
INFORMATION AND CONTROL 61, 114--131 (1984)

An Average Case Analysis of
Floyd's Algorithm to Construct Heaps

E R N S T E . D O B E R K A T

Department of Mathematics and Computer Science,
Clarkson College of Technology, Potsdam, New York 13676

The expected number of interchanges and comparisons in Floyd's well-known
algorithm to construct heaps and derive the probability generating functions for
these quantities are considered. From these functions the corresponding expected
values are computed. © 1984 Academic Press, Inc.

1. I N T R O D U C T I O N

We are going to investigate the expected numbers of interchanges and
comparisons for Floyd's algorithm for heap construction (Knuth, 1973b,
5.2.3; Floyd, 1964). This will be done by computing the corresponding
probability generating functions, from which the looked for values will be
obtained, and from which in principle information on all the higher moments
could be derived.

Suppose we are given an array x[1 ... N] such that x[i] is the label of
node i, when {1,...,N} is represented in the canonical way as a binary tree
(i.e., 1 is the root of this tree, and 2i and 2i + 1 are, respectively, the left and
the right sons of node i). This array is called a heap if each node has a
greater label than its father, or, more formally, iff

x[i] > x[li/2]]

holds for every i ~ {2,.., N}. Floyd's algorithm for heap construction then
reads as given below (note that we here take the elegant recursive version as
given in (Aho, Hopcroft, and Ullman, 1974); Floyd's original formulation is
iterative rather than recursive):

Input: the array x
Output: x, organized as a heap
Method: 0. procedure heapify(k);

if k is no leaf and a son of k has a smaller label than k has
then let j be the son with the smallest label;

interchange x[k] with x[j] ;
heapify(j)

114
0019-9958/84 $3.00
Copyright © 1984 by Academic Press, Inc.
All rights of reproduction in any form reserved.

FLOYD'S ALGORITHM TO CONSTRUCT HEAPS 115

endif
end heapify;

1. for k :-- IN/2] downto 1 do heapify(k).

Thus if k is a node with the property that both its left and its right subtree
have the heap property already (i.e., every node has a smaller label than its
offsprings), a call to heapify(k) will check whether this condition is met for
k. If this is the case, the next node will be processed, if not, the label for k
will be interchanged with that for the son having the smallest label, and this
consideration is repeated for that node. In this way every node starting from
the rightmost deepest nonleaf and proceeding from right to left to the root is
made the root of a heap.

This algorithm has the very convenient property of preserving
randomness; this means that uniformly distributed input data will produce
uniformly distributed heaps. Knuth derives this fact for uniformly distributed
permutations of {1,...,N} and uses this to derive a number of probabilistic
characteristics for the algorithm, e.g., the expected number of times the left
son has a larger label than the right son or the expectation for the total
number of keys promoted during a call to heapify (Knuth, 1973b, 153-157).
These investigations are based on the geometric structure of the underlying
tree. We make use of these results concerning stability of the distribution in a
considerably more general continuous probabilistic model and carry the
analysis a bit further by considering expectations for interchanges and com-
parisons.

The paper is organized as follows: in Section 2 heaps are introduced more
formally and the probabilistic assumptions are made explicit. Section 3
derives the probability generating functions for interchanges and for
comparisons, from which the wanted expectations are computed.

2. HEAPS

Represent { 1,..., N} as a tree as mentioned in the Introduction. We will make
heavy use of this tree representation in the sequel and quote some notations
and results from (Knuth, 1973b, 153-157). The path leading from N to 1 is
called the special path; if N = (l b n _ 1 . . . b0) 2 in binary, then

{(lbn_ 1 ... bj)2;O<~j<~n }

constitutes this special path; note t h a t j = n gives the root 1 of the tree. The
nodes of the special path are called special nodes. If k is no special node,
then the subtree rooted at k is complete. Let y(k) be the size of the subtree
rooted at k, then

)) ((l b n _ 1 . . . bj)2) = (l b j _ l . . . bo) 2.

