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An Average Case Analysis of 
Floyd's Algorithm to Construct Heaps 

E R N S T  E .  D O B E R K A T  

Department of Mathematics and Computer Science, 
Clarkson College of Technology, Potsdam, New York 13676 

The expected number of interchanges and comparisons in Floyd's well-known 
algorithm to construct heaps and derive the probability generating functions for 
these quantities are considered. From these functions the corresponding expected 
values are computed. © 1984 Academic Press, Inc. 

1. I N T R O D U C T I O N  

We are going to investigate the expected numbers of interchanges and 
comparisons for Floyd's algorithm for heap construction (Knuth, 1973b, 
5.2.3; Floyd, 1964). This will be done by computing the corresponding 
probability generating functions, from which the looked for values will be 
obtained, and from which in principle information on all the higher moments 
could be derived. 

Suppose we are given an array x[1 ... N] such that x[i] is the label of 
node i, when {1,...,N} is represented in the canonical way as a binary tree 
(i.e., 1 is the root of this tree, and 2i and 2i + 1 are, respectively, the left and 
the right sons of node i). This array is called a heap if each node has a 
greater label than its father, or, more formally, iff 

x[i] > x[li/2]] 

holds for every i ~ {2,.., N}. Floyd's algorithm for heap construction then 
reads as given below (note that we here take the elegant recursive version as 
given in (Aho, Hopcroft, and Ullman, 1974); Floyd's original formulation is 
iterative rather than recursive): 

Input: the array x 
Output: x, organized as a heap 
Method: 0. procedure heapify(k); 

if k is no leaf and a son of k has a smaller label than k has 
then let j be the son with the smallest label; 

interchange x[k] with x[ j ] ;  
heapify(j) 
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endif 
end heapify; 

1. for k :-- IN/2] downto 1 do heapify(k). 

Thus if k is a node with the property that both its left and its right subtree 
have the heap property already (i.e., every node has a smaller label than its 
offsprings), a call to heapify(k) will check whether this condition is met for 
k. If this is the case, the next node will be processed, if not, the label for k 
will be interchanged with that for the son having the smallest label, and this 
consideration is repeated for that node. In this way every node starting from 
the rightmost deepest nonleaf and proceeding from right to left to the root is 
made the root of a heap. 

This algorithm has the very convenient property of preserving 
randomness; this means that uniformly distributed input data will produce 
uniformly distributed heaps. Knuth derives this fact for uniformly distributed 
permutations of {1,...,N} and uses this to derive a number of probabilistic 
characteristics for the algorithm, e.g., the expected number of times the left 
son has a larger label than the right son or the expectation for the total 
number of keys promoted during a call to heapify (Knuth, 1973b, 153-157). 
These investigations are based on the geometric structure of the underlying 
tree. We make use of these results concerning stability of the distribution in a 
considerably more general continuous probabilistic model and carry the 
analysis a bit further by considering expectations for interchanges and com- 
parisons. 

The paper is organized as follows: in Section 2 heaps are introduced more 
formally and the probabilistic assumptions are made explicit. Section 3 
derives the probability generating functions for interchanges and for 
comparisons, from which the wanted expectations are computed. 

2. HEAPS 

Represent { 1,..., N} as a tree as mentioned in the Introduction. We will make 
heavy use of this tree representation in the sequel and quote some notations 
and results from (Knuth, 1973b, 153-157). The path leading from N to 1 is 
called the special path; if N =  ( l b n _  1 . . .  b0)  2 in binary, then 

{(lbn_ 1 ... bj)2;O<~j<~n } 

constitutes this special path; note t h a t j  = n gives the root 1 of the tree. The 
nodes of the special path are called special nodes. If k is no special node, 
then the subtree rooted at k is complete. Let y(k) be the size of the subtree 
rooted at k, then 

) ) ( ( l b n _  1 . . .  bj)2) = ( l b j _ l . . .  bo) 2. 
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Call a node k on level j a left (right) node, if 2 J ~ k < (lb~_l " ' "  bn j)2 
( ( lb ,_l  ... b,_i)2 < k~< 2 j + l -  1) holds; thus a left (right) node lies to the 
left (right) of the special path. It is clear that there are 

left nodes and 

( l b n _  1 . . .  b n _ j )  2 - 2 j 

2 j + l  - -  1 - -  ( l b n _  1 . . .  b n _ j )  2 

right nodes on level j. The subtree rooted at a left (right) node on this level 
h a s  2 n + l - J -  1 (2 " - a ' -  1) nodes. We will use these numbers when 
calculating the generating functions below. 

