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A variety of visual capacities show significant age-related alterations. We assessed suprathreshold con-
trast and brightness perception across the lifespan in a large sample of healthy participants (N = 155;
142) ranging in age from 16 to 80 years. Experiment 1 used a quadrature-phase motion cancelation tech-
nique (Blakeslee & McCourt, 2008) to measure canceling contrast (in central vision) for induced gratings
at two temporal frequencies (1 Hz and 4 Hz) at two test field heights (0.5� or 2� � 38.7�; 0.052 c/d). There
was a significant age-related reduction in canceling contrast at 4 Hz, but not at 1 Hz. We find no age-
related change in induction magnitude in the 1 Hz condition. We interpret the age-related decline in grat-
ing induction magnitude at 4 Hz to reflect a diminished capacity for inhibitory processing at higher tem-
poral frequencies. In Experiment 2 participants adjusted the contrast of a matching grating (0.5� or
2� � 38.7�; 0.052 c/d) to equal that of both real (30% contrast, 0.052 c/d) and induced (McCourt, 1982)
standard gratings (100% inducing grating contrast; 0.052 c/d). Matching gratings appeared in the upper
visual field (UVF) and test gratings appeared in the lower visual field (LVF), and vice versa, at eccentric-
ities of ±7.5�. Average induction magnitude was invariant with age for both test field heights. There was a
significant age-related reduction in perceived contrast of stimuli in the LVF versus UVF for both real and
induced gratings.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

An improved understanding of how normal aging quantitatively
and qualitatively affects sensation, perception, attention and cog-
nition is crucial to the development of sensitive diagnostic instru-
ments and useful therapeutic interventions aimed at mitigating
age-related declines in these abilities and improving the quality
of life of an increasingly aging population (Humes et al., 2009,
2013; Owsley, 2011).

There are numerous age-related changes in visual function. With
respect to temporal processing, sensitivity to high temporal fre-
quencies declines with age (Elliott, Whitaker, & MacVeigh, 1990;
Kim & Meyer, 1994; Kline, 1987; McFarland, Warren, & Karis,
1958; Meyer et al., 1988; Sekuler, Hutman, & Owsley, 1980;
Sloane, Owsley, & Jackson, 1988; Tulunay-Keesey, Ver Hoeve, &
Terkla-McGrane, 1988; Tyler, 1989; Wright & Drasdo, 1985). The
amplitude of the inhibitory phase of the temporal impulse response
function is reduced, giving rise to a slower and more prolonged
response to a flash of light (Shinomori & Werner, 2003). Simple
reaction time to visual stimuli is significantly increased (Kline
et al., 1983). At higher levels of processing the ability to recover
structure from motion is impaired (Blake, Rizzo, & McEvoy, 2008),
including biological motion (Pilz, Bennett, & Sekuler, 2010), and dis-
crimination thresholds for temporal order judgments in both visual
and auditory modalities may (Ulbrich et al., 2009) or may not
(Fiacconi et al., 2013) be elevated.

With respect to spatial vision there is a decrease in contrast sen-
sitivity at medium to high spatial frequencies (Bennett, Sekuler, &
Ozin, 1999; Crassini, Brown, & Bowman, 1988; Derefeldt,
Lennerstrand, & Lundh, 1979; Elliott, Whitaker, & MacVeigh,
1990; Habak & Faubert, 2000; Kline, 1987; Kline et al., 1983;
Tulunay-Keesey, Ver Hoeve, & Terkla-McGrane, 1988; Wright &
Drasdo, 1985) which is primarily optical in origin (Burton, Owsley,
& Sloane, 1993). Displacement thresholds (Elliott, Whitaker, &
Thompson, 1989) and contrast discrimination thresholds are ele-
vated (Elliott & Werner, 2010; Hardy et al., 2005; Schefrin et al.,
1999). Aging is associated with significant alterations in motion per-
ception, where detection (Bennett, Sekuler, & Sekuler, 2007), speed
(Bidwell, Holzman, & Chen, 2006; Norman et al., 2003; Scialfa et al.,
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1991; Snowden & Kavanagh, 2006), and direction (Ball & Sekuler,
1986) discrimination thresholds are elevated, displacement thresh-
olds are elevated (Wood & Bullimore, 1995), and the strength of sur-
round suppression, which normally causes duration thresholds for
motion direction discrimination to increase with increasing stimu-
lus size (Tadin et al., 2003), is weakened (Betts, Sekuler, & Bennett,
2009, 2012; Betts et al., 2005; Tadin & Blake, 2005). Finally, visuo-
motor transformations are impaired (Baugh & Marotta, 2009).