116 E R N S T E. D O B E R K A T

Call a node k on level j a left (right) node, if 2 J ~ k < (lb~_l " ' " bn j)2
((lb ,_l ... b,_i)2 < k~< 2 j + l - 1) holds; thus a left (right) node lies to the
left (right) of the special path. It is clear that there are

left nodes and

(l b n _ 1 . . . b n _ j) 2 - 2 j

2 j + l - - 1 - - (l b n _ 1 . . . b n _ j) 2

right nodes on level j. The subtree rooted at a left (right) node on this level
h a s 2 n + l - J - 1 (2 " - a ' - 1) nodes. We will use these numbers when
calculating the generating functions below.

It is assumed that the inputs to the algorithm are taken from some set in
Euclidean space and are continuously distributed. To be more specific, we
assume that the input space A is a symmetric set in the following sense:

(a) A c [QN is a Borel set,

(b) if x C A then xivS x a for i-¢:j,

(c) if x C A then (xp(1) Xp(u)) E A for every p ~ ~.~z~ u : = {p; p is a
permutation of { 1 N}}.

Condition (a) is a technical one allowing us to define a probability measure
on A, condition (c) will prevent that the outputs of the algorithm will escape
from A (thus preventing technical difficulties), and condition (b) which will
hold almost everywhere for a continuous probability distribution on A, is
included for convenience. The distribution/~ of the elements of A is assumed
to have the density f , thus

p(B) =j" f (x) dx

holds for every Borel set B c A , whe re f i s symmetric in the sense that

Yx C AVp ~ YN :f(x1 XN) =f(xpo) XpCN))

holds. Thusfwi l l have the same value for a vector x and for all vectors that
are obtained from x by permuting components. The pair (A,/a) is called a
symmetric model in (Doberkat, 1983) and discussed there extensively;
examples for these models may be found there, too. For the remainder of this
paper a symmetric model (A, g) is fixed.

In order to have a look at some distributional properties of the algorithm,
k-heaps are remembered from (Knuth, 1973b): a vector x E A is called a k-
heap iff the subtree rooted at k has the heap property; A k is the set of all k-

FLOYD'S ALGORITHM TO CONSTRUCT HEAPS 1 17

heaps. Given an input x, denote the resulting k-heap by x~k); using the
procedure heapify, x ~k) is obtained from x by executing

forj := [N/2J downto k do heapify(j).

Now suppose that y CAk+ ~ is a (k + 1)-heap, then a call to heapify(k) will
make it a k-heap, and Yk as the original label of node k will label another
node j upon return from this procedure call, where j is in the subtree rooted
at k. Let Akd denote the set of all those (k + 1)-heaps with this property,
then the following is not difficult to establish:

LEMMA 2.1. Le t T k :Ak+ 1 -~A k be the map corresponding to heapify(k),
then T k : A k,j -+ A k is a bijection for every j in the subtree rooted at k.

This implies that every k-heap has exactly 7(k) inverse images under T k
(or under heapify(k)). Now let/2 (k) be the distribution of all k-heaps, then
Lemma 2.1 will be useful to characterize ~t (k). More formally, /2 (k) may be
defined inductively by

]./(IN/2]-- 1) :~_fl,

thus/.t ~k~ is the image measure of/2 (k+l~ under T k .

PROPOSITION 2.2.

p(k)= ~ 7(J) 'P"
i - k

Proo f Define the order type a(x) of a vector x E A as the unique
permutation p such that xp(l) > ... > Xp~N) holds. In Section 4 of (Doberkat,
1983) it is shown that a symmetric model yields the same distributioon of
order types for any algorithm that manipulates its inputs based only on their
order type, as the discrete model of randomness does. Thus the proposition
follows from Theorem 5.2.3. H in (Knuth, 1973b). II

Hence the algorithm in question preserves the originally given distribution
up to a weight factor. Note that Proposition 2.2 may be derived without
recurring to uniformly distributed permutations using some machinery from
measure theory, see (Doberkat, 1980).

The following consequence will be important in the sequel

COROLLARY 2.3. p(k+l) (Akd)= y(k) -1 f o r every j in the subtree rooted
at k.

118 ERNST E. DOBERKAT

Proof. Abbreviating v l tN/2 J 1 lj=k ?(J) by C k, we see that

= c k + ~ . ~ f (x) d x
~ A k,j

(*) fA = Ck+ , • f (x) dx
k

= ~,(k) -~ • C~ .z(A~)

= y(k) -1 .