It is assumed that the inputs to the algorithm are taken from some set in 
Euclidean space and are continuously distributed. To be more specific, we 
assume that the input space A is a symmetric set in the following sense: 

(a) A c [QN is a Borel set, 

(b) if x C A  then xivS x a for i-¢:j, 

(c) if x C A then (xp(1) ..... Xp(u) ) E A for every p ~ ~.~z~ u : =  {p;  p is a 
permutation of { 1 ..... N}}. 

Condition (a) is a technical one allowing us to define a probability measure 
on A, condition (c) will prevent that the outputs of the algorithm will escape 
from A (thus preventing technical difficulties), and condition (b) which will 
hold almost everywhere for a continuous probability distribution on A, is 
included for convenience. The distribution/~ of the elements of A is assumed 
to have the density f ,  thus 

p(B) =j" f ( x )  dx 

holds for every Borel set B c A ,  whe re f i s  symmetric in the sense that 

Yx C AVp ~ YN :f(x1 . . . . .  XN) =f(xpo) ..... XpCN)) 

holds. Thusfwi l l  have the same value for a vector x and for all vectors that 
are obtained from x by permuting components. The pair (A,/a) is called a 
symmetric model in (Doberkat, 1983) and discussed there extensively; 
examples for these models may be found there, too. For the remainder of this 
paper a symmetric model (A, g) is fixed. 

In order to have a look at some distributional properties of the algorithm, 
k-heaps are remembered from (Knuth, 1973b): a vector x E A is called a k- 
heap iff the subtree rooted at k has the heap property; A k is the set of all k- 
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heaps. Given an input x, denote the resulting k-heap by x~k); using the 
procedure heapify, x ~k) is obtained from x by executing 

forj  := [N/2J downto k do heapify(j). 

Now suppose that y CAk+ ~ is a (k + 1)-heap, then a call to heapify(k) will 
make it a k-heap, and Yk as the original label of node k will label another 
node j upon return from this procedure call, where j is in the subtree rooted 
at k. Let Akd denote the set of all those (k + 1)-heaps with this property, 
then the following is not difficult to establish: 

LEMMA 2.1. Le t  T k :Ak+ 1 -~A k be the map corresponding to heapify(k), 
then T k : A k,j -+ A k is a bijection for  every j in the subtree rooted at k. 

This implies that every k-heap has exactly 7(k) inverse images under T k 
(or under heapify(k)). Now let/2 (k) be the distribution of all k-heaps, then 
Lemma 2.1 will be useful to characterize ~t (k). More formally, /2 (k) may be 
defined inductively by 

]./( IN/2 ]-- 1) :~_fl, 

thus/.t ~k~ is the image measure of/2 (k+l~ under T k . 

PROPOSITION 2.2. 

p(k)= ~ 7(J) 'P"  
i - k  

Proo f  Define the order type a(x)  of a vector x E A  as the unique 
permutation p such that xp(l) > ... > Xp~N) holds. In Section 4 of (Doberkat, 
1983) it is shown that a symmetric model yields the same distributioon of 
order types for any algorithm that manipulates its inputs based only on their 
order type, as the discrete model of randomness does. Thus the proposition 
follows from Theorem 5.2.3. H in (Knuth, 1973b). II 

Hence the algorithm in question preserves the originally given distribution 
up to a weight factor. Note that Proposition 2.2 may be derived without 
recurring to uniformly distributed permutations using some machinery from 
measure theory, see (Doberkat, 1980). 

