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Explicit formulas for the multivariate resultant

Carlos D’Andrea, Alicia Dickenstein ∗;1;2

Departamento de Matem�atica, F.C.E y N., UBA, (1428) Buenos Aires, Argentina

Abstract

We present formulas for the multivariate resultant as a quotient of two determinants. They
extend the classical Macaulay formulas, and involve matrices of considerably smaller size, whose
non-zero entries include coe4cients of the given polynomials and coe4cients of their Bezoutian.
These formulas can also be viewed as an explicit computation of the morphisms and the deter-
minant of a resultant complex. c© 2001 Elsevier Science B.V. All rights reserved.

MSC: 14N99; 13P99; 13D25

1. Introduction

Given n homogeneous polynomials f1; : : : ; fn in n variables over an algebraically
closed <eld k with respective degrees d1; : : : ; dn, the resultant Resd1 ;:::;dn(f1; : : : ; fn) is
an irreducible polynomial in the coe4cients of f1; : : : ; fn, which vanishes whenever
f1; : : : ; fn have a common root in projective space. The study of resultants goes back
to classical work of Sylvester, B>ezout, Cayley, Macaulay and Dixon. The use of re-
sultants as a computational tool for elimination of variables as well as a tool for the
study of complexity aspects of polynomial system solving in the last decade, has re-
newed the interest in <nding explicit formulas for their computation (cf. [1,3–5,14,18,
20,22,23]).

By a determinantal formula it is meant a matrix whose entries are polynomials in the co-
e4cients of f1; : : : ; fn and whose determinant equals the resultant Resd1 ;:::;dn(f1; : : : ; fn).
The interest on such a formula is the computation of the resultant, and so it is implicit
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that the entries should be algorithmically computed from the inputs. It is also meant
that all non-zero entries have degree strictly less than the degree of the resultant.

In case all di have a common value d, all currently known determinantal formulas
are listed by Weyman and Zelevinsky [27]. This list is short: if d≥ 2; there exist deter-
minantal formulas for all d just for binary forms (given by the well known Sylvester
matrix), ternary forms and quaternary forms; when n= 5, the only possible values for
d are 2 and 3; <nally, for n = 6, there exists a determinantal formula only for d = 2.
We <nd similar strict restrictions on general n; d1; : : : ; dn (cf. Lemma 5.3).

Given d1; : : : ; dn; denote tn:=
∑n

i=1 (di − 1) the critical degree. Classical Macaulay
formulas [21] describe the resultant Resd1 ;:::;dn(f1; : : : ; fn) as an explicit quotient of two
determinants. These formulas involve a matrix of size at least the number of monomials
in n variables of degree tn + 1, and a submatrix of it.

Macaulay’s work has been revisited and sharpened by Jouanolou in [17], where he
proposes for each t≥ 0; a square matrix Mt of size


(t):=

(
t + n− 1

n− 1

)
+ i(tn − t) (1)

whose determinant is a nontrivial multiple of Resd1 ;:::;dn(f1; : : : ; fn) (cf. [17, 3:11:19:7]).
Here, i(tn− t) denotes the dimension of the k-vector space of elements of degree tn− t
in the ideal generated by a regular sequence of n polynomials with degrees d1; : : : ; dn.
Moreover, Jouanolou shows that the resultant may be computed as the ratio between
the determinant of Mtn and the determinant of one of its square submatrices. (cf. [17,
Corollaire 3:9:7:7]).

In this paper, we explicitly <nd the extraneous factor in Jouanolou’s formulation,
i.e. the polynomial det(Mt)=Resd1 ;:::;dn(f1; : : : ; fn), for all t≥ 0, which again happens
to be the determinant of a submatrix Et of Mt for every t, and this allows us to
present new resultant formulas 2a la Macaulay for the resultant, i.e. as a quotient of
two determinants

Resd1 ;:::;dn(f1; : : : ; fn) =
det(Mt)
det(Et)

: (2)

For t¿tn, we recover Macaulay’s classical formulas. For t≤ tn; the size of the matrix
Mt is considerably smaller.

In order to give explicit examples, we need to recall the de<nition of the Bezoutian
associated with f1; : : : ; fn (cf. [2,15,19,25] and [17] under the name “Formes de Mor-
ley”). Let (f1; : : : ; fn) be a sequence of generic homogeneous polynomials with respec-
tive degrees d1; : : : ; dn

fi:=
∑

|i|=di

aiX
i ∈A[X1; : : : ; Xn];

where A is the factorial domain A :=Z[ai ]|i|= di;i= 1;:::;n.
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Introduce two sets of n variables X; Y and for each pair (i; j) with 1≤ i; j≤ n, write
�ij(X; Y ) for the incremental quotient

fi(Y1; : : : ; Yj−1; Xj; : : : ; Xn)− fi(Y1; : : : ; Yj; Xj+1; : : : ; Xn)
Xj − Yj

: (3)

Note that fi(X )− fi(Y ) =
∑n

j=1 �ij(X; Y )(Xj − Yj).
The determinant

�(X; Y ):=det(�ij(X; Y ))1≤ i; j≤ n =
∑

|�| ≤ tn

��(X ) · Y � (4)

is a representative of the Bezoutian associated with (f1; : : : ; fn). It is a homogeneous
polynomial in A[X; Y ] of degree tn.

Recall also that

deg Resd1 ;:::;dn
(f1; : : : ; fn) =

n∑
i=1

d1 : : : di−1 · di : : : dn:

As a <rst example, let n = 3; (d1; d2; d3) = (1; 1; 2); and let

f1 = a1X1 + a2X2 + a3X3;

f2 = b1X1 + b2X2 + b3X3;

f3 = c1X 2
1 + c2X 2

2 + c3X 2
3 + c4X1X2 + c5X1X3 + c6X2X3

be generic polynomials of respective degrees 1; 1; 2. Here, t3 = 1. Macaulay’s classical
matrix M2 looks as follows:



a1 0 0 0 0 c1
0 a2 0 b2 0 c2
0 0 a3 0 b3 c3
a2 a1 0 b1 0 c4
a3 0 a1 0 b1 c5
0 a3 a2 b3 b2 c6




and its determinant equals −a1Res1;1;2. The extraneous factor is the 1×1 minor formed
by the element in the fourth row, second column.

On the other hand, because of Lemma 5.3, we can exhibit a determinantal formula
for ±Res1;1;2; and it is given by Proposition 5.6 for t = [t3=2] = 0 by the determinant
of 


�(1;0;0) a1 b1

�(0;1;0) a2 b2

�(0;0;1) a3 b3


 ;

where �� are coe4cients of the Bezoutian (4). Explicitly, we have

�(1;0;0) = c1(a2b3 − a3b2)− c4(a1b3 − a3b1) + c5(a1b2 − a2b1);

�(0;1;0) = c6(a1b2 − a2b1)− c2(a1b3 − b1a3)



62 C. D’Andrea, A. Dickenstein / Journal of Pure and Applied Algebra 164 (2001) 59–86

and

�(0;0;1) = c3(a1b2 − b1a2):

This is the matrix M0 corresponding to the linear transformation �0 which is de<ned
in (9).