The equality (*) holds by the change of variables formula (Rudin, 1974,
p. 186), the symmetry o f f and because of Lemma 2.1. The Jacobian of T k is
identical to 1 since T k only permutes coordinates, thus is an orthogonal
transformation. II

With these tools at hand, we are ready to compute some probability
generating functions.

3. GENERATING FUNCTIONS FOR INTERCHANGES

AND COMPARISONS

Suppose we execute heapify(k) on y EAr, j , then the distance d(k, j)
between k and j will give the number of interchanges. Consequently,
Corollary 2.3 implies that

~ (z) := 7(k) 1 . ~ [{j;j is in the subtree rooted at k, d(k, j) = t}[• z t.
t=0

Denote by f (k , j) the number of comparisons for y~ .4k , i , then the
corresponding generating function for comparisons may be written as

Yk(z) := 7(k) -1 • ~. [{j;j is in the subtree rooted at k , f (k , j) = t}[. z t.
t--0

The function f may be determined as follows: if k = j = 1 (and N ~ 3), put
f (1 , 1) := 2, otherwise put

f (k , j) : = 2(d(k, j) - I) + s([j/2J) + s(j),

FLOYD'S ALGORITHM TO CONSTRUCT HEAPS 119

where s(j) is the number of sons of node j. This takes into account that
[N/2J has only one son in case N is even. Note that

f(k, j) = 2d(k, j) + s(j)

holds provided N is odd, or k is not on the special path, if N is even.
The corresponding generating functions for the interchanges and

comparisons done by the algorithm as a whole are a bit trickier to obtain,
since we have to deal with possibly variing depths of recursion, as the k-loop
proceeds.

THEOREM 3.1. I f g and ~/ are the probability generating functions for
interchanges and comparisons for Floyd's algorithm, then

and

N

l-]
k=l

N

I-I
k=l

hold.

Proof (1) Let Jk be an arbitrary node in the subtree rooted at k,
1 ~ k ~ [N/2] and define P(Jl J[N/2]) := {X ~ A ; x (k+l) ~Ak,Jk for] ~ k ~

~N/2] }, then evidently

3 := tP(jl JLu/Zj); Jk is in the subtree rooted at k for 1 ~< k ~ [N/2J}

is a partition of A consisting of h := H~u/~jy(j) members. Note that x
P(J~,"., Jtu/2~) implies that exactly

Vv/2]
~ d(i, ji)
i=1

interchanges will be done. Because of Lemma2.1, it is not difficult to
establish that there exists for every P E 3 a bijection P-+P(1, 2 [N/2J)
that permutes components only. Thus by the change of variables formula we
may deduce that

#(P) = #(P(1, 2 [N/2]))

holds for every partition element. Consequently, # (P) = h -1 holds for all
P E 3 .

(2) This enables us to compute the generating function for

120 E R N S T E. D O B E R K A T

interchanges. For this, abbreviate by T the number of interchanges. Then we
have for t >~ O,

[NI2 J
~ t (r = t) = ~ {u(P(j I JLN/zJl); ~ d(i, ji) = t}

t ' = l

IN~2]
= h - l " I{(.]1 J[N/2]); ~ d(i, J i) = t}l

i = 1

N

= coefficient o f z ' in I ~ ~ (z) .
k = l

(Note that ~ (z) = 1 if k > [N/2]). Replacing d(i, j) by f(i, j), the result for
comparisons follows in a similar way. II

Consequently, we see that there will be

N

g-~(1)
k = l

interchanges and

N

~ '~ (1)
k = l

comparisons on the average with a variance of

~ , [g-~,'(l) + g-~(1) -- (g-~(l)) 2]
k = l

and

[~'~,'(1) + ~ (1) - (~/~f,(1))2],
k = l

respectively (see Knuth 1973a, p. 98).
Let us compute g- and 7 ~ in the special case that N = 2 "+1 - 1, thus

every node has either two or no offsprings. Suppose k is at level j , so
k = 2 j + i for some i, 0 ~< i ~< 2 ~ - 1. Given t with 0 ~< t ~< n - j , there are 2'
nodes in the subtree rooted at k the distance of which to k equals t. Since
7(k) = 2 "+ 1-j _ 1, we see that

