reversal transform. This wavelet still provides good
spectrum resolution when the analytic frames are very small,
and the frequency bandwidth derived from the Bark domain is
very close to the characteristic frequency of the basilar
membrane of human ear.
2.2. Bark-wavelet analysis of underwater noise signals
After Bark wavelet transform, the underwater signal can be
decomposed into various frequency bands which are consistent
with human auditory perception. Wavelet denoising is applied
to each sub-band signal. Finally, the denoised sub-band signal
is merged into the denoised signal. Bark wavelet transform
takes the advantages of Bark scale and wavelet denoising. The
results are suitable for human auditory perception and have
better robustness in noise condition. After wavelet decompo-
sition, the remained noise is in the form of most of wavelet
coefficients with smaller value, and at the same time, the
underwater signals exist with bigger coefficient values. Soft
thresholding is performed on the wavelet coefficients for
denoising. The corresponding mathematical expression is

f ðiÞ ¼
�
sgnðf ðiÞÞðjf ðiÞj � thÞ; jf ðiÞj � th
0; jf ðiÞj< th

ð11Þ
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Fig. 1. Original signal and denoised signals.
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where sgn(i) is the Signum function. The adaptive threshold th
is selected using principle of Stein’s unbiased risk estimate.

Fig. 1 shows the result of a paddle splashing sound
denoised by the Bark wavelet. The sound was recorded un-
derwater at the sample rate of 44,100 Hz. Fig. 1(a) shows the
original signal, Fig. 1(b) shows the noise signal with white
Gaussian noise at SNR 10 dB, and Fig. 1(c) shows the
denoised signal.

The signal is decomposed into 25 Bark scales due to its
sampling rate. Each scale is decomposed with 3 level wavelet
decompositions and denoised. In order to evaluate the effi-
ciency of the denoising method, the cross correlation coeffi-
cient between the original signal and the denoised signal is
calculated. Its value is 0.91, which means the denoised signal
is very close to the original signal.

After Bark-wavelet analysis, the extracted signal ap-
proaches to human hearing. Due to the wavelet denoising, it is
also robust in noise conditions. Then HilberteHwang trans-
form is applied to the extracted signals to obtain the feature
vector. As an adaptive time-frequency method, HHT is suit-
able to the non-stationary signals. It is sensitive to the small
change of the signal and makes the classification performance
better.

3. Using HHT to extract the features of underwater noises

HHT comprises the Empirical Mode Decomposition
(EMD) and Hilbert transform (HT). The key part of HHT is
the EMD method with which any data set can be decomposed
into a finite and often small number of intrinsic mode func-
tions (IMF) (fission process). Each IMF satisfies two condi-
tions [15]:1) in the whole data set, the number of extrema and
the number of zero crossings must either equal or differ at
most by one; 2) at any point, the mean value of the envelopes
defined by the local maxima and the local minima is zero.
3.1. Empirical model decomposition
EMD is a method which uses the envelopes defined by the
local maximum and minimum separately. Once the extrema
are identified, all the local maxima are connected by a cubic
spline function, as the upper envelope. The procedure of the
local minimum to produce the lower envelope is repeated. For
a signal designated as x(t), the upper and lower envelopes
should cover all the data between them, their mean is desig-
nated as m1, and the difference between the data and m1 is the
first basic component h1. The EMD procedure is repeated for k
times until h1k is a basic component, that is the first IMF
designated as IMF1. Then IMF1 is separated from x(t) to get
the rest of the signal designated as r1 by

r1 ¼ xðtÞ � IMF1 ð12Þ
The first process is repeated to get IMF2; r2;/; rn, where

r2 ¼ r1 � IMF2
r3 ¼ r2 � IMF3

rn ¼ rn�1 � IMFn ð13Þ
Then summing Eqs. (12) and (13), we can finally obtain

xðtÞ ¼
Xn

i¼1

IMFi þ rn ð14Þ

Because EMD merely uses the information about local
extrema of signal, it’s suitable to analyze the nonlinear and
irregular series [16]. EMD can be used to extract the distinct
modes of oscillations from the highly nonlinear and nonsta-
tionary exchange rate time series so as to clearly understand
the change trend of different components.
3.2. Hilbert transform
HT can be applied to each IMF so that IF can be acquired.
The analysis is shown as follows.

First, the analytic expression can be acquired by HT

zðtÞ ¼ IMFðtÞ þ j �HðIMFðtÞÞ ¼ aðtÞejfðtÞ ð15Þ

where

HðIMFðtÞÞ ¼ IMFðtÞ � 1

pt
¼ 1

p

ZN

�N

IMFðtÞ
t� t

dt ð16Þ

AðtÞ ¼ �
IMFðtÞ2 þHðIMFðtÞÞ2�1=2 ð17Þ

4ðtÞ ¼ arctan½HðIMFðtÞÞ=IMFðtÞ� ð18Þ
Then the IF can be acquired

f ðtÞ ¼ 1

2p

d½4ðtÞ�
dt

¼ 1

2p

d½arctan½HðIMFðtÞÞ=IMFðtÞ��
dt

ð19Þ
The root mean square, maximum amplitude of IMF, mean

instantaneous frequency, weighted mean instantaneous



Table 1

Derived and selected features for classification.