The following consequence will be important in the sequel 

COROLLARY 2.3. p(k+l) (Akd)= y(k) -1 f o r  every j in the subtree rooted 
at k. 
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Proof. Abbreviating v l  tN/2 J 1 lj=k ?(J) by C k, we see that 

= c k + ~ . ~  f ( x ) d x  
~ A  k,j  

(*) fA = Ck+ , • f ( x )  dx 
k 

= ~,(k) -~ • C~ .z(A~) 

= y(k)  -1 .  

The equality (*) holds by the change of variables formula (Rudin, 1974, 
p. 186), the symmetry o f f  and because of Lemma 2.1. The Jacobian of T k is 
identical to 1 since T k only permutes coordinates, thus is an orthogonal 
transformation. II 

With these tools at hand, we are ready to compute some probability 
generating functions. 

3. GENERATING FUNCTIONS FOR INTERCHANGES 

AND COMPARISONS 

Suppose we execute heapify(k) on y EAr, j ,  then the distance d(k, j)  
between k and j will give the number of interchanges. Consequently, 
Corollary 2.3 implies that 

~ ( z )  := 7(k) 1 . ~ [{j;j is in the subtree rooted at k, d(k, j )  = t}[ • z t. 
t=0 

Denote by f ( k , j )  the number of comparisons for y~ .4k , i ,  then the 
corresponding generating function for comparisons may be written as 

Yk(z) := 7(k) -1 • ~. [{j;j is in the subtree rooted at k , f ( k , j )  = t}[. z t. 
t--0 

The function f may be determined as follows: if k = j =  1 (and N ~  3), put 
f (1 ,  1) := 2, otherwise put 

f ( k ,  j ) : =  2(d(k, j ) -  I) + s([j/2J) + s(j), 
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where s(j) is the number of sons of node j. This takes into account that 
[N/2J has only one son in case N is even. Note that 

f(k,  j) = 2d(k, j) + s(j) 

holds provided N is odd, or k is not on the special path, if N is even. 
The corresponding generating functions for the interchanges and 

comparisons done by the algorithm as a whole are a bit trickier to obtain, 
since we have to deal with possibly variing depths of recursion, as the k-loop 
proceeds. 

THEOREM 3.1. I f  g and ~/ are the probability generating functions for 
interchanges and comparisons for Floyd's algorithm, then 

and 

N 

l-] 
k=l 

N 

I-I 
k=l 

hold. 

Proof (1) Let Jk be an arbitrary node in the subtree rooted at k, 
1 ~ k ~  [N/2] and define P(Jl ..... J[N/2]) :=  {X ~ A ; x  (k+l) ~Ak,Jk for ] ~ k ~  

~N/2] }, then evidently 

3 := tP(jl ..... JLu/Zj); Jk is in the subtree rooted at k for 1 ~< k ~ [N/2J} 

is a partition of A consisting of h := H~u/~jy(j) members. Note that x 
P(J~,"., Jtu/2~) implies that exactly 

Vv/2 ] 
~ d(i, ji) 
i=1 

interchanges will be done. Because of Lemma2.1, it is not difficult to 
establish that there exists for every P E 3 a bijection P-+P(1, 2 ..... [N/2J) 
that permutes components only. Thus by the change of variables formula we 
may deduce that 

#(P) = #(P(1, 2 ..... [N/2])) 

holds for every partition element. Consequently, # ( P ) =  h -1 holds for all 
P E 3 .  

(2) This enables us to compute the generating function for 
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interchanges. For  this, abbreviate by T the number  of interchanges. Then we 
have for t >~ O, 

[NI2 J 
~ t ( r =  t) = ~ {u(P(j  I ..... JLN/zJl); ~ d(i, ji) = t} 

t ' = l  

IN~2 ] 
= h - l "  I{( . ]1  . . . . .  J[N/2]); ~ d(i, J i ) =  t}l 

i = 1  

N 

= coefficient o f z '  in I ~  ~ ( z ) .  
k = l  

(Note that  ~ ( z ) =  1 if k > [N/2]). Replacing d(i, j) by f(i, j), the result for 
comparisons follows in a similar way. II 