Take now n=4; and (d1; d2; d3; d4)=(1; 1; 2; 3). The critical degree is 3: Macaulay’s
classical matrix M4 has size 35×35: Because the degree of Res1;1;2;3 is 2+3+6+6=17;
we know that its extraneous factor must be a minor of size 18 × 18: By Propo-
sition 5.6, we can <nd the smallest possible matrix for t = 1 or t = 2: Set t = 2.
We get the following 12× 12 matrix:



�1
(2;0;0;0) �2

(2;0;0;0) �3
(2;0;0;0) �4

(2;0;0;0) a1 0 0 0 0 0 0 c1

�1
(0;2;0;0) �2

(0;2;0;0) �3
(0;2;0;0) �4

(0;2;0;0) 0 a2 0 0 b2 0 0 c2

�1
(0;0;2;0) �2

(0;0;2;0) �3
(0;0;2;0) �4

(0;0;2;0) 0 0 a3 0 0 b3 0 c3

�1
(0;0;0;2) �2

(0;0;0;2) �3
(0;0;0;2) �4

(0;0;0;2) 0 0 0 a4 0 0 b4 c4

�1
(1;1;0;0) �2

(1;1;0;0) �3
(1;1;0;0) �4

(1;1;0;0) a2 a1 0 0 b1 0 0 c5

�1
(1;0;1;0) �2

(1;0;1;0) �3
(1;0;1;0) �4

(1;0;1;0) a3 0 a1 0 0 b1 0 c6

�1
(1;0;0;1) �2

(1;0;0;1) �3
(1;0;0;1) �4

(1;0;0;1) a4 0 0 a1 0 0 b1 c7

�1
(0;1;1;0) �2

(0;1;1;0) �3
(0;1;1;0) �4

(0;1;1;0) 0 a3 a2 0 b3 b2 0 c8

�1
(0;1;0;1) �2

(0;1;0;1) �3
(0;1;0;1) �4

(0;1;0;1) 0 a4 0 a2 b4 0 b2 c9

�1
(0;0;1;1) �2

(0;0;1;1) �3
(0;0;1;1) �4

(0;0;1;1) 0 0 a4 a3 0 b4 b3 c10

a1 a2 a3 a4 0 0 0 0 0 0 0 0

b1 b2 b3 b4 0 0 0 0 0 0 0 0




where

f1 = a1X1 + a2X2 + a3X3 + a4X4;

f2 = b1X1 + b2X2 + b3X3 + b4X4;

f3 = c1X 2
1 + c2X 2

2 + c3X 2
3 + c4X 2

4 + c5X1X2 + c6X1X3

+ c7X1X4 + c8X2X3 + c9X2X4 + c10X3X4;

f4 is a homogeneous generic polynomial of degree 3 in four variables, and for each
�; |�|= 2; we write

��(X ) =
4∑

j=1

�j
� Xj;
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Table 1

n (d1; : : : ; dn) min size classical

2 (10,70) 70 80
2 (150,200) 200 350
3 (1,1,2) 3 6
3 (1,2,5) 14 28
3 (2,2,6) 21 45
4 (1,1,2,3) 12 35
4 (2,2,5,5) 94 364
4 (2,3,4,5) 90 364
5 (4,4,4,4,4) 670 4845
7 (2,3,3,3,3,3,3) 2373 38760

10 (3; 3; : : : ; 3) 175803 14307150
20 (2; 2; : : : ; 2) 39875264 131282408400

which has degree 1 in the coe4cients of each fi; i= 1; : : : ; 4. The determinant of this
matrix is actually ±a1Res1;1;2;3: Here, the extraneous factor is the minor 1× 1 of the
matrix obtained by taking the element in the <fth row, sixth column.

In Table 1, we display the minimal size of the matrices Mt and the size of clas-
sical Macaulay matrix for several values of n; d1; : : : ; dn. We give in Section 4 an
estimate for the ratio between these sizes. However, it should be noted that the num-
ber of coe4cients of the Bezoutian that one needs to compute increases when the
size of the matrix Mt decreases. We refer to [15,24] for complexity considerations
on the computation of Bezoutians. In particular, this computation can be well par-
allelized. Also, the particular structure of the matrix and the coe4cients could be
used to improve the complexity estimates; this problem is studied for n = 2 and 3
in [11].

Our approach combines Macaulay’s original ideas [21], expanded by Jouanolou [17],
with the expression for the resultant as the determinant of a Koszul complex inspired
by the work of Cayley [7]. We also use the work [9,10] of Chardin on homogeneous
subresultants, where a Macaulay style formula for subresultants is presented. In fact,
we show that the proposed determinants are explicit non-zero minors of a bigger matrix
which corresponds to one of the morphisms in a Koszul resultant complex which in
general has many non-zero terms, and whose determinant is Resd1 ;:::;dn(f1; : : : ; fn) (cf.
Theorem 5.1). These are the complexes considered in [27,16] in the equal degree case,
built from the spectral sequence associated with a twisted Koszul complex at the level
of sheaves.

We give explicit expressions for the morphisms in these complexes in terms of
the Bezoutian associated with f1; : : : ; fn for degrees under critical degree, addressing
in this manner a problem raised by Weyman and Zelevinsky in [27] (cf. also [16,
13.1.C]).

In the last sections, we show that diRerent classical formulas can be viewed as special
cases of the determinantal formulas that we present here (cf. [16,27]). In particular,
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we also recover in this setting the “a4ne” Dixon formulas considered in [14] and we
classify in particular all such determinantal formulas.

2. Notations and some preliminary statements

Let Su denote the A-free module generated by the monomials in A[X ] with degree u:
If u¡0; then we set Su=0. De<ne also the following free submodules Et;j ⊆ St; j ⊆ St−dj ,
for all j = 1; : : : ; n:

St; j:=〈X �; |�|= t − dj; �1¡d1; : : : ; �j−1¡dj−1〉 (5)

Et;j:=〈X � ∈ St; j ; there exists i �= j: �i ≥di〉: (6)

Note that Et;n = 0; and St;1 = St−d1 ∀t ∈N0:
Let ju : Su → S∗

u be the isomorphism associated with the monomial bases in Su and
denote by T�:=ju(X �) the elements in the dual basis.

Convention. All spaces that we will consider have a monomial basis, or a dual
monomial basis. We shall suppose all these bases have a <xed order. This will allow
us to de<ne matrices “in the monomial bases”, with no ambiguity.

Let  1; t be the A-linear map

 1; t : S∗
tn−t → St

which sends

T� �→ ��(X ); (7)

where the polynomial ��(X ) is de<ned in (4). Let �t denote the matrix of  1; t in the
monomial bases.

Lemma 2.1. For suitable orders of the monomial bases in St and Stn−t ; we have that
t�t = �tn−t :

Proof. It holds that �(X; Y ) = �(Y; X ) by the symmetry property of Bezoutians (cf.
[17, 3:11:8]). This implies that∑

|�|= tn−t

��(X )Y � =
∑
|�|= t

��(Y )X � =
∑

|�|=tn−t; |�|= t

c��X �Y �;

with c�� ∈A: It is easy to see that if �t=(c��)|�|=tn−t; |�|=t then �tn−t=(c��)|�|=t; |�|=tn−t .

Let us consider also the Sylvester linear map  2; t :

 2; t : St;1 ⊕ · · · ⊕ St;n → St ;

(g1; : : : ; gn) �→
n∑

i= 1

gifi; (8)
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and denote by Dt its matrix in the monomial bases. As usual,  ∗
2; tn−t denotes the dual

mapping of (8) in degree tn − t:
Denote

�t : S∗
tn−t ⊕ (St;1 ⊕ · · · ⊕ St;n) → St ⊕ (Stn−t;1 ⊕ · · · ⊕ Stn−t; n)∗ (9)

the A-morphism de<ned by

(T; g) �→ ( 1; t(T ) +  2; t(g);  ∗
2; tn−t(T )); (10)

and call Mt the matrix of �t in the monomial bases.
Denote also by Et the submatrix of Mt whose columns are indexed by the monomials

in Et;1∪· · ·∪Et;n−1; and whose rows are indexed by the monomials X � in St for which
there exist two diRerent indices i; j such that �i ≥di; �j ≥dj: With these choices it is
not di4cult to see that Mt and Et (when de<ned) are square matrices.

Remark 2.2. Observe that Et is actually a submatrix of Dt . In fact, Et is the transpose
of the square submatrix named E(t) in [10], and whose determinant is denoted by
�(n; t) in [21, Theorem 6].

Lemma 2.3. Mt is a square matrix of size 
(t); where 
 is the function de9ned in (1).

