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Abstract

In 2007, a significant increase in acquired ampC genes in Entero-

bacteriaceae from 0.06% in 1999 to 1.3% was observed. Proteus

mirabilis showed the highest prevalence (0.95%) and CMY-2 was

the most prevalent AmpC enzyme (66.7%). Other enzymes such

as CMY-4, DHA-1, ACC-1, and three new enzymes called CMY-

25, CMY-27 and CMY-40 were detected. Seven out of the 117

isolates (6%) also produced an extended-spectrum b-lactamase.

As acquired AmpC enzymes are likely to become a serious

public health issue worldwide, close surveillance is necessary to

curb their spread.
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Acquired AmpCs appeared in the late 1980s and have been

detected mainly in isolates of Klebsiella spp., Escherichia coli,

Proteus mirabilis and Salmonella spp. although they have also

been identified in other species including natural AmpC

producers [1]. These enzymes confer resistance to most

b-lactams – including cephamycins – with the exception of

cefepime and carbapenems [2].

Most acquired ampCs derive from chromosomal ampC

genes of the family Enterobacteriaceae (Citrobacter freundii,

Enterobacter spp., Morganella morganii and Hafnia alvei)

whereas the origin of others remains unknown. Isolates har-

bouring acquired ampCs are usually multi-resistant [3–6], lim-

iting the therapeutic options even further. In this context,

we aimed to determine the prevalence of acquired AmpCs

in Enterobacteriaceae isolates lacking inducible chromosomal

ampC genes at a Spanish hospital from January 1999 to

December 2007.

Isolates were obtained from routine cultures at the Hospi-

tal de la Santa Creu i Sant Pau (Barcelona, Spain). When

there were multiple isolates from a patient within a 30-day

period, only one was considered for analysis. Isolates were

identified using standard methods [7]. The disc diffusion sus-

ceptibility test was performed according to Clinical Labora-

tory Standards Institute (CLSI) guidelines [8], using

commercially available discs (Bio-Rad, Marnes La Coquette,

France). The production of Extended-spectrum beta-lacta-

mase (ESBL) was studied using the double-disc synergy test
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and confirmed when necessary by Etest ESBL (AB Biodisk,

Solna, Sweden) [3,9].

As some acquired AmpCs do not confer resistance to

cefoxitin, the strains selected for this study were those

showing intermediate resistance or resistance to amoxicillin-

clavulanic acid, cefotaxime or ceftazidime according to CLSI

breakpoints [8], and negative results for ESBL production.

Isolates which screened positive for ESBL production and

showed intermediate susceptibility or resistance to amoxicil-

lin-clavulanic or cefoxitin were also included [10]. Acquired

AmpCs were characterized using the previously described

multiplex PCR [2]. Amplicons were purified and sequenced as

described previously [9]. PCR-positive isolates were tested

using a double-disc synergy test based on the utilization of

cloxacillin (500 lg) as inhibitor of AmpC enzymes (except

Escherichia coli strains). All PCR-positive isolates were also

tested for the presence of scattered colonies in the inhibition

halo of cefoxitin, cefotaxime, ceftazidime and aztreonam [10].

Among the 27 119 isolates of Enterobacteriaceae lacking

inducible chromosomal AmpC b-lactamases, 437 isolates

were studied as putative acquired AmpC producers. We

obtained amplicons in 117: 75 E. coli, 20 P. mirabilis, 16 K.

pneumoniae, four K. oxytoca and two S. enterica. The remain-

ing 320 isolates were ESBL producers, hyperproducers of

chromosomal AmpC enzymes (E. coli), or hyperproducers of

class A enzymes (Klebsiella spp.). Moreover, other non-enzy-

matic resistance mechanisms such as altered permeability

may also have been present in these isolates. A few of the

117 isolates included in this study have been described previ-

ously [7,9,10].

The 117 isolates were recovered from urine (66.7%), flu-

ids and tissue (14.5%), blood (10.3%), respiratory tract

(3.4%) or other samples (5.1%). Most samples were from

ambulatory patients (64.1%).

The overall prevalence of Enterobacteriaceae carrying

acquired ampCs was 0.43%, rising from 0.06% (1999) to 1.3%

(2007). This significant increase (p <0.001; contingency table-

chi-square test was used for evaluation; SPSS V15 software;

SPSS Inc., Chicago, IL, USA), which occurred mainly in the last

3 years, could have been as a result of the emergence of

Enterobacteriaceae-producing DHA (16 out of 40 in 2007) and

the increase of CMY-2-producing P. mirabilis. The highest prev-

alence was found in P. mirabilis (0.95%), as in a recent survey

in Polish hospitals where acquired AmpCs were observed

TABLE 2. Prevalence and distribution of acquired AmpCs among Enterobacteriaceae lacking inducible chromosomal ampC