Consequently, we see that there will be 

N 

g-~(1) 
k = l  

interchanges and 

N 

~ '~ (1 )  
k = l  

comparisons on the average with a variance of 

~ ,  [g-~,'(l) + g-~(1) -- (g-~(l)) 2] 
k = l  

and 

[~'~,'(1) + ~ ( 1 )  - (~/~f,(1))2], 
k = l  

respectively (see Knuth 1973a, p. 98). 
Let us compute  g- and 7 ~ in the special case that N =  2 "+1 - 1, thus 

every node has either two or no offsprings. Suppose k is at level j ,  so 
k = 2 j + i for some i, 0 ~< i ~< 2 ~ - 1. Given t with 0 ~< t ~< n - j ,  there are 2'  
nodes in the subtree rooted at k the distance of which to k equals t. Since 
7(k) = 2 "+ 1-j _ 1, we see that 

1 " - d  1 ( 2 z )  n + a - j  _ 

g-v+i(z)= 2 " + 1 - J ' -  1 ~ 2 t z t =  2 " + l - j -  1 " 2 z - -  1 
t = 0  
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holds. Since the 2 j subtrees at this level all have the same shape, 

g-(z) = 2 n + l - j -  1 2 z -  1 j=0 

is obtained. Let us turn to comparisons. Since every node has either two or 
no offsprings, there will be always an even number of  comparisons. Fix 
a g a i n k = 2  j + i , 0 ~ < i ~ < 2  j - l, and let t = 2r with r >/1. Then 

I{g; 2d(k,g) + s(g) = 2r}l = A  1 + A 2 ,  

where 

A~ :=  I{ g; 2d(k, g) + s(g) = 2r, g is a leaf}l, 

A 2 := [{ g; 2d(k, g) + s(g) = 2r, g is an interior node}l. 

Hence 

A I = 0  if r 4 : n - j ,  

= 2  r if r = n - j ,  

and 

A 2 = 2  r-1 if r < ~ n - j  

= 0 otherwise. 

This yields 

1 2n-Jz2("-J)(3z 2 -  1 ) - z  2 

~ ' v + t ( z ) -  2 n + l - j -  1 2z 2 -  1 ' 

thus the generating function ~ ( z )  in question equals 

n~ll [ 1 (2z2)n-J(3z 2 -  1 ) - - -  72 ] 2j 

~=0 2 " + l - J -  1 ~Tz2S---]- 

Let us evaluate the corresponding expectations and variances in this 
interesting special case. Abbreviating 

(2z)i+ 1 _ 1 
ti(z) :=  (2 J+l - 1 ) ( 2 z -  1) '  

g- may be written as 

~-(z) = ( [  (tj(z)) 2"-j. 
j=l 

643/61/2-4 
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Taking logarithmic derivatives and using 

g-(l) = ti(1 ) = 1, 

the expected number of interchanges may be written as 

g-'(1) = ~ 2"--~tj(1). 
j = l  

In a similar way, 

~ ' ( 1 ) =  k 2"-JvJ(1) 
j = l  

gives the expected number of comparisons, where 

vAz) := 

is set for abbreviation. 
An easy computation shows 

tj(1) = 

and 

SO 

with 

Setting 

(2zZ)~(3z 2 - 1) - z 2 

(2 j+a + 1)(2z 2 -  1) 

( J +  1)2S+ 1 2 
2 j +  1 - -  1 

(2j-- 1)2 j+l + 2 
vj'(1) = 2 i + 1 -  1 ' 

n+a 1 
g- ' (1)=2"+1 ~ 2 i - 1  

j = 2  
2 ( 2 " -  I ) =  2 " + ' ( y . + l -  2) + 2 

2kl 
j = l  

xn := 2 J -  1 ' 
j = t  

one obtains similarly 

~ " ( 1 )  = 2"+1(2y,+1 --xn+ 1 -- 2) + 2. 
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Hence in order to obtain an asymptot ic  estimate for the expectations in 
question, we need 

where 

L E M M A  3.2. As n ~ oo, 

Xn = a I 2 "  3 • 2 2n + / y  

Y" = a l  + c~2 2" 3 • 2 2" + ~r , 

" - ~  r'~ 1 
a i ' -  - 1 ) i  • 

Proof We will obtain the asymptot ic  expansions in question from the 
generating functions for (x.)  and ( y . )  by what is known as Darboux ' s  
method (Greene and Knuth,  1982, 4.3.1). 