Proof. The assignment which sends a monomial m in St; i to xdi
i ·m injects the union of

the monomial bases in each St; i onto the monomials of degree t which are divisible by
some xdi

i : It is easy to see that the cardinality of the set of complementary monomials of
degree t is precisely Hd(t), where Hd(t) denotes the dimension of the t-graded piece of
the quotient of the polynomial ring over k by the ideal generated by a regular sequence
of homogeneous polynomials with degrees d1; : : : ; dn (cf. [17, 3.9.2]). Moreover, using
the assignment (�1; : : : ; �n) �→ (d1 − 1− �1; : : : ; dn − 1− �n); it follows that

Hd(t) = Hd(tn − t): (11)

We can compute explicitly this Hilbert function by the following formula (cf. [21,
Section 2]):∏n

i=1(1− Ydi)
(1− Y )n

=
∞∑
t=0

Hd(t) · Y t: (12)

Then,

rk(St;1 ⊕ · · · ⊕ St;n) = rk St − Hd(t):

Similarly,

rk(Stn−t;1 ⊕ · · · ⊕ Stn−t; n)∗ = rk(Stn−t)∗ − Hd(tn − t):

Therefore, Mt is square of size rk St − Hd(tn − t) + rk Stn−t . Since i(tn − t) =
rkStn−t − Hd(tn − t); the size of Mt equals rk St + i(tn − t) = 
(t).
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Remark 2.4. Ordering properly the monomial bases, Mt is the transpose of the matrix
which appears in [17, 3.11.19.7]. It has the following structure:[

�t Dt

tDtn−t 0

]
: (13)

Remark 2.5. Because  2; t =0 if and only if t¡min{di}; we have that �t =  2; t +  1; t

if t¿tn −min{di}; and �t =  2; t if t¿tn.

Finally, denote Et the square submatrix of Mt which has the following structure:

Et =
[

∗ Et

tEtn−t 0

]
: (14)

It is clear from the de<nition that det(Et) =±det(Et) det(Etn−t).

Remark 2.6. Dualizing (10) and using Lemma 2.1 with a careful inspection at (13)
and (14), we have that ordering properly their rows and columns,

tMt = Mtn−t and tEt = Etn−t :

3. Generalized Macaulay formulas

We can extend the map  2; t in (8) to the direct sum of all homogeneous polynomials
with degrees t−d1; : : : ; t−dn; and the map  2; tn−t to the direct sum of all homogeneous
polynomials with degrees tn − t − d1; : : : ; tn − t − dn; to get a map

�̃t : (Stn−t)∗ ⊕ (St−d1 ⊕ · · · ⊕ St−dn) → St ⊕ (Stn−t−d1 ⊕ · · · ⊕ Stn−t−dn)
∗:

We can thus see the matrix Mt of �t in (9) as a choice of a square submatrix of �̃t :
We will show that its determinant is a non zero minor of maximal size.

Proposition 3.1. Let M ′
t be a square matrix over A of the form

M ′
t :=

[
�t Ft

tFtn−t 0

]
; (15)

where Ft has i(t) columns and corresponds to a restriction of the map

St−d1 ⊕ · · · ⊕ St−dn → St ;

(g1; : : : ; gn) �→
n∑

i= 1

gifi;

and similarly for Ftn−t in degree tn − t. Then; det(M ′
t ) is a multiple of Resd1 ;:::;dn

(f1; : : : ; fn) (probably zero).

Proof. It is enough to mimic for the matrix M ′
t the proof performed by Jouanolou in

[17, Proposition 3:11:19:10] to show that the determinant of the matrix M ′
t is an inertia
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form of the ideal 〈f1; : : : ; fn〉 (i.e. a multiple of the resultant). We include this proof
for the convenience of the reader.

Let N :=
∑n

i=1 #{i ∈Nn: |i| = di}: Given an algebraically closed <eld k; and a =
(ai)|i|= di; i= 1;:::;n; a point in kN ; we denote by f1(a); : : : ; fn(a)∈ k[X ] the polynomials
obtained from f1; : : : ; fn when the coe4cients are specialized to a, and similarly for
the coe4cients of the Bezoutian. Because of the irreducibility of Resd1 ;:::;dn(f1; : : : ; fn);
it is enough to show that for all a∈ kN such that f1(a); : : : ; fn(a) have a non-trivial
solution in kn; the determinant of the specialized matrix M ′

t (a) is equal to 0.
Suppose that this is case, and let (p1; : : : ; pn) be a non-trivial solution. Without loss

of generality, we can suppose p1 �= 0. One of the rows of M ′
t (a) is indexed by X t

1 :
Replace all the elements in that row as follows:
1. if the element belongs to a column indexed by a monomial X �; |�| = tn − t; then

replace it with ��(a);
2. if it belongs to a column indexed by a monomial X � ∈ St−di ; replace it with X �fi(a).
It is easy to check that, the determinant of the modi<ed matrix is equal to X t

1 det(M
′
t (a)):

Now, we claim that under the specialization Xi �→ pi; the determinant of the modi<ed
matrix will be equal to zero if and only if det(M ′

t (a)) = 0.
In order to prove this, we will show that the following submatrix of size (i(tn− t)+

1)× ( n+t−1
n−1 ) has rank less or equal than i(tn − t) :[
��1 (a)(p) : : : ��s(a)(p)

tFtn−t(a)

]
:

This, combined with a Laplace expansion of the determinant of the modi<ed matrix,
gives the desired result.

If the rank of the block [tFtn−t(a)] is less than i(tn − t); then the claim follows
straightforwardly. Suppose this is not the case. Then the family {X �fi(a); X � ∈ Stn−t−di}
is a basis of the piece of degree tn − t of the generated ideal I(a):=〈f1(a); : : : ; fn(a)〉.
We will show that in this case the polynomial

∑
|�|=tn−t ��(a)(p)X � belongs to I(a),

which proves the claim.
Because of (3) and (4), the polynomial (X1 − Y1)�(a)(X; Y ) lies in the ideal

〈f1(a)(X ) − f1(a)(Y ); : : : ; fn(a)(X ) − fn(a)(Y )〉. Specializing Yi �→ pi; we deduce
that (X1 −p1)

∑tn
j = 0(

∑
|�|= j ��(a)(p)X �) is in the graded ideal I(a). This, combined

with the fact that p1 �= 0; proves that
∑

|�|=j ��(a)(p)X � ∈ I(a) for all j.

In particular, Resd1 ;:::;dn(f1; : : : ; fn) divides det(Mt). We describe the extraneous factor
explicitly in the following theorem, which is the main result in this section. Before
stating it, we set the following convention: if the matrix Et is indexed by an empty
set, we de<ne det(Et) = 1.

Theorem 3.2. For any t≥ 0; det(Mt) �= 0 and det(Et) �= 0. Moreover; we have the
following formula 2a la Macaulay:

Resd1 ;:::;dn(f1; : : : ; fn) =±det(Mt)
det(Et)

:
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For the proof of Theorem 3.2, we will need the following auxiliary lemma. Let Dt

and Et be the matrices de<ned in Section 2 before Lemma 2.3.

Lemma 3.3. Let t≥ 0; and ) a ring which contains A. Suppose we have a square
matrix M with coe<cients in ) which has the following structure:

M =

[
M1 Dt

M2 0

]
;

where M1; M2 are rectangular matrices. Then; there exists an element m∈) such that

det(M) = m det(Et)

Proof. Dt is square if and only if t¿tn (cf. [21, Section 3]). In this case,

det(M) =±det(M2)det(Dt);

because of Macaulay’s formula (cf. [21, Theorem 5]), we have that the right-hand side
equals

±det(M2)det(Et)Resd1 ;:::;dn(f1; : : : ; fn);

and the conclusion follows easily.
Suppose now 0≤ t≤ tn: As in the introduction, let i(t) denote the dimension of the

k-vector space of elements of degree t in the ideal generated by a regular sequence of
n polynomials with degrees d1; : : : ; dn: Then Dt has i(t)+Hd(t) rows and i(t) columns,
and there is a bijection between the family F of Hd(t) monomials of degree t, and the
maximal minors mF of Dt . Namely, mF is the determinant of the square submatrix
made by avoiding all rows indexed by monomials in F.

It is not hard to check that mF is the determinant *∗
F which is used in [10], for

computing the subresultant associated with the family {X �}�∈F.
Now, using the generalized Macaulay’s formula for the subresultant (cf. [10]), we

have that

mF =±det(Et)�t
F;

where �t
F is the subresultant associated with the family F: It is a polynomial in

A which vanishes under a specialization of the coe4cients f1(a); : : : ; fn(a) if and
only if the family {X �}�∈F fails to be a basis of the t-graded piece of the quotient
k[X1; : : : ; Xn]=〈f1(a); : : : ; fn(a)〉 (cf. [9]).

Let mc
F be the complementary minor of mF in M (i.e. the determinant of the square

submatrix of M which is made by deleting all rows and columns that appear in mF).
By the Laplace expansion of the determinant, we have that

det(M) =
∑
F

sF · mF · mc
F = det(Et)

(∑
F

sF · mc
F · �t

F

)

with sF =±1. Setting m =
∑

F sF · mc
F · �t

F ∈); we have the desired result.



