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1. Introduction

Two-weight codes, i.e., nonzero codewords that have only two different weights, are interesting in
the area of coding theory (e.g., uniformly packed codes) and have been studied intensively [5].

Two-weight codes are also closely related to objects in different areas of mathematics such as
strongly regular graphs, partial geometries, and projective point-sets. Delsarte [6] was the first to
study the connections between two-weight codes, strongly regular graphs, and projective point-sets.
A survey of this relationship was given later by Calderbank and Kantor [3]. Two-weight codes can also
be used to construct secret sharing schemes, which is an interesting subject of cryptography; see [13].

In this paper, motivated by the research work in [8], a special kind of two-weight code is defined.
Some properties and an application of this kind of two-weight code are given.

1.1. Notations and definitions

For any subcode D of a code C , the support χ(D) of D is defined as the set of positions where not all
the codewords ofD have zero coordinates. In particular, the support of any nonzero codeword consists
of its nonzero coordinate positions.

Definition 1. For any subcode D of C , w(D) := |χ(D)| is called the support weight or effective length
of D. In particular, w(C) is called the effective length of C .

Let C be a linear [n, k] code, that is, a k-dimensional code over the finite field GF(q) with effective
length n, and let C1 be a k1-dimensional subcode of C . Define C \ C1 = {c | c ∈ C and c ∉ C1}.
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Definition 2. If both C1 and C \ C1 are constant-weight codes, then C is called a relative two-weight
(RTW) code with respect to C1.

Let C be an [n, k] RTW code with respect to C1, and assume that the weight of the nonzero
codewords in C1 is d, and that the weight of codewords in C \ C1 is d∗; then we briefly use
(C, C1)(n, d, d∗) or C(n, d, d∗) (when C1 is clear) to denote the RTW code C .

Definition 3 ([12]). The generalized Hamming weight of an [n, k] code C is a sequence (d1, d2, . . . , dk),
where

dr = min{w(D) | D is an r-dimensional subcode of C}, 1 ≤ r ≤ k.

Note that d1 is exactly the traditional minimum Hamming weight of C , and that dk = n is exactly the
effective length of C . C is said to satisfy the chain condition if there exist subcodes Di(1 ≤ i ≤ k) such
that {0} ⊂ D1 ⊂ D2 ⊂ · · · ⊂ Dk = C , dim(Di) = i, and w(Di) = di, for each i with 1 ≤ i ≤ k.

The value function (also called value assignment) and finite projective geometry methods are
effective tools to study the support weights of subcodes [4,11]. In particular, the value function was
first introduced in [4] to study the generalized Hamming weight of a linear code.

Definition 4. A value function is a correspondence m(·): PG(k − 1, q) → Z , where Z represents the
integers and PG(k−1, q) represents a (k−1)-dimensional projective space over the finite field GF(q).
For any point p ∈ PG(k − 1, q), callm(p) the value of p.

Define the value of S ⊂ PG(k − 1, q) by m(S) =


p∈S m(p).

1.2. The value function and linear codes

To use the value function to study the generalized Hamming weight, we consider the columns of
G , a generator matrix of a k-dimensional q-ary linear code C , as projective points in PG(k−1, q). For a
point p ∈ PG(k− 1, q), letm(p) mean the number of the times the point p occurs in the columns of G .
We thus obtain a value function m(·): PG(k − 1, q) → Z such that m(·) ≥ 0. Obviously, such a value
function defines a generator matrix and a code (up to equivalence).

Additionally, for each subset L ⊂ {1, 2, . . . , k} and p = (u1, . . . , uk) ∈ PG(k − 1, q), let PL(p) =

(v1, . . . , vk), where vi = ui if i ∈ L, and vi = 0 if i ∉ L. Define PL(S) = {PL(p) | p ∈ S} for a subset
S ⊂ PG(k − 1, q). Obviously, if S is a projective subspace, so is PL(S).

Lemma 1 ([8]). If C is an [n, k] code and C1 is a k1-dimensional subcode, then there is a 1–1 correspon-
dence between the r-dimensional subcodes D satisfying dim(D∩C1) = θ and the (k− r−1)-dimensional
projective subspaces P satisfying dim PL(P) = k1 − θ − 1, such that, if D corresponds to P, we will have
n− w(D) = m(P), where L = {1, 2, . . . , k1}. In particular, when C1 = {0}, i.e., k1 = 0, the conclusion is
that there is a 1–1 correspondence between the r-dimensional subcodes D and the (k−r−1)-dimensional
projective subspaces P such that, if D corresponds to P, we will have

n − w(D) = m(P). (1)

In the following text, let Pη

ξ denote a ξ -dimensional projective subspace P satisfying dim PL(P) = η,
and let L always denote the set {1, 2, . . . , k1}. For example, P−1

0 stands for a pointwhose first k1 coordinate
positions are all 0, and all such points constitute a projective subspace P−1

k−k1−1.