(1) The generating function for (Xn) is 

z 

~ ' - ( z ) : =  1 - - z  k=l 2 k ~ z  

J has simple poles in 2 t, i >/0, and from Darboux ' s  theorem we obtain as a 
first approximation 

x .  = a l  + z~(1 ) as n ~ .  

Since ( z ) -  a~/(1 - z )  is regular in Izl < 2, this may  be improved to 

and finally to 

(2) Since 

is the generating function of 

Z 

~0(z)  := 2 k-_ 
k = l  Z 

x.  = a 1 2" 3 • 2 TM I-/7" 
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z .  ~-~(z) will be the generating function for 

consequently, 

x 2k 
~ ( z ) : - -  1 - x  k=1 (2k---x) 2 

is the generating function for (Yn)n>l" ~ has a simple pole at 1 and double 
poles at 2 k, k/> 1, so from Darboux's  theorem we get as a first approx- 
imation 

Yn z a l  + a2  + £ r ( ] )  

from the simple pole at z = 1. 
Since 

a I + a 2 

1 - z  

is regular in ]z[ < 2 (this can be seen from the partial fraction expansion 

2 k • z 2 k 2 2k 

(1 - -  Z)(z -- 2k) 2 - ( 2  k - 1 ) 2 ( z - 2  k) (2 k - 1 ) ( z - 2 k )  2 

) + (2 k -  1)2(1 - z )  ' 

this first approximation may be improved to 

Y n = a l  + a z - - ~ - d +  ~ 

and, by a similar argument applied to 

~(z) al + a2 ~ nz~ al + a2 4 
+ 2" .~(z) 1 - z (z - 2) 2, 1 - -Z  n=l 

we finally get the claimed expansion. II 

Together with the expressions for g- ' (1)  and ~ ' ( 1 )  from above these 
expansions yield 
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PROPOSrTION 3.3. I f  N = 2 "+ 1 _ 1, Floyd's  algorithm 
construction requires 

(a 1 + a 2 -  2 ) N -  n + a 1 + a 2 -  1 - - ~  + ~r 

interchanges, and 

(a 1 + 2a  2 - 2 ) N  - 2n + a I + 2a  2 - 1 - ~ + Lr 

comparisons, as n-~ oo. 

Numer i ca l l y ,  we get 

a 1 = 1.6066951 .... 

and 

a 2 = 1.1373387.. . ,  

so the coeff ic ients  for the leading te rm are  

a I + a 2 -  2 = 0 .7440338 .... 

and 

Cq - -  2 a  2 - -  2 = 1.8813726 . . . .  

Let  us have  a look at the va r i ances  o f  the quant i t ies  

va r i ance  for in te rchanges  equals  

va r (g - )  : =  g - " ( 1 )  + g - ' ( 1 )  - ( g - ' ( 1 ) )  2. 

q(z) 
g- ' (z)  = g-(z) 2"-J tj(z) 

j = l  

F r o m  

and 

g - ( l )  = t j ( 1 )  = 1 

it is eas i ly  der ived  that  

n 

var (g - )  = ~ 2 " - J ( t j ' ( 1 )  + t j (1)  - ( t j (1))z) ,  
j = l  

125 

f o r  heap 

in quest ion.  The  
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similarly, 

Since 

var(7 ~)  ----- ~ 2"-J(vj'(1) + vj(1) -- (vj(1))2). 
j = l  

2( j - -  4)(j  + 1)2 j+l 
tj'(1) = 2 j+l - 1 + 8, 

v"(1) _ j ( 2 j -  3)2 i+2 -- 7 
j -- ~ - i ~  ~ +7 ,  

we get after some simplification 

var(g-) = 2~+~ ~ (2 -j  
j = l  

and 

(j-t- 1) 2 ) = 2"+2 --  2"+ ~fi - - 2  
(2-7-z7 _2- ]-)2 ,+~ 

~ ( 3 4 k 2 + 4 k + l )  
v a r ( ~ )  = 2 "+1 4 . 2  ~ 2k+1_ 1 ~ ; - 1  ~ 1) 2 

j = l  

= 2n (8"~n+  1 - - Y n + l  - -  2 Y n + l  - -  6 X n + a  q- 9) - 8,  

where 
k 

"~n ~ k=l ( 2 ~ -  1) 2, 

k z 

33.: = ~ (2k_1)2"  
k = l  

In order to derive an asymptotic expansion for these variances, we need 

LEMMA 3.4. Asympto t ica l ly ,  

and  

where  

2 . = a  3 3 .  2 2~ t a "  