C. D’Andrea, A. Dickenstein / Journal of Pure and Applied Algebra 164 (2001) 59–86 69

We now give the proof of Theorem 3.2.

Proof. In [21] it is shown that det(Et) �= 0; ∀t≥ 0: This implies that det(Et) �= 0. In
order to prove that det(Et) = det(Et)det(Etn−t) divides det(Mt); we use the following
trick: consider the ring B :=Z[bi ]|i|=di;i=1;:::;n, where bi are new variables, and the
polynomials

fb; i:=
∑

|i|=di

biX
i ∈B[X1; : : : ; Xn]:

Let Db
t the matrix of the linear transformation  b

2; t determined by formula (8) but
associated with the sequence fb;1; : : : ; fb;n instead of f1; : : : ; fn. Set ):=Z[ai ; bi ], and
consider the matrix M (a; b) with coe4cients in ) given by

M (a; b) =

[
�t Dt

tDb
tn−t 0

]
:

It is easy to see that M (a; a) = Mt , and because of Lemma 3.3, we have that det(Et)
divides det(M (a; b)) in ). Transposing M (a; b) and using a symmetry argument, again
by the same lemma, we can conclude that det(Eb

tn−t) divides det(M (a; b)) in ), where
Eb
tn−t has the obvious meaning.
The ring ) is a factorial domain and det(Et) and det(Eb

tn−t) have no common factors
in ) because they depend on diRerent sets of variables. So, we have

det(M (a; b)) = p(a; b) det(Et) det(Eb
tn−t)

for some p∈): Now, specialize bi �→ ai : The fact that det(Mt) is a multiple of the
resultant has been proved in Proposition 3.1 (see also [17, Proposition 3:11:19:21])
for 0≤ t≤ tn, and in [21] for t¿tn: On the other side, since Resd1 ;:::;dn(f1; : : : ; fn) is
irreducible and depends on all the coe4cients of f1; : : : ; fn while det(Et) and det(Etn−t)
do not depend on the coe4cients of fn, we conclude that Resd1 ;:::;dn(f1; : : : ; fn) divides
p(a; a). Moreover, the following lemma shows that they have the same degree. Then,
their ratio is a rational number �. We can see that �=±1; considering the specialized
family X d1

1 ; : : : ; X dn
n .

Lemma 3.4. For each i = 1; : : : ; n the degree deg(ai )
(Mt) of Mt in the coe<cients of

fi equals

deg(ai )
(Resd1 ;:::; dn(f1; : : : ; fn)) + deg(ai )

(Et) + deg(ai )
(Etn−t)

=d1 : : : di−1: di+1 : : : dn + deg(ai )
(Et) + deg(ai )

(Etn−t):

Proof. Set Ju(i) := {X � ∈ Su; �i ≥di; �j¡dj ∀j �= i}; u = t; tn − t. From the de<nitions
of  2; t and Et; it is easy to check that, if -t is a maximal minor of Dt ,

deg(ai )
(-t)− deg(ai )

(Et) = #Jt(i):
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Using Laplace expansion, it is easy to see that det(Mt) may be expanded as follows:

det(Mt) =
∑

-t ;-tn−t

s- · m- · -t · -tn−t ;

where s- = ±1; -tn−t is a maximal minor of tDtn−t and m- is a minor of size Hd(t)
in �t .

As each entry of �t has degree 1 in the coe4cients of fi; the lemma will be proved
if we show that

#Jt(i) + #Jtn−t(i) + Hd(t) = d1 : : : di−1: di+1 : : : dn: (16)

Now, as already observed in the proof of Lemma 2.3, Hd(t) can be computed as the
cardinality of the following set:

Hd;t :={X � ∈ St ; �j¡dj ∀j}; (17)

and d1 : : : di−1: di+1 : : : dn is the cardinality of

.i:={X �1
1 : : : X �i−1

i−1 X �i+1
i+1 : : : X �n

n ; �j¡dj ∀j}:
In order to prove (16) it is enough to exhibit a bijection between .i and the disjoint
union Jt(i)∪ Jtn−t(i)∪Hd;t : This is actually a disjoint union for all t; unless tn − t = t:
But what follows shows that the bijection is well de<ned even in this case.

Let X �̂ ∈.i; �̂ = (�1; : : : ; �i−1; �i+1; : : : ; �n) with �j¡dj ∀j �= i: If |�̂| ≤ t; then there
exists a unique �i such that �:=(�1; : : : ; �n)∈Nn

0 veri<es |�|= t: If �i¡di; then we send
X �̂ to X � ∈Hd;t : Otherwise, we send it to X � ∈ Jt(i):

If |�̂|¿t; let �̂∗ denote the multiindex

(d1 − 1− �1; : : : ; di−1 − 1− �i−1; di+1 − 1− �i+1; : : : ; dn − 1− �n):

Then, |�̂∗|¡tn − t; and there exists a unique �i such that the multiindex � de<ned by

(d1 − 1− �1; : : : ; di−1 − 1− �i−1; �i; di+1 − 1− �i+1; : : : ; dn − 1− �n)

has degree tn − t: We can send X �̂ to X � ∈ Jtn−t(i) provided that �i ≥di: Suppose this
last statement does not happen, this implies that the monomial with exponent

�∗:=(�1; : : : ; �i−1; di − 1− �i; �i+1; : : : ; �n)

has degree t contradicting the fact that |�̂|¿t:
With these rules, it is straightforward to check that we obtain the desired bijection.

Changing the order of the sequence (f1; : : : ; fn), and applying Theorem 3.2, we
deduce that

Corollary 3.5. Resd1 ;:::;dn(f1; : : : ; fn) = gcd{maximal minors of �̃t}:
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4. Estimating the size of Mt

We have, for each integer t≥ 0; a matrix Mt of size 
(t); where 
 was de<ned in (1),
whose determinant is a nontrivial multiple of the resultant, and such that, moreover,
its extraneous factor is a minor of it. We want to know which is the smallest matrix
we can have.

We can write 
 as


(t) =

(
n + t − 1

n− 1

)
+

(
n + tn − t − 1

n− 1

)
− Hd(tn − t):

It is straightforward to check that ( n+t−1
n−1 )+ ( n+tn−t−1

n−1 ) is the restriction to the integers
of a polynomial *(t) in a real variable t; symmetric with respect to (tn=2) (i.e. for
all t ≥ 0, *(tn=2 + t) = *(tn=2− t)). Moreover, * reaches its minimum over [0; tn] at
t = tn=2: Since


(t) = *(t)− Hd(t) = *(tn − t)− Hd(tn − t) = 
(tn − t); (18)

in order to study the behaviour of 
 we need to understand how Hd(t) varies with t.
We denote as usual the integer part of a real number x by the symbol [x]:

Proposition 4.1. Hd(t) is non-decreasing on (the integer points of ) the interval
[0; [tn=2]]:

Proof. We will prove this result by induction on n. The case n = 1 is obvious since
t1 =d− 1 and Hd(t)=1 for any t=0; : : : ; d− 1: Suppose then that the statement holds
for n variables and set

d̂:=(d1; : : : ; dn+1)∈Nn+1
0 ;

d:=(d1; : : : ; dn):

Let t¡t +1≤ [tn+1=2]: We want to see that ’(t) :=Hd̂(t +1)−Hd̂(t) is non negative.
Recall from (17) that, for every t ∈N0, Hd̂(t) equals the cardinality of the set

{�∈Nn+1
0 : |�|= t; 0≤ �i ≤di − 1; i = 1; : : : ; n + 1}:

Then, it can also be computed as
dn+1−1∑
j = 0

#{�̂∈Nn
0: |�̂|= t − j; 0≤ �̂i ≤di − 1; i = 1; : : : ; n};

which gives the equality Hd̂(t) =
∑dn+1−1

j = 0 Hd(t− j): It follows that ’(t) =Hd(t +1)−
Hd(t + 1− dn+1):

If t+1≤ [tn=2]; we deduce that ’(t)≥ 0 by inductive hypothesis. Suppose then that
t+1 is in the range [tn=2]¡t+1≤ [tn+1=2]: As Hd(t+1)=Hd(tn− t−1); it is enough
to show that tn− t−1≥ t+1−dn+1 and tn− t−1≤ [tn=2]; which can be easily checked,
and the result follows again by inductive hypothesis.
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Corollary 4.2. The size 
(t) of the matrix Mt is minimal over N0 when t = [tn=2]:

Proof. By (18), 
 has a maximum at [tn=2] over [0; tn] because * has a maximum
and Hd has a minimum. If t¿tn; we have that 
(t) = ( n+t−1

n−1 ): For t in this range, it

is easy to check that 
(tn) =
(

n+tn−1
n−1

)
− 1¡
(t): Then, 
(t)¿
(tn)≥ 
([tn=2]):

Remark 4.3. Note that when tn is odd, 
([tn=2]) = 
([tn=2] + 1), and then the size of
Mt is also minimal for t = [tn=2] + 1 in this case.