2. The generalized Hamming weight of an RTW code

Lemma 2. Assume that C is an RTW code with respect to a k1-dimensional subcode C1, and that m(·) is a
value function of C; then m(·) has only two different values. Furthermore, the points p satisfying PL(p) =

0 share one of the values with each other, whereas the points p satisfying PL(p) ≠ 0 share the other, where
L = {1, 2, . . . , k1}.
Proof. Since each nonzero codeword of C1 spans a one-dimensional subcode D such that dim(D ∩

C1) = dim(D) = 1 and C is an RTWcode, we get by Definition 2 that all the one-dimensional subcodes
D satisfying dim(D ∩ C1) = 1 have the same support weight, and that all the codewords in C \ C1
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have the same weight. So the assumptions in [8, Theorem 3] are satisfied, and then, using the proof
of [8, Theorem 3 (Case 2)], we get the result. �

The importance of Lemma 2 is in that it gives a convenient way to construct an RTW code. See the
following.

Example 1. Consider the four-dimensional binary linear code C generated by the matrix1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1

 ,

and let C1 be the two-dimensional subcode generated by the first two rows of the matrix. Then,
m(p) = 0 for the point p satisfying PL(p) = 0, whereas m(p) = 1 for the point p satisfying PL(p) ≠ 0,
where L = {1, 2}. So, C is an RTW code according to Lemma 2. More concretely, since d = 8 and
d∗

= 6, C is a (12, 8, 6) RTW code.

According to Lemma 2, we may get different RTW codes by simply changing the valuesm(·) takes
on the points p such that PL(p) = 0 and PL(p) ≠ 0. For instance, wemaymodifym(·) above as follows:

m(p) =


1, PL(p) ≠ 0,
2, PL(p) = 0.

To satisfy the value function, we give a generator matrix of another RTW code:1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 1

 .

It can be checked that the code generated by the above matrix is a (18, 8, 10) RTW code. If we modify
m(·) as follows,

m(p) =


2, PL(p) ≠ 0,
1, PL(p) = 0,

then we may obtain a (27, 16, 14) RTW code generated by111111111111111100000000000
000000001111111111111111000
000011110000111100001111101
001100110011001100110011011

 .

The generalized Hamming weight of an RTW code can be determined by using Lemmas 1 and 2.
We first give the following.

Lemma 3. For the RTW code C(n, d, d∗), we have

n =
qk1(qk−k1 − 1)d∗

+ (qk1 − 1)d
(q − 1)qk−1

.

Remark 1. It can be easily deduced from the result of Lemma 3 that the length of C in Example 1
should be equal to 12, that the length of the second RTW code in Example 1 should be equal to 18, and
that the length of the third RTW code in Example 1 should be equal to 27.

Proof of Lemma 3. From Definition 2 for an RTW code, we get that both C1 and C \ C1 are constant-
weight codes. Since each nonzero codeword of C1 spans a one-dimensional subcode D such that
dim(D∩C1) = 1 and each codeword in C\C1 spans a one-dimensional subcodeD such that dim(D∩C1)

= 0, we get by using (1) in Lemma 1 that the value of each Pk1−2
k−2 is equal to n − d and that the value
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of each Pk1−1
k−2 is equal to n − d∗. Som(·) should satisfy the following system of equations:
m(Pk1−2

k−2 ) = n − d

m(Pk1−1
k−2 ) = n − d∗

m(PG(k − 1, q)) = n.

(2)

Define S1 ⊂ PG(k − 1, q) and S2 ⊂ PG(k − 1, q) as

S1 = {p | PL(p) = 0},
S2 = {p | PL(p) ≠ 0}.