1 " - d 1 (2 z) n + a - j _

g-v+i(z)= 2 " + 1 - J ' - 1 ~ 2 t z t = 2 " + l - j - 1 " 2 z - - 1
t = 0

FLOYD'S ALGORITHM TO CONSTRUCT HEAPS 121

holds. Since the 2 j subtrees at this level all have the same shape,

g-(z) = 2 n + l - j - 1 2 z - 1 j=0

is obtained. Let us turn to comparisons. Since every node has either two or
no offsprings, there will be always an even number of comparisons. Fix
a g a i n k = 2 j + i , 0 ~ < i ~ < 2 j - l, and let t = 2r with r >/1. Then

I{g; 2d(k,g) + s(g) = 2r}l = A 1 + A 2 ,

where

A~ := I{ g; 2d(k, g) + s(g) = 2r, g is a leaf}l,

A 2 := [{ g; 2d(k, g) + s(g) = 2r, g is an interior node}l.

Hence

A I = 0 if r 4 : n - j ,

= 2 r if r = n - j ,

and

A 2 = 2 r-1 if r < ~ n - j

= 0 otherwise.

This yields

1 2n-Jz2("-J)(3z 2 - 1) - z 2

~ ' v + t (z) - 2 n + l - j - 1 2z 2 - 1 '

thus the generating function ~ (z) in question equals

n~ll [1 (2z2)n-J(3z 2 - 1) - - - 72] 2j

~=0 2 " + l - J - 1 ~Tz2S---]-

Let us evaluate the corresponding expectations and variances in this
interesting special case. Abbreviating

(2z)i+ 1 _ 1
ti(z) := (2 J+l - 1) (2 z - 1) '

g- may be written as

~-(z) = ([(tj(z)) 2"-j.
j=l

643/61/2-4

1 2 2 E R N S T E. D O B E R K A T

Taking logarithmic derivatives and using

g-(l) = ti(1) = 1,

the expected number of interchanges may be written as

g-'(1) = ~ 2"--~tj(1).
j = l

In a similar way,

~ ' (1) = k 2"-JvJ(1)
j = l

gives the expected number of comparisons, where

vAz) :=

is set for abbreviation.
An easy computation shows

tj(1) =

and

SO

with

Setting

(2zZ)~(3z 2 - 1) - z 2

(2 j+a + 1)(2z 2 - 1)

(J + 1)2S+ 1 2
2 j + 1 - - 1

(2j-- 1)2 j+l + 2
vj'(1) = 2 i + 1 - 1 '

n+a 1
g- ' (1)=2"+1 ~ 2 i - 1

j = 2
2 (2 " - I) = 2 " + ' (y . + l - 2) + 2

2kl
j = l

xn := 2 J - 1 '
j = t

one obtains similarly

~ " (1) = 2"+1(2y,+1 --xn+ 1 -- 2) + 2.

F L O Y D ' S A L G O R I T H M TO C O N S T R U C T HEAPS 123

Hence in order to obtain an asymptot ic estimate for the expectations in
question, we need

where

L E M M A 3.2. As n ~ oo,

Xn = a I 2 " 3 • 2 2n + / y

Y" = a l + c~2 2" 3 • 2 2" + ~r ,

" - ~ r'~ 1
a i ' - - 1) i •

Proof We will obtain the asymptot ic expansions in question from the
generating functions for (x.) and (y .) by what is known as Darboux ' s
method (Greene and Knuth, 1982, 4.3.1).

(1) The generating function for (Xn) is

z

~ ' - (z) : = 1 - - z k=l 2 k ~ z

J has simple poles in 2 t, i >/0, and from Darboux ' s theorem we obtain as a
first approximation

x . = a l + z~(1) as n ~ .