n2 (n2) 
fi" = a4 3 • 2 z" ~ t~ ~ as n --, m ,  

k2~+ 1 
a3 := k=J (2k-+F'- -1) = ' 

k2k+a(2 k+l + 1) 
a4 := . (2k+~ k=l - -  1) 3 
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Proof The expansions in question are again derived from the generating 
functions for the sequences. Since 

k . z  
~°(z) := 2 *Tf 2 z 

k = l  

is the generating function for (1/(2n-1)2)n>a , we may  derive, using the 
simple rules for manipulating generating functions (Knuth 1973a, 1.2.9), that 

k • 2 *+ i . -  _ z 

1 - z  1 - z  k=l 

is the generating function for (2n). Similarly, 

z x~ k .  2 '+1(2  k+l + 1) 
~ ( z ) : =  1 z I,=,2" _ ( - p r r - _  

may he seen the generating function for (ft,). The expansions now may  be 
derived from Darboux ' s  theorem in exactly the same way as before. | 

Before proceeding, a comment  about the constants a 1 ..... a 4 is in order. 
These constants may  be obtained from the basic hypergeometric  series 

O(x ,y ,q ) :=  l + 
k=l 1--y*q 

in the following manner:  

a l =  o , ~ - ,  1 - -1 ,  

a c~ 1 q) , 

a 3 =  2 c~x Oq ~ x, -~,  q 

and finally 

x =  1 , q =  1/2 

1 ~2 
O( 1, Y, q)ly=l/z,q=l/2 a4 = 4 Oy~q 

(it is not difficult to see that the partial  derivatives at the points in question 
may  be taken). Numerical ly,  we have 

a 3 = 1.3085437 .... 

a 4 = 1.7387828 .... 
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Plugging these asymptotic expansions into the expressions found for the 
variances above, and doing some simplification yields 

PROPOSITION 3.5. I f  N =  2 "+1 - 1, Floyd's algorithm to construct heaps 

has the following variances, as n ~ oo: 

(a) f o r  interchanges: (2 - a4)N - a 4 + n2/3N + tr(n2/2 n) 

(b) f o r  comparisons: (4a 3 - 4a I - a z - a4/2 + 9)N ÷ 4a 3 - 4al  - a2 - 
a J 2  + 9 + n + n2/6N + zr(n2/2"). 

Numerically, the leading term has the following coefficient: 0.2612171 .... 
(interchanges), 1.3006643 (comparisons). 

These variances are linear; it would be interesting to have, at least in ease 
N = 2  " + ' -  1, an asymptotic expansion for the mth moment for 
interchanges, both as m ~ ~ ,  and as n ~ oo. This could possibly follow the 
lines of (Doberkat, 1982, Prodinger, 1984). 

Let us have a look at the general situation and derive the corresponding 
generating functions. In order to do this, we have to distinguish between 
special and nonspecial nodes in the tree. Suppose the node k is a nonspecial 
node on level j, then the considerations above imply that 

Ug(z) = (2 "+ ' -J  - 1) -1 ( 2 z ) n + l - J - -  1 
2z - 1 ' k is a left node, 

= 1 ) - '  ( 2 z ) " - J -  1 
2 z -  I ' k is a right node, 

and similar formulae hold for W'k(Z ). However, if k is a special node, g-k(Z) 
and ~'k(Z) do not look so regular. Suppose k = ( lb ,_  1 ..... bj)2, then 

7(k) = (lbj_l, . . . ,  b0)2. 