Obviously, PG(k − 1, q) = S1 ∪ S2, |S1| =
qk−k1−1

q−1 , and |S2| =
qk−1
q−1 −

qk−k1−1
q−1 =

qk−k1 (qk1−1)
q−1 . One can

also check that each Pk1−2
k−2 contains qk−k1−1

q−1 points of S1 and
qk−1

−1
q−1 −

qk−k1−1
q−1 =

qk−k1 (qk1−1
−1)

q−1 points of

S2, and that each Pk1−1
k−2 contains qk−k1−1

−1
q−1 points of S1 and qk−1

−1
q−1 −

qk−k1−1
−1

q−1 =
qk−k1−1(qk1−1)

q−1 points
of S2. Note that by Lemma 2 all the points of S1 have the same value and that all the points of S2 have
the same value. Consequently, (2) can be rewritten as


qk−k1 − 1
q − 1


m(p1) +

qk−k1(qk1−1
− 1)

q − 1
m(p2) = n − d

qk−k1−1
− 1

q − 1


m(p1) +

qk−k1−1(qk1 − 1)
q − 1

m(p2) = n − d∗
qk−k1 − 1
q − 1


m(p1) +

qk−k1(qk1 − 1)
q − 1

m(p2) = n,

(3)

where p1 ∈ S1 and p2 ∈ S2.
It is not difficult to check that (3) has a unique solution:

m(p1) =
qk1d∗

− (qk1 − 1)d
qk−1

m(p2) =
d

qk−1

n =
qk1(qk−k1 − 1)d∗

+ (qk1 − 1)d
(q − 1)qk−1

,

(4)

from which we get the result. �

Theorem 1. Any RTW code C(n, d, d∗) satisfies the chain condition. As regards the generalized Hamming
weight, the result is as follows:

(I) d > d∗ dr =


qk−r(qr − 1)
(q − 1)qk−1

d∗, 1 ≤ r ≤ k − k1 − 1

qk1(qk−k1 − 1)d∗
+ (qk1 − qk−r)d

(q − 1)qk−1
, k − k1 ≤ r ≤ k − 1.

(II) d < d∗ dr =


qk − qk−r

(q − 1)qk−1
d, 1 ≤ r ≤ k1 − 1

qk1(qk−k1 − qk−r)d∗
+ qk−r(qk1 − 1)d

(q − 1)qk−1
, k1 ≤ r ≤ k − 1.
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Proof. Let S1 and S2 be defined as in Lemma 3. Assume that d > d∗; then m(p1) < m(p2) by (4),
where p1 ∈ S1 and p2 ∈ S2. By Lemma 1 (see (1)), determining dr (1 ≤ r ≤ k) is equivalent to de-
termining the maximum value of the projective subspaces with dimension k − r − 1. So, to prove
that C(n, d, d∗) satisfies the chain condition, it is necessary to find a series of projective subspaces
Pi (0 ≤ i ≤ k − 1) such that dim(Pi) = i, Pi has the maximum value among the i-dimensional sub-
spaces, and P0 ⊂ P1 ⊂ · · · ⊂ Pk−1. Since m(p1) < m(p2), we obtain by Lemma 2 that the subspaces
Pξ

ξ (0 ≤ ξ ≤ k1 − 1) and the subspaces Pk1−1
ξ (k1 ≤ ξ ≤ k − 1) are exactly the maximum value

subspaces. In addition, we also obtain by Lemma 2 that all the subspaces Pξ
ξ have the same value for

each fixed ξ , and so do the subspaces Pk1−1
ξ . Thus, one canmanage to choose such subspaces satisfying

P0
0 ⊂ P1

1 ⊂ · · · ⊂ Pk1−1
k1−1 ⊂ Pk1−1

k1
⊂ · · · ⊂ Pk1−1

k−1 = PG(k − 1, q).

So C(n, d, d∗) satisfies the chain condition. To determine the generalized Hamming weight, it is nec-
essary to compute the values of the subspaces in the above chain. Applying Lemmas 1–3, we have, for
k − k1 ≤ r ≤ k − 1,

dr = n − m(Pk−r−1
k−r−1 )

= n −
qk−r

− 1
q − 1

m(p2), (where p2 ∈ S2)

=
qk1(qk−k1 − 1)d∗

+ (qk1 − 1)d
(q − 1)qk−1

−
qk−r

− 1
q − 1

d
qk−1

, (by (4))

=
qk1(qk−k1 − 1)d∗

+ (qk1 − qk−r)d
(q − 1)qk−1

.

For 1 ≤ r ≤ k − k1 − 1, we have

dr = n − m(Pk1−1
k−r−1)

= n −
qk−k1−r

− 1
q − 1

m(p1) −


qk−r

− 1
q − 1

−
qk−k1−r

− 1
q − 1


m(p2) (p1 ∈ S1, p2 ∈ S2)

=
qk−r(qr − 1)
(q − 1)qk−1

d∗ (by (4)).