Since (z) - a~/(1 - z) is regular in Izl < 2, this may be improved to

and finally to

(2) Since

is the generating function of

Z

~0(z) := 2 k-_
k = l Z

x. = a 1 2" 3 • 2 TM I-/7"

124 ERNST E. DOBERKAT

z . ~-~(z) will be the generating function for

consequently,

x 2k
~ (z) : - - 1 - x k=1 (2k---x) 2

is the generating function for (Yn)n>l" ~ has a simple pole at 1 and double
poles at 2 k, k/> 1, so from Darboux's theorem we get as a first approx-
imation

Yn z a l + a2 + £ r (])

from the simple pole at z = 1.
Since

a I + a 2

1 - z

is regular in]z[< 2 (this can be seen from the partial fraction expansion

2 k • z 2 k 2 2k

(1 - - Z)(z -- 2k) 2 - (2 k - 1) 2 (z - 2 k) (2 k - 1) (z - 2 k) 2

) + (2 k - 1)2(1 - z) '

this first approximation may be improved to

Y n = a l + a z - - ~ - d + ~

and, by a similar argument applied to

~(z) al + a2 ~ nz~ al + a2 4
+ 2" .~(z) 1 - z (z - 2) 2, 1 - -Z n=l

we finally get the claimed expansion. II

Together with the expressions for g- ' (1) and ~ ' (1) from above these
expansions yield

F L O Y D ' S A L G O R I T H M T O C O N S T R U C T H E A P S

PROPOSrTION 3.3. I f N = 2 "+ 1 _ 1, Floyd's algorithm
construction requires

(a 1 + a 2 - 2) N - n + a 1 + a 2 - 1 - - ~ + ~r

interchanges, and

(a 1 + 2a 2 - 2) N - 2n + a I + 2a 2 - 1 - ~ + Lr

comparisons, as n-~ oo.

Numer i ca l l y , we get

a 1 = 1.6066951

and

a 2 = 1.1373387.. . ,

so the coeff ic ients for the leading te rm are

a I + a 2 - 2 = 0 .7440338

and

Cq - - 2 a 2 - - 2 = 1.8813726

Let us have a look at the va r i ances o f the quant i t ies

va r i ance for in te rchanges equals

va r (g -) : = g - " (1) + g - ' (1) - (g - ' (1)) 2.

q(z)
g- ' (z) = g-(z) 2"-J tj(z)

j = l

F r o m

and

g - (l) = t j (1) = 1

it is eas i ly der ived that

n

var (g -) = ~ 2 " - J (t j ' (1) + t j (1) - (t j (1))z) ,
j = l

125

f o r heap

in quest ion. The

126 ERNST E, D O B E R K A T

similarly,

Since

var(7 ~) ----- ~ 2"-J(vj'(1) + vj(1) -- (vj(1))2).
j = l

2(j - - 4)(j + 1)2 j+l
tj'(1) = 2 j+l - 1 + 8,

v"(1) _ j (2 j - 3)2 i+2 -- 7
j -- ~ - i ~ ~ +7 ,

we get after some simplification

var(g-) = 2~+~ ~ (2 -j
j = l

and

(j-t- 1) 2) = 2"+2 -- 2"+ ~fi - - 2
(2-7-z7 _2-]-)2 ,+~

~ (3 4 k 2 + 4 k + l)
v a r (~) = 2 "+1 4 . 2 ~ 2k+1_ 1 ~ ; - 1 ~ 1) 2

j = l

= 2n (8"~n+ 1 - - Y n + l - - 2 Y n + l - - 6 X n + a q- 9) - 8,

where
k

"~n ~ k=l (2 ~ - 1) 2,

k z

33.: = ~ (2k_1)2"
k = l

In order to derive an asymptotic expansion for these variances, we need

LEMMA 3.4. Asympto t ica l ly ,

and

where

2 . = a 3 3 . 2 2~ t a "

n2 (n2)
fi" = a4 3 • 2 z" ~ t~ ~ as n --, m ,

k2~+ 1
a3 := k=J (2k-+F'- -1) = '

k2k+a(2 k+l + 1)
a4 := . (2k+~ k=l - - 1) 3

FLOYD'S ALGORITHM TO CONSTRUCT HEAPS 127

Proof The expansions in question are again derived from the generating
functions for the sequences. Since

k . z
~°(z) := 2 *Tf 2 z

k = l

is the generating function for (1/(2n-1)2)n>a , we may derive, using the
simple rules for manipulating generating functions (Knuth 1973a, 1.2.9), that

k • 2 *+ i . - _ z

1 - z 1 - z k=l

is the generating function for (2n). Similarly,

z x~ k . 2 '+1(2 k+l + 1)
~ (z) : = 1 z I,=,2" _ (- p r r - _

may he seen the generating function for (ft,). The expansions now may be
derived from Darboux ' s theorem in exactly the same way as before. |