Denote p:=
∑n

i=1 di=n the average value of the degrees, and set q:=(p+1)=2p: Note
that except in the linear case when all di = 1; it holds that p¿1 and q¡1:

Proposition 4.4. Assume p¿1: The ratio between the size of the smallest matrix Mt

and the classical Macaulay matrix Mtn+1 can be bounded by


([tn=2])

(tn + 1)

≤ 2qn−1:

In particular; it tends to zero exponentially in n when the number of variables tends
to in9nity and p remains bigger that a constant c¿1.

Proof. When tn is even, tn − [tn=2]= [tn=2] and when tn is odd, tn − [tn=2]= [tn=2]+ 1:
In both cases,


([tn=2])

(tn + 1)

≤
2

(
n + [tn=2]

n− 1

)
(

n + tn

n− 1

) = 2
([tn=2] + n) : : : ([tn=2] + 2)

(tn + n) : : : (tn + 2)

= 2
(
[tn=2] + n
tn + n

)(
[tn=2] + n− 1
tn + n− 1

)
: : :
(
[tn=2] + 2
tn + 2

)

≤ 2
(
[tn=2] + n
tn + n

)n−1

:

Since tn = np− n; we deduce that

[tn=2] + n
tn + n

≤ np=2 + n=2
np

=
1
2
+

1
2p

= q;

as required.

5. Resultant complexes

In this section we consider Weyman’s complexes (cf. [27,16]) and we make ex-
plicit the morphisms in these complexes, which lead to polynomial expressions for the
resultant via determinantal formulas in the cases described in Lemma 5.3.
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We will consider a complex which is a “coupling” of the Koszul complex K•(t;f1; : : : ;
fn) associated with f1; : : : ; fn in degree t and the dual of the Koszul complex K•(tn −
t; f1; : : : ; fn)∗ associated with f1; : : : ; fn in degree tn − t: This complex arises from the
spectral sequence derived from the Koszul complex of sheaves on Pn−1 associated
with f1; : : : ; fn twisted by OPn−1 (t): Here, OPn−1 (t) denotes as usual the t-twist of the
sheaf of regular functions over the (n−1)-projective space Pn−1 (see for instance [16,
p. 34]). Its space of global sections can be identi<ed with the space of homogeneous
polynomials in n variables of degree t. We make explicit in terms of the Bezoutian the
map @0 (see (10) below) produced by cohomology obstructions. In fact, the non-trivial
contribution is given in terms of the mapping  1; t de<ned in (7).

Precisely, let K•(t;f1; : : : ; fn) denote the complex{
0 → K(t)−n -−(n−1)−→ · · · -−1→ K(t)−1 -0→K(t)0

}
; (19)

where

K(t)−j =
⊕

i1¡···¡ij

St−di1−···−dij

and -−j are the standard Koszul morphisms.
Similarly, let K•(tn − t;f1; : : : ; fn)∗ denote the complex{

K(tn − t)0
-∗0→K(tn − t)1

-∗1→· · · -∗n→K(tn − t)n
}

; (20)

where

K(tn − t) j =
⊕

i1¡···¡ij

S∗
tn−t−di1−···−dij

and -∗j are the duals of the standard Koszul morphisms. Note that in fact K(tn− t)n=0
for any t≥ 0:

Now, de<ne C•(t;f1; : : : ; fn) to be the following coupled complex:{
0 → C−n @−(n−1)−→ · · · @−1−→C−1 @0−→C0 @1−→· · · @n−1−→Cn−1 → 0

}
; (21)

where

C−j = K(t)−j; j = 2; : : : ; n;

Cj = K(tn − t) j+1; j = 1; : : : ; n− 1;

C−1 = K(tn − t)0 ⊕ K(t)−1;

C0 = K(t)0 ⊕ K(tn − t)1 (22)

and the morphisms are de<ned by

@−j = -−j; j = 2; : : : ; n− 1;

@j = -∗j ; j = 2; : : : ; n− 1;
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@−1 = 0⊕ -−1;

@0 = ( 1; t + -0)⊕ -∗0 ;

@1 = 0 + -∗1 : (23)

More explicitly, @0(T; (g1; : : : ; gn))=( 1; t(T )+-0(g1; : : : ; gn); -∗0 (T )) and @1(h; (T1; : : : ; Tn))
= -∗1 (T1; : : : ; Tn): Observe that @0 is precisely the mapping we called �̃t in the previous
section.

As in the proof of Proposition 3.1, given an algebraically closed <eld k; and a =
(ai)|i|=di; i=1;:::;n; a point in kN ; we denote by f1(a); : : : ; fn(a) the polynomials ∈ k[X ]
obtained from f1; : : : ; fn when the coe4cients are specialized to a. For any particular
choice of coe4cients in (21) we get a complex of k-vector spaces. We will denote the
specialized modules and morphisms by K(t)1(a); -0(a); etc. Let D denote the determi-
nant (cf. [16, Appendix A], [12]) of the complex of A-modules (21) with respect to
the monomial bases of the A-modules C‘. This is an element in the <eld of fractions
of A.

We now state the main result in this section.

Theorem 5.1. The complex (21) is generically exact; and for each specialization of
the coe<cients it is exact if and only if the resultant does not vanish. For any positive
integer t we have that

D = Resd1 ;:::dn(f1; : : : ; fn); (24)

and moreover; D equals the greatest common divisor of all maximal minors of a
matrix representing the A-module map @0.

Proof. For t¿tn; we get the Koszul complex in degree t; and so the specialized com-
plex at a point a∈ kN is exact if and only if f1(a); : : : ; fn(a) is a regular sequence,
i.e. if and only if the resultant does not vanish. The fact that the determinant of this
complex equals the resultant goes back to ideas of Cayley; for a proof see [12,16] or
[8].

Suppose 0≤ t≤ tn: Since -0 ◦ -−1 = -∗1 ◦ -∗0 = 0; it is easy to see that (21) is a
complex.

Set

U :={a = (ai)∈ kN ; i = 1; : : : ; n; |i|= di: det(Mt(a)) �= 0}:

Note that the open set U is non-void because the vector of coe4cients of {X d1
1 ; : : : ; X dn

n }
lies in U; since in this case detMt =±1: For any choice of homogeneous polynomials
f1(a); : : : ; fn(a)∈ k[X ] with respective degrees d1; : : : ; dn and coe4cients a in U , the
resultant does not vanish by Theorem 3.2 and then the specialized Koszul complexes
in (19) and (20) are exact.
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Then, the dimension dim Im(-0(a)) of the image of -0(a) equals i(t)=dim〈f1(a); : : : ;
fn(a)〉t : Similarly, dim ker(-∗0 (a)) = i(tn − t): Therefore,

dim ker(@0(a)) ≥ dim Im(@−1(a)) = dim Im(-−1(a))

= dim ker(-0(a)) = dimK(t)−1(a)− i(t):

On the other side, the fact that Mt(a) is non-singular of size 
(t) implies that

dim ker(@0(a)) ≤ dimC−1(a)− 
(t)

= dimK(t)−1(a) + dimK(tn − t)0(a)− 
(t)

= ImK(t)−1(a) + dim Stn−t(a)− 
(t)

= dimK(t)−1(a)− i(t):

Therefore, dim Im(@−1(a)) = dim ker(@0(a)) and the complex is exact at level −1:
In a similar way, we can check that the complex is exact at level 0, and so the full

specialized complex (21) is exact when the coe4cients a lie in U:
In order to compute the determinant of the complex in this case, we can make

suitable choices of monomial subsets in each term of the complex starting from the
index sets that de<ne Mt(a) to the left and to the right. Then,

D(a) =
detMt(a)

p1(a) · p2(a)
;

where p1(a) (resp. p2(a)) is a quotient of product of minors of the morphisms on the
left (resp. on the right).