An almost similar computation gives the result for the case d < d∗, and the only difference is the
subspaces chain. Since d < d∗ means thatm(p1) > m(p2) by (4), themaximum value subspaces chain
can be chosen as

P−1
0 ⊂ P−1

1 ⊂ · · · ⊂ P−1
k−k1−1 ⊂ P0

k−k1 ⊂ P1
k−k1+1 ⊂ · · · ⊂ Pk1−1

k−1 = PG(k − 1, q).

So, the generalized Hamming weight is computed according to whether 1 ≤ r ≤ k1 − 1 or k1 ≤ r ≤

k − 1. For 1 ≤ r ≤ k1 − 1,

dr = n − m(Pk1−r−1
k−r−1 )

=
qk − qk−r

(q − 1)qk−1
d,

and for k1 ≤ r ≤ k − 1,

dr = n − m(P−1
k−r−1)

=
qk1(qk−k1 − qk−r)d∗

+ qk−r(qk1 − 1)d
(q − 1)qk−1

. �
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3. The higher-weight enumerators

The higher-weight enumerators (also called support weight enumerators) were first introduced
in [7], where a proof was presented to MacWilliams-type identities relating the support weight
distributions of a linear code and its dual. For a linear code, the higher-weight enumerators are defined
as the set of integers indicating the number of subcodes of the same dimension and the same effective
length. Many researchers have investigated the higher-weight enumerators for various classes of
linear code [2]. For the RTW code defined in the present paper, the higher-weight enumerators can
be completely determined. Let C and C1 be given as before. Since the subspaces P t−1

k−r−1 have the same
value for an RTW code by Lemma 2, all the r-dimensional subcodes D satisfying dim(D∩C1) = t have
the same support weight by Lemma 1; furthermore,

w(D) = n − m(P t−1
k−r−1)

=
(qk − qk+k1−r−t)d∗

+ (qk+k1−r−t
− qk−r)d

(q − 1)qk−1
(by (4)).

So, to determine the higher-weight enumerators, it is necessary to determine the number of
r-dimensional subcodes D satisfying dim(D ∩ C1) = t .

Theorem 2. The number of r-dimensional subcodes D satisfying dim(D ∩ C1) = t is
i=t−1
i=0

qk1 − qi

qt − qi
·

i=r−t−1
i=0

qk − qk1+i

qr − qt+i
.

Proof. The number of r-dimensional subcodes D satisfying dim(D ∩ C1) = t is equal to the one
obtained from enumerating choices of the basis elements of D divided by a factor enumerating
different choices of basis elements that give rise to the same subcode D. Note that dim(D ∩ C1) = t
means that there are t basis elements of D that come from the k1-dimensional subcode C1; so, the
number of ways of choosing the first basis element should be qk1 − 1, and the number of ways of
choosing the second basis element should be qk1 − q, . . ., and the number of ways of choosing the
t-th basis element should be qk1 − qt−1. The (t + 1)-th basis element should be from the set C \ C1,
due to the fact dim(D ∩ C1) = t , so the number of ways of choosing the (t + 1)-th basis element is
qk − qk1 . The (t +2)-th basis element, on the one hand, is not a linear combination of the former t +1
basis elements, and is also, on the other hand, in the set C \ C1 due to the fact dim(D ∩ C1) = t , so
the (t + 2)-th basis element is not a linear combination of the elements of C1 and the (t + 1)-th basis
element, so the number of ways of choosing the (t+2)-th element is qk−qk1+1. Similarly, the number
of ways of choosing the (t +3)-th basis element is qk −qk1+2, . . ., and the number of ways of choosing
the last basis element (the r-th basis element) is qk − qk1+r−t−1. So, the total number of all the choices
of the basis elements of the r-dimensional subcodes D satisfying dim(D ∩ C1) = t is equal to

i=t−1
i=0

(qk1 − qi) ·

i=r−t−1
i=0

(qk − qk1+i). (5)

In such a manner, the different choices of basis elements that give rise to the same subcode D are
as follows: the number of ways of choosing the first basis element is qt − 1, the number of ways of
choosing the second basis element is qt − q, . . ., and the number of ways of choosing the t-th basis
element is qt − qt−1. The (t + 1)-th basis element should be in the set D \ (D ∩ C1), so the number of
ways of choosing the (t + 1)-th basis element is qr − qt . The (t + 2)-th basis element is not a linear
combination of the former t + 1 basis elements, so the number of ways of choosing the (t + 2)-th
basis element is qr − qt+1. Similarly, the number of ways of choosing the (t + 3)-th basis element is
qr − qt+2, . . ., and the number of ways of choosing the last basis element is qr − qr−1. So, the number
of different choices of basis elements that give rise to the same subcode D is equal to

i=t−1
i=0

(qt − qi) ·

i=r−t−1
i=0

(qr − qt+i). (6)