Since the distance from k to N is j ,  we see that with 

Ar := I{t; t is the subtree rooted at k, d(t, k) = r}l, 

the following holds 

A t = 2  ~ if O < . r < j ,  

= ( b j _ l - - . b 0 ) 2 + l ,  if r = j .  

Hence 

2 k+'zk(1 - - z ) - -  1 
g-k(Z) = 7(k)-1 2z -- 1 + (7(k)+ 1)zJ]. 
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Abbreviating (lbn_ 1 " . . b  j )  2 by a(N,j),  and (lbj_ 1 ... b0) 2 by r (N, j ) ,  the 
probability generating function for interchanges has according to 
Theorem 3.1 the following form: 

~ . ( 2 ) =  17- 1 (2Z) n + l - j -  1 ~<u, , -+)-zJ 

) l  1.= 2 n + l - - / -  1 2z - 1 

_-- . 1 ( 2 z )  " - - / -  1 - - ( ' J) 

j:x 2-+-I 2z~ 

j=o ~ ~ z  --  I- + (z'(N, j )  + 1)z j . 

Let us turn to the generating function for comparisons, and again let k = 
(lbn_ ~ ... bj) 2 be a special node. Suppose t is a node in the subtree rooted at 
k, then we have to have a look at f ( k ,  t), the number of  comparisons which 
are done in case the label of k percolates the tree and labels node t. It is 
quite immediate that the following holds: 

f ( k ,  t) = 2j if d(k, t) =j,  t 4= N, 
2 ( j -  1) if d(k, t) = j  - 1 and t is a leaf, 
2 ( j -  1 ) + b o +  1 if t = [ N / 2 J o r t = N ,  
2(d(k, t) + 1) otherwise 

Thus if 

Ar := I{t; t is in the subtree rooted at k , f ( k ,  t )= r}l, 

these considerations yield 

A t = 2  l-1 if r=2l ,  l ~ l < ~ j - - 2 ,  
3 . 2  J - z - l - ( b J _ l . . . b ~ )  2 if r = 2 ( j - 1 ) ,  
2 ( 1 - b 0 )  if r = 2 j - 1 ,  
3(bs_ 1 ... bl) 2 + 3b 0 if r = 2j. 

Consider, e.g., the case r =  2 ( j -  1): f ( k ,  t) will be equal to 2 ( j -  1) if 

(a) t is a leaf to the right of  [N/2J or 

(b) t is an interior node with d(k, t) = j  - 2. 

There are 2 j - l -  1 -  (bj_ 1 ... b~) 2 leaves to the right of  [N/2], and 2 J'-2 
interior nodes the distance of which to k is j - - 2 .  Hence 

1 [ 2J-zz 2 ( j -2 ) -  1 

~ ( z ) - -  (mbj- l - ' "  bo)z z 2 2z 2 -  1 

+ z2(J -m) ( (b j_ l  . . .  bl)z(3z 2 -- 1) + bo(3Z 2 - 2z) + 2z + 3 • 2 j -2  - -  1)}, 
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and this gives the following expression for the probability generating function 
for comparisons: 

7y.k(Z)= ~I [ I (2z2)n-J(3z2--1)--Z2 ]'~VV'n-j)-2J 
j = l  2 n+ 1--j - 1 ~-2z2 --- 1 

= n~i1 [ 1 (2ZZ)"--I--J(3zE--1)--zE ]EJ+LI-o(N'n-J) 
j=l 2 " - J -  1 

1 j- -z 

Z 2(j-1)([l'l • b l ) 2 ( 3 z  2 1) + U y j -  1 "" - -  

+ bo(3Z 2 - 2z) + 2z + 3 • 2 j-2 - 1)]. 
J 

Evaluating g"(1)  and ~ ' ( 1 ) ,  respectively, yields 

THEOREM 3.3.  

interchanges and 

Floyd's algorithm requires 

(a~ + a 2 -- 2)N + G(log N) 

(a 1 + 2a 2 - 2 )N+ O(log N) 

comparisons on the average. | 

It is possible to express the corresponding •(log N) terms by means of the 
binary expansion of N; but since this results in rather clumsy and awkward 
expressions, only the leading term of the respective asymptotic expansions is 
given here. 
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