genes

1999 2000 2001 2002 2003 2004 2005 2006 2007 1999–2007

E. coli (n) 2283 2068 1820 2109 2440 2285 2385 2315 2224 n = 19929
CMY-2 1 6 1 1 3 8 4 14a 15 53 (70.7%)
CMY-4 1 1 2 (2.7%)
CMY-27 2a 2 (2.7%)
CMY-40 1 1 (1.3%)
DHA-1 4b 3 8c 15 (20%)
ACC-1 1 1 2 (2.7%)
Total (%) 1 (0.04) 6 (0.29) 1 (0.05) 1(0.05) 3(0.12) 9(0.39) 10 (0.42) 19 (0.82) 25 (1.12) 75 (0.38)
K. pneumoniae (n) 214 222 181 181 288 295 273 339 394 n = 2387
CMY-2 1 1d 1 1 4 (25%)
CMY-25 1 1 (6.3)
DHA-1 2 2 6e 10 (62.5)
ACC-1 1 1 (6.3)
Total (%) 1 (0.44) 1 (0.55) 1 (0.34) 4 (1.46) 3 (0.84) 6 (1.52) 16 (0.67)
P. mirabilis (n) 280 140 201 178 267 249 248 262 270 n = 2095
CMY-2 1 1f 4f,g 6 7f 19 (95%)
DHA-1 1 1 (5%)
Total (%) 1 (0.71) 1 (0.80) 4 (1.21) 7 (2.67) 7 (2.60) 20 (0.95)
K. oxytoca (n) 0 0 45 88 65 70 98 76 87 n = 509
DHA-1 2h 2h 4 (100%)
Total (%) 2 (2.63) 2 (2.30) 4 (0.79)
S. enterica (n) 352 148 290 208 182 231 141 125 94 n = 1771
CMY-2 1 1 2 (100%)
Total (%) 1 (0.28) 1 (0.80) 2 (0.11)
Othersi n = 428
Overall prevalence (%) 0.06 0.31 0.08 0.04 0.09 0.38 0.53 1.01 1.3 0.43

aTwo of these isolates showed identical ERIC and PFGE patterns and spread among patients was established.
bTwo of these isolates showed identical ERIC and PFGE patterns but no epidemiological relationship was established between patients.
cTwo isolates also harboured a CTX-M-14.
dThis isolate also harboured a CTX-M-1.
eThree isolates also harboured a CTX-M-15. Two of these isolates showed identical PFGE patterns. Patient spread was established.
fPFGE results showed a cluster of five P. mirabilis (four identical PFGE and one probably related pattern; all carrying CMY-2). One of these strains was isolated in 2004,
another in 2005 and the remaining three in 2007. No epidemiological relationship was established between patients.
gOne of these isolates also harboured a CTX-M-2 (first report in Catalonia).
hPFGE results showed a cluster of two K. oxytoca (one strain isolated in 2006 and the other in 2007). Both were isolated from the same patient over an interval of
8 months.
iThe species included here are: C. koseri (211 isolates), Shigella spp. (101 isolates), P. vulgaris (108 isolates) and P. penneri (eight isolates). No acquired AmpCs were found.
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exclusively in P. mirabilis (20.5%) [11]. Other studies found no

acquired-AmpC-producing P. mirabilis [5] or found it at

a lower rate (0.75%) [12]. It is of note that in our setting,

P. mirabilis is acquiring different types of b-lactamases, including

AmpCs [9].

CMY-2 has a worldwide distribution. In our study, it was

the predominant enzyme (66.7%), followed by DHA-1

(25.6%). DHA-1 was mainly associated with Klebsiella spp.

and was the only acquired AmpC detected in K. oxytoca. Less

commonly found enzymes were ACC-1, CMY-4, CMY-25,

CMY-27 and CMY-40. The last three are reported here for

first time (their amino acid substitutions and the correspond-

ing susceptibility test results are shown in Table 1). Seven

(6%) out of the 117 acquired-AmpC-producing isolates also

produced an ESBL (Table 2). The prevalence and type of

acquired AmpCs differs depending upon the geographical

area, the species studied and the period of study [4,11–14],

possibly as a result of the selection criteria used. For this

reason, it is difficult to compare the prevalence of acquired

AmpCs between studies.

Resistance of the AmpC-producers to non-b-lactam anti-

biotics was high. Isolates showed resistance to nalidixic acid

(74.4%), ciprofloxacin (51.3%), tetracycline (67.5%), chlor-

amphenicol (43.6%), sulphonamides (61.5%), trimethoprim

(43.6%) and aminoglycosides such as streptomycin (52.1%),

kanamycin (43.6%), gentamicin (36.7%) and tobramycin (34.2%).

The cloxacillin test was positive for all analysed isolates.

Using the disc diffusion method, 86.3% of isolates showed an

inhibition halo to third-generation cephalosporins (13–33 mm)

and aztreonam (13–43 mm). Most of these (91.1%) showed

scattered colonies near the edge of the inhibition zones. Both

these phenotypic tests are useful to detect the presence of

acquired AmpCs in Enterobacteriaceae lacking inducible chro-

mosomal AmpC. Nevertheless, as previously reported [15],

the cloxacillin test does not allow differentiation between

chromosomal and acquired AmpC enzymes. PCR is the still

the most reliable test in these cases.

The clonal diffusion of these enzymes was analysed by

clinical and molecular epidemiology. Enterobacterial repeti-

tive intergenic consensus (ERIC)-PCR was used as a first

approach for E. coli strains [2,9]. Those that showed ERIC

patterns with >80% homology were then analysed by pulsed-

field gel electrophoresis (PFGE) [3]. PFGE was also used to

study the clonal relationship of the remaining isolates.

Results are shown in Table 2.

Acquired-AmpC-producing organisms are likely to remain

undetected in many clinical laboratories as there is a lack of

standardized phenotypic methods [10,16]. In a multi-centre

Spanish study, only 53.2% of 57 laboratories were able to

detect E. coli and K. pneumoniae producing acquired AmpC [17].

There are very few reports from Europe regarding the epi-

demiology of acquired-AmpCs over a period of several years

[4], and to date, this is the first from Spain. Our findings sup-

port the view that the prevalence and diversity of acquired

ampC genes is increasing. Knowledge about the prevalence

and diffusion of this emergent resistance may be helpful to

establish preventive measures that will curb their spread.

Nucleotide Sequence Accession Number

The new b-lactamase gene sequences were submitted to the

GenBank under accession numbers EU515249 (blaCMY-25),

EU515250 (blaCMY-27) and EU515251 (blaCMY-40).
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