Set no. Feature extraction Feature selection decision

1 rms(IMFi) First 2 selected

2 max(Ai) First 2 selected

3 mean(IFi) First 3 selected

4 weighted MIF ¼
Pm

k¼1
IFiðkÞA2i ðkÞPm

k¼1
A2
i
ðkÞ First 3 selected

5 autocorrelationðIFiÞ Al discarded

6 crosscorrelationðIFiÞ All discarded
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Fig. 3. Spectra of 3 types of signals.
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frequency of each IMF, autocorrelation of each IMF and
crosscorrelation between different IMFs can be calculated and
are selected experimentally through the recognition rate. Table
1 lists these derived and selected features.

As time-frequency analysis tool, Bark-wavelet and Hil-
berteHuang transform are not only suitable to the traditional
stationary data but also the non-linear and non-stationary data.
This means that the proposed method has the various wide
applications.
4. Experiments and analysis

Three types of underwater targets (A, B and C) are used for
the recognition experiments. Each type of signals has 448
samples, with a sample rate of 4 kHz. Fig. 2 shows the
waveform of the three types of signals.

The difference between the different signals cannot be seen
clearly from their waveform. Thus, the spectra of the three
types of signals are calculated and shown in Fig. 3. The
spectra are obtained through the FFT from a 20 ms segment.
From Fig. 3, it can be seen that there are small differences
among their frequency spectra. The frequency component of
Type A is about 420 Hz, while the frequency components of
Type B and Type C are about 300 Hz and 180 Hz, respectively.

Fig. 4 shows the corresponding Bark-wavelet waveform.
The signal is decomposed into 13 Bark scales according to its
sample rate. Each signal is denoised, and then the features are
extracted from them. Finally the support vector machine
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Fig. 2. Waveforms of 3 types of signals.
(SVM) is used for the classification. A half of the signals are
used for training and the other half are used for recognition
test.

In order to evaluate the classification accuracy of the pro-
posed method, a baseline system is designed for the classifi-
cation experiment. The baseline system uses the noise
loudness as a feature and SVM as a decision tool, of which the
performance was proved in our previous work and is compared
with the novel method proposed in this paper. Both methods
are used for the classification of the three underwater targets,
and the results are shown in Table 2. It can be seen from Table
2 that the mean recognition rate of the proposed method is
higher than that of the baseline system. The recognition rates
of Type A and C are approximate. For Type B which is
difficult to classify, the proposed method is better than the
baseline system.

In order to test the efficiency of the proposed method, it is
also compared with a published method [17], which consists
of wavelet packet transform (WPT) and support vector ma-
chine (SVM). Its performance has been proved through the
classification experiment. As its description, after 5 level
wavelet packet transform, the normalized energy of sub-band
signal is used as the feature, and SVM is used for the classi-
fication. We tested the method with the same data. The results
are also shown in Table 2.

It can be seen from Table 2 that the average classification
rate of the method we proposed is about 4.4% higher than that
of WPT method. Its performance is especially better for Type
A and B.
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Fig. 4. Waveform of Bark wavelet.



Table 2

Classification results of different methods and baseline system.

Method Recognition rate

A B C Mean

WPT/% 79.31 76.57 96.91 84.27

Baseline/% 85.39 75.65 100 87.01

Proposed/% 84.82 82.14 99.10 88.70
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Fig. 5. Recognition rate of noise and denoised signals.
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The recognition rates of WPT method and the baseline
method are lower than that of the proposed method for Type B
signal. This may be because the frequency deviation of the two
methods is relatively constant and the divided sub-frequency
bands are close to each other. Also, the main frequencies of
three types of signals are relatively approximated. When the
main frequency of Type B signal fluctuates, it is highly
possible to be mis-divided into the nearby sub- frequency
bands, which would be confused with Type A or C. Compared
with the two methods, the frequency deviation of the proposed
method is adaptive, and the first 3 IMFs are used for the
feature extraction, which increases the robustness of the
classification performance.

To test the performance of the proposed method under
various noise conditions, the white Gaussian noises are added
to the signals to achieve different SNRs. The noise signals and
the denoised signals are tested under each SNR condition. The
recognition rates are shown in Table 3.

From Table 3, it can be seen that the recognition rate of
denoised signal is higher than that of noise signal. The results
are plotted and shown in Fig. 5.

Although the recognition rates of both signals decrease
with the decrease in SNR, the recognition rate of denoised
signal is always higher than that of the noise signal. It also can
be seen that the decrease in the recognition rate of denoised
signal is slower than that in the noised signal. While SNR
decreases, the gap of recognition rate becomes larger. The
recognition rate of denoised signal is 6.25% higher than that of
the noise signal.
5. Conclusions

An underwater noise target recognition method was pro-
posed by combining the Bark-wavelet analysis, Hil-
berteHuang transform and support vector machine. It is an
attempt of applying auditory perception theory into under-
water noise target classification. The experimental results have
Table 3

Classification results at various SNRs.

SNR/dB Recognition rate

Noise signal/% Denoised signal/%

20 84.52 85.27

15 83.33 85.12

10 80.21 84.23

5 73.51 79.76

0 66.52 71.28
validated the performance of the method. In future work, the
efforts will be made on feature selection and robustness
enhancement.
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