At the physiological level age-related changes include increases
in response latency and spontaneous neuronal activity, and
decreases in information processing rate and stimulus selectivity
of neurons in a variety of structures including macaque area V1
(Leventhal et al., 2003; Schmolesky et al., 2000; Wang et al.,
2005; Yang et al., 2009; Zhang et al., 2008), macaque area V2
(Wang et al., 2005; Yu et al., 2006), macaque area MT (Liang
et al., 2010; Yang et al., 2008, 2009, 2010), and cortical neurons
in both cat (Hua et al., 2006; Wang et al., 2014) and rat
(Wang et al., 2006). One mechanism hypothesized to underlie such
age-related changes in visual processing is a weakening of
neuronal inhibition due to diminished GABAergic neurotransmis-
sion (Hua et al., 2006; Leventhal et al., 2003; Schmolesky et al.,
2000), since electrophoretic application of GABA is capable of
restoring stimulus selectivity and improving signal-to-noise ratio
in the neurons of aged animals (Leventhal et al., 2003).

Brightness induction is a quintessential example of a phenome-
non commonly attributed to inhibitory neural interactions occur-
ring at multiple levels in the visual processing hierarchy (Mach,
1865, in Fiorentini et al., 1990; Heinemann, 1972; Hering, 1964;
Jameson & Hurvich, 1989; Kingdom, McCourt, & Blakeslee, 1997;
McCourt, 1982; Ratliff, 1965). Certain brightness phenomena such
as the spots seen at the intersections of the Hermann Grid, and
Mach Bands, have historically been attributed to retinal processing,
although recent findings indicate that these effects probably arise
at a higher, likely cortical, stage of processing (Geier et al., 2008;
Wolfe, 1982). In order to account for more complex induction phe-
nomena such as White’s effect (Blakeslee & McCourt, 1999, in
press; White, 1979, 1981; White & White, 1985), the Benary Cross
(Blakeslee & McCourt, 2001), or the Corrugated Mondrian stimulus
(Blakeslee & McCourt, 2001), models of brightness perception need
to incorporate spatial filters with orientation selectivity (Blakeslee
& McCourt, 1999). Neurons possessing significant orientation
selectivity do not occur in the primate visual system until primary
visual cortex. Age-related alterations in the magnitude of bright-
ness induction might therefore be a useful biomarker to index
the status of inhibitory processes, particularly at striate and extras-
triate levels.

Grating induction (McCourt, 1982) produces a conspicuous
sinusoidal brightness modulation (i.e., a grating) in a horizontal
homogeneous test field inserted into a sinewave grating, and is a
particularly strong version of brightness induction (Blakeslee &
McCourt, 1997) which can be reliably measured using both match-
ing (McCourt & Blakeslee, 1994) and canceling methods (Foley &
McCourt, 1985). In addition, a novel quadrature-phase motion can-
celation procedure (Blakeslee & McCourt, 2008, 2011, 2013) allows
the strength of the inhibitory processes giving rise to grating
induction to be measured precisely for any combination of spatial
and temporal frequency. Here we report results from two experi-
ments designed to measure age-related changes in grating induc-
tion magnitude, and suprathreshold contrast perception more
generally. In Experiment 1 we measure the strength of grating
induction using an indirect method, a quadrature-phase motion
canceling technique. In Experiment 2 we employ a more traditional
matching technique to measure the strength of both grating induc-
tion and contrast perception for suprathreshold real gratings situ-
ated in the upper and lower visual fields.
2. Experiment 1: contrast canceling

Experiment 1 used grating induction cancelation to assess
whether age-related changes occur in the strength of the inhibitory
processes commonly thought to underlie brightness induction
effects. We measured the magnitude of grating induction as a func-
tion of age using the quadrature-phase motion cancelation tech-
nique of Blakeslee and McCourt (2008, 2011, 2013).

2.1. Method

2.1.1. Participants
Participants numbered 155 (81 female, 74 male), ranging from

16 to 80 years of age. This age range is consistent with that sam-
pled by the majority of recent studies seeking to establish associa-
tions between age and visual function. Participants were recruited
via local advertisements (newspapers, senior newsletters, fliers at
senior centers) as well as through on-campus fliers and e-mail cor-
respondence to students, faculty, staff and alumni of North Dakota
State University. Participants received $10/h for their participation.
Total time commitment per participant was approximately 1.25 h.
Participants completed a demographic screening questionnaire
and the Pelli–Robson Contrast Sensitivity Test (Pelli, Robson, &
Wilkins, 1988). Inclusion criteria were self-reported good physical
and mental health, no known retinal disease, normal (or corrected-
to-normal) visual acuity of at least 20/30, and a binocular log-con-
trast sensitivity score of 1.80 or greater. A detailed breakdown of
log-contrast sensitivity by age group for Experiment 1 appears in
Table 1(a). Participants used their habitual spectacle/contact lens
corrections during testing; 26 participants utilized multifocal
lenses. All participants provided informed consent (and parental
consent for participants under 18 years of age); the experimental
protocol was approved by the NDSU Institutional Review Board
and the work was carried out in accordance with the Code of Ethics
of the World Medical Association (Declaration of Helsinki).