From (5) and (6), we get the result. �
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4. An application

An application of an RTW code is for the construction of secret sharing schemes first introduced
in [10]. There are several approaches to the construction of secret sharing schemes, and one of them is
based on the use of linear codes. Massey [9] found that the construction of secret sharing schemeswas
closely related to the complete characterization of the minimal codewords of the underlying linear
code.

A codeword covers another one if the support of the codeword contains that of the other. A nonzero
codeword is called a minimal codeword if it covers only its scalar multiples, but no other nonzero
codewords.

Unfortunately, determining the minimal codewords is extremely hard for general linear codes.
Several authors have investigated the minimal codewords and the corresponding secret sharing
schemes for certain codes [13,14,1]. In [1], a useful judging rule for determining the minimal
codewords was given as follows: in any linear code, letωmin andωmax be theminimum andmaximum
nonzero weights, respectively. If

ωmin

ωmax
>

q − 1
q

, (7)

then all nonzero codewords of the code are minimal.
By using (7), the minimal codewords can be completely determined for certain RTW codes

constructed in the present paper.
From (4), we get

d∗

d
=

d − (m(p2) − m(p1))qk−k1−1

d

=
m(p2)qk−1

− (m(p2) − m(p1))qk−k1−1

m(p2)qk−1
(see (4))

= 1 −
m(p2) − m(p1)

m(p2)
q−k1 .

Using the above equation, we can manage to preserve m(p2) − m(p1) to be any positive constant,
e.g.,m(p2) − m(p1) = 1, and then letm(p2) be properly large. Then

d∗

d
>

q − 1
q

can always hold, and then by (7) we get that all the nonzero codewords in the RTW code are minimal
codewords. In such amanner, we can construct many RTW codes all of whose nonzero codewords are
minimal codewords.

Example 2. Consider the four-dimensional linear code C over GF(3) with a generator matrix111111111111111111111111111000000000
000000000111111111222222222111111111
000111222000111222000111222000111222
012012012012012012012012012012012012

 ,

and let C1 be the two-dimensional subcode generated by the first two rows of the matrix. Then all the
nonzero codewords of C1 have the same weight, d = 27, and all the codewords of C \ C1 have the
same weight, d∗

= 24. So C is a (36, 27, 24) RTW code. Since

d∗

d
=

24
27

>
q − 1
q

=
2
3
,

all the nonzero codewords of C are minimal codewords by (7).
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Remark 2. More generally, takingm(p2) = 1,m(p1) = 0, d = qk−1, d∗
= qk−1

− qk−k1−1, and k1 ≥ 2,
we get an RTW code C(

qk−k1 (qk1−1)
q−1 , qk−1, qk−1

− qk−k1−1) such that

d∗

d
=

qk1 − 1
qk1

>
q − 1
q

.

So, any RTW code C(
qk−k1 (qk1−1)

q−1 , qk−1, qk−1
− qk−k1−1) for k1 ≥ 2, has all the nonzero codewords as

the minimal codewords by (7).

Remark 3. AnRTWcode is a special type of two-weight code. In particular, all the codewordswith one
ofweights in an RTWcodemust constitute a linear constant-weight subcode according to Definition 2.
Thus, the statement that every two-weight linear code is an RTW one is not true. An example is as
follows.

Example 3. Consider the four-dimensional binary linear code C generated by the matrix

G =

1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 1 0 1 0 1 0 1 0 1 0 1 1 1

 .

It can be checked that C is a two-weight linear codewith weights 8 and 6. However, all the codewords
with weight 8 cannot form a linear subcode. To see this, we choose codewords c1 = xG and c2 = yG ,
where x = (0001) and y = (0011). Then c1 = (01010101010111) and c2 = (01100110011011) are
both codewords with weight 8. Since c1 − c2 is the codeword (00110011001100) with weight 6, all
the codewords with weight 8 fail to constitute a subcode. Similarly, we are able to show that all the
codewords with weight 6 also fail to constitute a subcode by choosing two codewords with weight 6,
say c1 = xG and c2 = yG , where x = (0010) and y = (0110). This shows that C is not an RTW code.
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