Before proceeding, a comment about the constants a 1 a 4 is in order.
These constants may be obtained from the basic hypergeometric series

O(x ,y ,q) := l +
k=l 1--y*q

in the following manner:

a l = o , ~ - , 1 - -1 ,

a c~ 1 q) ,

a 3 = 2 c~x Oq ~ x, -~, q

and finally

x = 1 , q = 1/2

1 ~2
O(1, Y, q)ly=l/z,q=l/2 a4 = 4 Oy~q

(it is not difficult to see that the partial derivatives at the points in question
may be taken). Numerical ly, we have

a 3 = 1.3085437

a 4 = 1.7387828

128 ERNST E. DOBERKAT

Plugging these asymptotic expansions into the expressions found for the
variances above, and doing some simplification yields

PROPOSITION 3.5. I f N = 2 "+1 - 1, Floyd's algorithm to construct heaps

has the following variances, as n ~ oo:

(a) f o r interchanges: (2 - a4)N - a 4 + n2/3N + tr(n2/2 n)

(b) f o r comparisons: (4a 3 - 4a I - a z - a4/2 + 9)N ÷ 4a 3 - 4al - a2 -
a J 2 + 9 + n + n2/6N + zr(n2/2").

Numerically, the leading term has the following coefficient: 0.2612171
(interchanges), 1.3006643 (comparisons).

These variances are linear; it would be interesting to have, at least in ease
N = 2 " + ' - 1, an asymptotic expansion for the mth moment for
interchanges, both as m ~ ~ , and as n ~ oo. This could possibly follow the
lines of (Doberkat, 1982, Prodinger, 1984).

Let us have a look at the general situation and derive the corresponding
generating functions. In order to do this, we have to distinguish between
special and nonspecial nodes in the tree. Suppose the node k is a nonspecial
node on level j, then the considerations above imply that

Ug(z) = (2 "+ ' -J - 1) -1 (2 z) n + l - J - - 1
2z - 1 ' k is a left node,

= 1) - ' (2 z) " - J - 1
2 z - I ' k is a right node,

and similar formulae hold for W'k(Z). However, if k is a special node, g-k(Z)
and ~'k(Z) do not look so regular. Suppose k = (lb ,_ 1 bj)2, then

7(k) = (lbj_l, . . . , b0)2.

Since the distance from k to N is j , we see that with

Ar := I{t; t is the subtree rooted at k, d(t, k) = r}l,

the following holds

A t = 2 ~ if O < . r < j ,

= (b j _ l - - . b 0) 2 + l , if r = j .

Hence

2 k+'zk(1 - - z) - - 1
g-k(Z) = 7(k)-1 2z -- 1 + (7(k)+ 1)zJ].

FLOYD'S ALGORITHM TO CONSTRUCT HEAPS 129

Abbreviating (lbn_ 1 " . . b j) 2 by a(N,j), and (lbj_ 1 ... b0) 2 by r (N, j) , the
probability generating function for interchanges has according to
Theorem 3.1 the following form:

~ . (2) = 17- 1 (2Z) n + l - j - 1 ~<u, , -+)-zJ

) l 1.= 2 n + l - - / - 1 2z - 1

_-- . 1 (2 z) " - - / - 1 - - (' J)

j:x 2-+-I 2z~

j=o ~ ~ z -- I- + (z'(N, j) + 1)z j .

Let us turn to the generating function for comparisons, and again let k =
(lbn_ ~ ... bj) 2 be a special node. Suppose t is a node in the subtree rooted at
k, then we have to have a look at f (k , t), the number of comparisons which
are done in case the label of k percolates the tree and labels node t. It is
quite immediate that the following holds:

f (k , t) = 2j if d(k, t) =j, t 4= N,
2 (j - 1) if d(k, t) = j - 1 and t is a leaf,
2 (j - 1) + b o + 1 if t = [N / 2 J o r t = N ,
2(d(k, t) + 1) otherwise

Thus if

Ar := I{t; t is in the subtree rooted at k , f (k , t)= r}l,

these considerations yield

A t = 2 l-1 if r=2l , l ~ l < ~ j - - 2 ,
3 . 2 J - z - l - (b J _ l . . . b ~) 2 if r = 2 (j - 1) ,
2 (1 - b 0) if r = 2 j - 1 ,
3(bs_ 1 ... bl) 2 + 3b 0 if r = 2j.