Taking into account (19) and (20), it follows from [10] that

p1(a) = det(Et(a)); p2(a) = det(Etn−t(a));

and so by Theorem 3.2 we have

D(a) = Resd1 ;:::; dn(f1; : : : ; fn)(a)
det(Et)(a)

det(Et(a))det(Etn−t(a))

= Resd1 ;:::; dn(f1; : : : ; fn)(a)

for all families of homogeneous polynomials with coe4cients a in the dense open set
U , and since D and the resultant are rational functions, this implies (24), as wanted.
Moreover, it follows that the complex is exact if and only if the resultant does not
vanish.

The fact that Resd1 ;:::; dn(f1; : : : ; fn) is the greatest common divisor of all maximal
minors of the matrix representing @0 has been proved in Corollary 3.5.

We remark that from the statement of Theorem 5.1 plus a close look at the map
at level 0, it is not hard to deduce that for a given specialization of f1; : : : ; fn in k
with non-vanishing resultant, the specialized polynomials ��(a); |�|= tn− t generate the
quotient of the polynomial ring k[X ] by the ideal I(a)= 〈f1(a); : : : ; fn(a)〉 in degree t.
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We can instead use the known dualizing properties of the Bezoutian in case the poly-
nomials de<ne a regular sequence, to provide an alternative proof of Theorem 5.1. This
is a consequence of Proposition 5.2 below. We refer to [17;19, Appendix F]; [25,26]
for the relation between the Bezoutian and the residue (i.e. an associated trace) and
we simply recall the properties that we will use.

Assume Resd1 ;:::;dn(f1(a); : : : ; fn(a)) is diRerent from zero. This implies that f1(a); : : : ;
fn(a) is a regular sequence and their zero locus consists of the single point 0∈ kn:
Then, there exists a dualizing k-linear operator

R0 : k[Y ]=〈f1(a)(Y ); : : : ; fn(a)(Y )〉 → k;

called the residue or trace operator, which veri<es
1. h(X ) = R0(h(Y )�(a)(X; Y )) in the quotient ring k[X ]=I(a):
2. If h is homogeneous of degree t with t �= tn; R0(h) = 0
Then, for every polynomial h(X )∈ k[X ] of degree t; it holds that

h(X ) =
∑

|�|=tn−t

R0(h(Y )Y �)��(a)(X ) mod I(a); (25)

where �(a)(X; Y ) =
∑

|�|=tn−t ��(a)(X )Y � as in (4). As a consequence, the family
{��(a)(X )}|�|=tn−t ; (resp. |�|= t) generates the graded piece of the quotient in degree
t (resp. tn − t). Moreover, it is easy to verify that for any choice of polynomials
pi(X; Y ); qi(X; Y )∈ k[X; Y ]; i = 1; : : : ; n; the polynomial �̃a(X; Y ) de<ned by

�̃a(X; Y ):=�(a)(X; Y ) +
n∑

i=1

pi(X; Y )fi(a)(X ) + qi(X; Y )fi(a)(Y ): (26)

has the same dualizing properties as �(a)(X; Y ).
We are ready to prove a kind of “converse” to Proposition 3.1.

Proposition 5.2. If Resd1 ;:::;dn (f1(a); : : : ; fn(a)) �= 0; it is possible to extract a square
submatrix M ′

t of �̃t as in (15) such that det(M ′
t (a)) �= 0:

Proof. Since f1(a)(X ); : : : ; fn(a)(X ) is a regular sequence in k[X ]; the dimensions of
the graded pieces of the quotient k[X ]=I(a) in degrees t and tn− t are i(t) and i(tn− t)
respectively.

We can then choose blocks Ft and Ftn−t as in (15) such that Ft(a) and Ftn−t(a)
have maximal rank. Suppose without loss of generality that the blocks Ft and Ftn−t

have respectively the form[
Qt

Rt

]
and

[
Qtn−t

Rtn−t

]
;

where Qt(a) and Qtn−t(a) are square invertible matrices of maximal size. We are going
to prove that, with this choice, the matrix M ′

t (a) is invertible.
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Our specialized matrix will look as follows:

M ′
t (a) =




Qt(a)

�t(a) Rt(a)
tQtn−t(a) tRtn−t(a) 0


 :

Applying linear operations in the rows and columns of M ′
t (a); it can be transformed

into 


0 0 Qt(a)

0 �̃t;a Rt(a)
tQtn−t(a) tRtn−t(a) 0


 ;

where the block [�̃t;a] is square and of size Hd(t):
But it is easy to check that this �̃t;a corresponds to the components in degree t of

another Bezoutian �̃a(X; Y ) (in the sense of (26)). This is due to the fact that each
of the linear operations performed on M ′

t (a); when applied to the block �t;a; can be
read as a polynomial combination of fi(a)(X ) and fi(a)(Y ) applied to the bezoutian
�(a)(X; Y ):

Using the fact that the polynomials �̃�;a(X ) read in the columns of �̃t;a generate the
quotient in degree tn − t and they are as many as its dimension, we deduce that they
are a basis and so

det

(
0 �̃t ;a

tQtn−t(a) tRtn−t(a)

)
�= 0;

which completes the proof of the claim.

We could then avoid the consideration of the open set U in the proof of Theo-
rem 5.1, and use Proposition 5.2 to show directly that the complex is exact outside the
zero locus of the resultant. In fact, this is not surprising since for all specializations
such that the resultant is non-zero, the residue operator de<nes a natural duality between
the t-graded piece of the quotient of the ring of polynomials with coe4cients in k by
the ideal I(a) and the tn− t graded piece of the quotient, and we can read dual residue
bases in the Bezoutian.

We characterize now those data n; d1; : : : ; dn for which we get a determinantal for-
mula.

Lemma 5.3. Suppose d1 ≤d2 ≤ · · · ≤dn: The determinant of the resultant complex
provides a determinantal formula for the resultant Resd1 ;:::; dn(f1; : : : ; fn) if and only
if the following inequality is veri9ed:

d3 + · · ·+ dn − n¡d1 + d2 − 1: (27)

Moreover; when (27) holds; there exists a determinantal formula given by the resul-
tant complex for each t such that

d3 + · · ·+ dn − n¡t¡d1 + d2: (28)



78 C. D’Andrea, A. Dickenstein / Journal of Pure and Applied Algebra 164 (2001) 59–86

Remark 5.4. When all di have a common value d, (27) reads

(n− 2)d¡2d + n− 1;

which is true for any d for n≤ 4, for d = 1; 2; 3 in case n = 5, for d = 1; 2 in case
n = 6, and never happens for n≥ 7 unless d = 1; as we quoted in the introduction.

Proof. The determinant of the resultant complex provides a determinantal formula for
Resd1 ;:::;dn(f1; : : : ; fn) precisely when C−2 = C1 = 0: This is respectively equivalent to
the inequalities

t¡d1 + d2

and

tn − t = d1 + · · ·dn − n− t¡d1 + d2;

from which the lemma follows easily. We have decreased the right-hand side of (27)
by a unit in order to allow for a natural number t satisfying (28).

Corollary 5.5. For all n≥ 7 there exists a determinantal formula only if d1 = d2 =
d3 = 1 and n − 3≤d4 + · · · + dn¡n; which forces all di to be 1 or at most; all of
them equal 1 except for two of them which equal 2; or all of them equal 1 except
for one of them which equals 3.

The proof of the corollary follows easily from inequality (27). In any case, if a
determinantal formula exists, we have a determinantal formula for t = [tn=2]; as the
following proposition shows.