Consider, e.g., the case r = 2 (j - 1): f (k , t) will be equal to 2 (j - 1) if

(a) t is a leaf to the right of [N/2J or

(b) t is an interior node with d(k, t) = j - 2.

There are 2 j - l - 1 - (bj_ 1 ... b~) 2 leaves to the right of [N/2], and 2 J'-2
interior nodes the distance of which to k is j - - 2 . Hence

1 [2J-zz 2 (j -2) - 1

~ (z) - - (mbj- l - ' " bo)z z 2 2z 2 - 1

+ z2(J -m) ((b j_ l . . . bl)z(3z 2 -- 1) + bo(3Z 2 - 2z) + 2z + 3 • 2 j -2 - - 1)},

130 ERNST E. DOBERKAT

and this gives the following expression for the probability generating function
for comparisons:

7y.k(Z)= ~I [I (2z2)n-J(3z2--1)--Z2]'~VV'n-j)-2J
j = l 2 n+ 1--j - 1 ~-2z2 --- 1

= n~i1 [1 (2ZZ)"--I--J(3zE--1)--zE]EJ+LI-o(N'n-J)
j=l 2 " - J - 1

1 j- -z

Z 2(j-1)([l'l • b l) 2 (3 z 2 1) + U y j - 1 "" - -

+ bo(3Z 2 - 2z) + 2z + 3 • 2 j-2 - 1)].
J

Evaluating g"(1) and ~ ' (1) , respectively, yields

THEOREM 3.3.

interchanges and

Floyd's algorithm requires

(a~ + a 2 -- 2)N + G(log N)

(a 1 + 2a 2 - 2)N+ O(log N)

comparisons on the average. |

It is possible to express the corresponding •(log N) terms by means of the
binary expansion of N; but since this results in rather clumsy and awkward
expressions, only the leading term of the respective asymptotic expansions is
given here.

ACKNOWLEDGMENT S

Some calculations were done with MACSYMA, developed by the Mathlab Group at MIT
which is supported in part by the United States Energy Research and Development
Administration under Contract Number E(11-1)-3070 and by the National Aeronautics and
Space Administration under Grant NSG 1323.

RECEIVED: September 2, 1982; ACCEPTED: July 25, 1984

FLOYD'S ALGORITHM TO CONSTRUCT HEAPS 131

REFERENCE S

AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. (1974), "Design and Analysis of
Algorithms," Addison-Wesley, Reading, Mass.

DOBERKAT, E. E. (1980), Some observations on the average performance of heapsort, in
"Proc. 21st Ann. IEEE Sympos. Math. Found. Comput. Sci." IEEE Computer Society,
Los Angeles, 229-237.

DOBERKAT, E. E. (1982), Asymptotic estimates for higher moments of the expected behavior
of straight insertion sort, Inform. Process. Lett. 14, 179-182.

DOBERKAT, E. E. (1983), Continuous models that are equivalent to randomness for the
analysis of many sorting algorithms, Computing 31, 11-31.

FLOYD, R. W. (1964), Algorithm 245, treesort 3, Comm. ACM 7, 701.
GREENE, D. H. AND KNUTH, D. E. (1981), "Mathematics for the Analysis of Algorithms,"

Birkhauser, Boston.
KNUTH, D. E. (1973a), "The Art of Computer Programming Vol. I: Fundamental

Algorithms," (2nd ed.), Addison-Wesley, Reading, Mass.
KNUTH, D. E. (1973b), "The Art of Computer Programming, Vol. III: Sorting and

Searching," Addison-Wesley, Reading, Mass.
PRODrN6ER, H. (1984), On a question by Doberkat about the higher moments of the expected

behavior of straight insertion sort, Inform. Process. Lett., in press.
RUD1N, W. (1974), "Real and Complex Analysis." McGraw-Hill, New York (Second

Edition).