Proposition 5.6. If a determinantal formula given by the resultant complex exists;
then M[tn=2] is square and of the smallest possible size 
([tn=2]):

Proof. In order to prove that M[tn=2] is square, we need to check by Lemma 5.3 that

d3 + · · ·+ dn − n¡
[ tn
2

]
¡d1 + d2: (29)

If there exists a determinantal formula, then the inequality (27) holds, from which it
is straightforward to verify that

d3 + · · ·+ dn − n¡
tn
2
¡d1 + d2:

To see that in fact (29) holds, it is enough to check that

d3 + · · ·+ dn − n + 1=2 �= tn
2

=
d1 + · · ·+ dn − n

2
:

But if the equality holds, we would have that d3 + · · ·+dn =d1 +d2 + n− 1; which is
a contradiction. According to Corollary 4.2, we also know that M[tn=2] has the smallest
possible size.
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6. Dixon formulas

We prove in this section that “a4ne” Dixon formulas can in fact be recovered in
this setting. We <rst recall classical Dixon formulas to compute the resultant of three
bivariate a4ne polynomials of degree d: We will make a slight change of notation
in what follows. The input a4ne polynomials (having monomials of degree at most
d in two variables (X1; X2)) will be denoted f1; f2; f3 and we will use capital letters
F1; F2; F3 to denote the homogeneous polynomials in three variables given by their
respective homogenizations (with homogeneizing variable X3). Dixon (cf. [13]) pro-
posed the following determinantal formula to compute the resultant Resd;d;d(f1; f2; f3)
=Resd;d;d(F1; F2; F3).

Let Bez(X1; X2; Y1; Y2) denote the polynomial obtained by dividing the following
determinant by (X1 − Y1)(X2 − Y2):

det




f1(X1; X2) f2(X1; X2) f3(X1; X2)

f1(Y1; X2) f2(Y1; X2) f3(Y1; X2)

f1(Y1; Y2) f2(Y1; Y2) f3(Y1; Y2)


 :

Note that by performing row operations we have that Bez(X1; X2; Y1; Y2) equals the
determinant of the matrix

det




�11 �21 �31

�12 �22 �32

f1(Y1; Y2) f2(Y1; Y2) f3(Y1; Y2)


 ;

where �ij are as in (3). Write

Bez(X1; X2; Y1; Y2) =
∑

|<| ≤ 2d−2

B<(X1; X2)Y
<1
1 Y <2

2 :

Set A :=Z[a]; where a denotes one indeterminate for each coe4cient of f1; f2; f3:
Let S denote the free module over A with basis B given by all monomials in two
variables of degree less or equal than d− 2; which has an obvious isomorphism with
the free module S ′ over A with basis B′ given by all monomials in three variables
of degree equal to d − 2: The monomial basis of all polynomials in two variables of
degree less or equal than 2d− 2 will be denoted by C:

Let M be the square matrix of size 2d2 − d whose columns are indexed by C and
whose rows contain consecutively the expansion in the basis C of m · f1; of m · f2;
and of m · f3; where m runs in the three cases over B, and <nally, the expansion in
the basis C of all B<; |<| ≤d− 1: Then, Dixon’s formula says that

Resd;d;d(f1; f2; f3) =±detM:

Here, d1 =d2 =d3 =d and n=3; so that (27) holds and by (28) there is a determi-
nantal formula for each t such that d−3¡t¡2d: So, one possible choice is t=2d−2:
Then, t3 − t=d− 1¡d; which implies 〈F1; F2; F3〉t3−t =0: Also, t−d=d− 2¡d; and
therefore St; i = S ′; for all i = 1; 2; 3:
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Let �(X1; X2; X3; Y1; Y2; Y3) =
∑

|�| ≤ 3d−3 ��(X )Y � be the Bezoutian associated with
the homogeneous polynomials F1; F2; F3: We know that Resd;d;d(F1; F2; F3) =
±detM2d−2: In this case, the transposed matrix tM2d−2 is a square matrix of the same
size as M , and it is obvious that their 3d(d− 1)=2 <rst rows coincide (if the columns
are ordered conveniently). According to (7), the last (d+1)d=2 rows of tM2d−2 contain
the expansion in the basis B′ of all ��; |�|= d− 1:

Proposition 6.1. The “a<ne” matrix M and the “homogeneous” matrix tM2d−2

coincide.

Proof. Denote P(X1; X2; X3; Y1; Y2; t) the homogeneous polynomial of degree 3d− 2 in
6 variables obtained by dividing the following determinant by (X1 − Y1)(X2 − Y2):

det




�1;1(F) �2;1(F) �3;1(F)

�1;2(F) �2;2(F) �3;2(F)

F1(Y1; Y2; t) F2(Y1; Y2; t) F3(Y1; Y2; t)


 ;

where

�i;1(F) :=Fi(X1; X2; X3)− Fi(Y1; Y2; X3); i = 1; 2; 3

and

�i;2(F) :=Fi(Y1; X2; X3)− Fi(Y1; Y2; X3); i = 1; 2; 3:

It is easy to check that

(X3 − Y3)�(X; Y ) = P(X1; X2; X3; Y1; Y2; X3)− P(X1; X2; X3; Y1; Y2; Y3) (30)

and that

P(X1; X2; 1; Y1; Y2; 1) = Bez(X1; X2; Y1; Y2): (31)

We are looking for the elements in Bez(X1; X2; Y1; Y2) of degree less or equal than d−1
in the variables Y1; Y2: But it is easy to check that degy(P(X1; X2; X3; Y1; Y2; Y3))≥d:
This, combined with the equality given in (30), implies that, for each 1≤ j≤d− 1:

X3

∑
|�|= j

��(X )Y � − Y3

∑
|�|= j−1

��(X )Y �

is equal to the piece of degree j in the variables Yi of the polynomial P(X1; X2; X3; Y1;
Y2; X3):

Besides, this polynomial does not depend on Y3; so the following formula holds for
every pair �; �̃ such that � = �̃ + (0; 0; k); |�|= j:

X k
3 ��(X ) = ��̃(X ): (32)

This allows us to compute ��(X ) for every |�|=d−1; in terms of the homogeneization
of B(�1 ;�2): From Eq. (32), the claim follows straightforwardly.

We conclude that Dixon’s formula can be viewed as a particular case of the deter-
minantal expressions that we addressed. Moreover, Proposition 6.1 can be extended to
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any number of variables and all Dixon matrices as in [14, Section 3:5] can be recov-
ered in degrees t such that  ∗

2; tn−t = 0; i.e. such that tn ≥ t¿tn − min{d1; : : : ; dn}: As
we have seen, all one can hope in general is the explicit quotient formula we give in
Theorem 3.2. In fact, we have the following consequence of Lemma 5.3

Lemma 6.2. There exists a determinantal Dixon formula if and only if n=2; or n=3
and d1 = d2 = d3; i.e. in the case considered by Dixon.

Proof. Assume d1 ≤d2 ≤ · · · ≤dn: If inequality (28) is veri<ed for t¿tn − d1; we
deduce that

(n− 2)d1 − n≤d3 + · · ·+ dn − n¡d1 − 2; (33)

and so (n− 3)d1¡n− 2: This equality cannot hold for any natural number d1 unless
n≤ 3: It is easy to check that for n= 2 there exist a determinantal Dixon formula for
any value of d1; d2: In case n = 3, (33) implies that d3¡d1 + 1: Then, d1 = d2 = d3;
as claimed.

7. Other known formulas and some extensions

We can recognize other well-known determinantal formulas for resultants in this
setting.

7.1. Polynomials in one variable

Let

f1(x) =
d1∑
j=0

ajxj; f2(x) =
d2∑
j=0

bjxj

be generic univariate polynomials (or their homogenizations in two variables) of de-
grees d1 ≤d2. In this case, inequality (28) is veri<ed for all t = 0; : : : ; d1 + d2 − 1
and so we have a determinantal formula for all such t. Here, t2 = d1 + d2 − 2. When
t = d1 + d2 − 1 = t2 + 1 we have the classical Sylvester formula.

Assume d1 = d2 = d and write

f1(x)f2(y)− f1(y)f2(x)
x − y

=
d−1∑
i; j=0

cijxiy j:

Then, the classical B�ezout formula for the resultant between f1 and f2 says that

Resd;d(f1; f2) = det(cij):

It is easy to see that we obtain precisely this formulation for t=d−1. For other values
of t we get formulas interpolating between Sylvester and B>ezout as in [16, Chapter
12], even in case d1 �= d2. It is easy to check that the smallest possible matrix has
size d2.
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Suppose for example that d1 = 1; d2 = 2. In this case, [t2=2] = [1=2] = 0; and M0 is
a 2× 2 matrix representing a map from S∗

1 to S0 ⊕ S∗
0 ; whose determinant equals the

resultant

Res1;2(f1; f2) = a2
1b0 − a0a1b1 + b2a2

0:

If we write f1(x) = 0x2 + a1x+ a0 and we use the classical Bezout formula for d=2;
we would also get a 2×2 matrix but whose determinant equals b2 ·Res1;2(f1; f2). The
exponent 1 in b2 is precisely the diRerence d2 − d1:

7.2. Sylvester formula for three ternary quadrics

Suppose that n=3; d1=d2=d3=2 and 2 �= 0. Let J denote the Jacobian determinant
associated with the homogeneous polynomials f1; f2; f3. A beautiful classical formula
due to Sylvester says that the resultant Res2;2;2(f1; f2; f3) can be obtained as 1=512
times the determinant of the 6×6 matrix whose columns are indexed by the monomials
in 3 variables of degree 2 and whose rows correspond to the expansion in this monomial
basis of f1; f2; f3; @J=@X1; @J=@X2 and @J=@X3. In this case, [t3=2] = [3=2] = 1; and by
Lemma 5.3 we have a determinantal formula in this degree since 2− 3¡1¡4. From
Euler equations

2fi(X ) =
3∑

j=1

Xj
@fi(X )
@Xj

;

we can write

2(fi(X )− fi(Y )) =
3∑

j=1

(
Xj

@fi(X )
@Xj

− Yj
@fi(Y )
@Yj

)

=
3∑

j=1

(Xj − Yj)
@fi(X )
@Xj

+ Yj

(
@fi(X )
@Xj

− @fi(Y )
@Yj

)

=
3∑

j=1

(
(Xj − Yj)

@fi(X )
@Xj

+ Yj

3∑
l=1

@2fi(X )
@Xj@Xl

(Xl − Yl)

)
:

Because of (26), we can compute the Bezoutian using

�ij(X; Y ) :=
1
2

(
@fi(X )
@Xj

+
3∑

l=1

@2fi(X )
@Xl@Xj

Yl

)
:

With this formulation, it is not di4cult to see that we can recover Sylvester formula
from the equality Res2;2;2(f1; f2; f3) = detM1:

7.3. Jacobian formulations

When t = tn; one has Hd(t) = 1; and via the canonical identi<cation of S∗
0 with A,

the complex (22) reduces to the following modi<ed Koszul complex:

0 → K(t)−n
-−(n−1)−−−→· · · -−1−→A⊕ K(t)−1 -0−→K(t)0 → 0; (34)
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where -0 is the following map:

A⊕ Stn−d1 ⊕ · · · ⊕ Stn−dn → Stn

(�; g1; : : : ; gn) �→ ��0 +
n∑

i=1

gifi;

and �0:=�(X; 0). As a corollary of Theorem 5.1 we get that, for every specialization
of the coe4cients, �0 is a non-zero element of the quotient if the resultant does not
vanish.

Assume that the characteristic of k does not divide the product d1 : : : dn. It is a
well-known fact that the jacobian determinant J of the sequence (f1; : : : ; fn) is another
non-zero element of degree tn; which is a non-zero element of the quotient whenever
the resultant does not vanish (cf. for instance [25]). In fact, one can easily check that

J = d1 : : : dn�0 mod〈f1; : : : ; fn〉: (35)

In [6], the same complex is considered in a more general toric setting, but using J
instead of �0. Because of (35), we can recover their results in the homogeneous case.

Theorem 7.1. Consider the modi9ed complex (34) with J instead of �0. Then; for
every specialization of the coe<cients; the complex is exact if and only if the result-
ant does not vanish. Moreover; the determinant of the complex equals d1 : : : dn

Resd1 ;:::;dn(f1; : : : ; fn).

We can also replace �0 by J in Macaulay’s formula (Theorem 3.2), and have the
following result:

Theorem 7.2. Consider the square submatrix M̃ tn which is extracted from the matrix
of -0 in the monomial bases; choosing the same rows and columns of Mtn . Then;
det(M̃ tn) �= 0; and we have the following formula 2a la Macaulay:

d1 : : : dn Resd1 ;:::;dn(f1; : : : ; fn) =
det(M̃ tn)
det(Etn)

:

We end the paper by addressing two natural questions that arise:

7.4. DiAerent choices of monomial bases

Following Macaulay’s original ideas, one can show that there is some Vexibility in
the choice of the monomial bases de<ning St; i in order to get other non-zero minors,
of �̃t , i.e diRerent square matrices M ′

t whose determinants are non-zero multiples of
Resd1 ;:::;dn(f1; : : : ; fn) with diRerent extraneous factors det(E′

t ); det(E
′
tn−t), for appropi-

ate square submatrices E′
t ; E

′
tn−t of M ′

t . Besides the obvious choices coming from a
permutation in the indices of the variables, other choices can be made as follows.
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For any i = 1; : : : ; n; set d̂i:=(d1; : : : ; di−1; di+1; : : : ; dn) and de<ne Hd̂i
(t) for any

positive integer t by the equality∏
j 
=i

(
1− Ydj

)
(1− Y )n−1 =

∞∑
t=0

Hd̂i
(t) · Y t:

For each t ∈N0; set also )t :={X � ∈ St : �j¡dj; j = 1; : : : ; n}.
We then have the following result:

Proposition 7.3. Let M ′
t a square submatrix of �̃t of size 
(t). Denote its blocks as

in (15). Suppose that; for each i=1; : : : ; n; the block Ft has exactly Hd̂i
(t− di) of its

columns corresponding to fi in common with the matrix Dt de9ned in (8) and; also;
the block Ftn−t shares exactly Hd̂i

(tn− t−di) columns corresponding to fi with Dtn−t .
Then; if det(M ′

t ) is not identically zero; the resultant Resd1 ;:::;dn(f1; : : : ; fn) can be
computed as the ratio det(M ′

t )=det(E′t); where E′t is made by joining two submatrices
E′
t of Ft and E′

tn−t of Ftn−t . These submatrices are obtained by omitting the columns
in common with Dt (resp. Dtn−t) and the rows indexed by all common monomials in
Dt (resp. Dtn−t) and all monomials in )t (resp. )tn−t).

We omit the proof which is rather technical, and based in [21; 6a], and [9,10].

7.5. Zeroes at in9nity

Given a non-homogeneous system of polynomial equations f̃1; : : : ; f̃n in n− 1 vari-
ables with respective degrees d1; : : : ; dn; we can homogenize these polynomials and
consider the resultant Resd1 ;:::;dn(f1; : : : ; fn) associated with their respective homogeniza-
tions f1; : : : ; fn. However, this resultant may vanish due to common zeros of f1; : : : ; fn

at in<nity in projective space Pn−1 even when there is no a4ne common root to
f̃1;= · · ·= f̃n = 0. We can in this case extend Canny’s construction [4] of the gener-
alised characteristic polynomial (GCP) for classical Macaulay’s matrices to the matrices
Mt for any natural number t. In fact, when we specialize fi to X di

i for all i= 1; : : : ; n;
the Bezoutian is given by

d1−1∑
j1=0

· · ·
dn−1∑
jn=0

X d1−1−j1
1 · · ·X dn−1−jn

n Y j1
1 · · ·Y jn

n ;

and the specialized matrix Mt(e) of Mt has a single non zero entry on each row and
column which is equal to 1; so that det(Mt(e)) = ±1. We order the columns in such
a way that Mt(e) is the identity matrix. With this convention, de<ne the polynomial
Ct(s) by

Ct(s):=
Charpoly(Mt)(s)
Charpoly(Et)(s)

;

where s denotes a new variable and Charpoly means characteristic polynomial. We
then have by the previous observation that

Ct(s) = Resd1 ;:::;dn(f1 − sxd1
1 ; : : : ; fn − sxdn

1 ):
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Moreover, this implies that Ct(s) coincides with Canny’s GCP C(s); but involves
matrices of smaller size. Canny’s considerations on how to compute more e4ciently
the GCP also hold in this case. Of course, it is in general much better to <nd a way
to construct “tailored” resultants for polynomials with a generic structure which is not
dense, as in the case of sparse polynomial systems [14,16].
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