2.1.2. Stimuli and apparatus
Stimuli were generated using MATLAB routines to control a

Cambridge Research Systems ViSaGe system. Stimuli were pre-
sented on a 2000 Mitsubishi DiamondPro (model 2070) CRT display
with screen size of 38.7� � 29.5�, screen resolution of 1024 � 768, a
screen refresh rate of 140 Hz and mean luminance of 46 cd/m2.
Stimuli were observed from a viewing distance of 57 cm (no chin-
rest was used, but the experimenter monitored viewing distance
throughout the experiment), and responses were collected using
left/right buttons on a game controller. The room was dimly lit
since the primary lightsource was the display itself, and the walls
were matte black.

Fig. 1(a) and (b) illustrates the quadrature phase motion cancel-
ation displays used in Experiment 1. These consisted of sinusoidal
inducing gratings (100% Michelson contrast, 0.052 c/d,
height = 29.5�, width = 38.7�), counterphasing at either 1.0 Hz or
4.0 Hz, which surrounded horizontal test fields (height = 0.5� or
2.0�) set to the mean display luminance.

There were four stimulus conditions produced by combining
the two test field heights (0.5� or 2.0�) with two temporal frequen-
cies (1.0 Hz and 4.0 Hz) at which the inducing gratings were count-
erphased. Quadrature grating spatial frequency was 0.052 c/d, and
possessed a Michelson contrast of 30%.

2.1.3. Procedure
The quadrature phase motion cancelation technique has been

described in detail elsewhere (Blakeslee & McCourt, 2008, 2011,
2013), and an annotated video demonstration and explanation of



Table 1
Panels (a) and (b) present log contrast sensitivity data as a function of age bracket for participants in Experiment 1 and Experiment 2, respectively.

Age (Years) 620 21–30 31–40 41–50 51–60 61–70 71–80

Experiment 1
Panel (a)

Log contrast sensitivity
Mean 2.04 2.00 2.07 1.99 2.00 1.96 1.95
Median 1.95 1.95 2.10 1.95 1.95 1.95 1.95
SD 0.130 0.089 0.125 0.100 0.098 0.058 0.00
N 13 47 13 17 31 27 7
Min 1.95 1.95 1.95 1.95 1.95 1.95 1.95
Max 2.25 2.25 2.25 2.25 2.25 2.25 1.95

Experiment 2
Panel (b)

Log contrast sensitivity
Mean 2.05 2.00 2.07 2.00 2.00 1.96 1.95
Median 1.95 1.95 2.10 1.95 1.95 1.95 1.95
SD 0.133 0.092 0.125 0.117 0.099 0.059 0.000
N 12 43 13 12 30 26 6
Min 1.95 1.95 1.95 1.95 1.95 1.95 1.95
Max 2.25 2.25 2.25 2.25 2.25 2.25 1.95

2.0o Standard Grating
(30% contrast)

2.0o Standard Grating
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Fig. 1. Stimulus conditions used in Experiment 1 (a and b) and Experiment 2 (c–f). Panels (a) and (b) illustrate the quadrature motion grating induction displays which
consisted of sinusoidal inducing gratings (100% Michelson contrast, 0.052 c/d), counterphasing at either 1.0 Hz or 4.0 Hz, which surrounded horizontal test fields
(height = 0.5� or 2.0�) set to the mean display luminance (46 cd/m2). Panels (c) and (d) illustrate the real grating displays which consisted of a sinusoidal standard grating (30%
Michelson contrast, 0.052 c/d, height = 2�) situated in the UVF (c) or LVF (d), and an adjustable contrast matching grating (10% or 80% initial contrast, 0.052 c/d, height = 2�)
situated in the LVF (c) or UVF (d). Standard and matching grating strip centers were situated ± 7.5� from screen center. Panels (e) and (f) illustrate the grating induction
displays which consisted of sinusoidal inducing gratings (100% Michelson contrast, 0.052 c/d) surrounding horizontal homogeneous test fields (0.5� or 2.0�) set to the mean
display luminance. The inducing gratings occupied the full extent (14.75�) of the UVF (e) or LVF (f). An adjustable real contrast matching grating (0.5� or 2.0�) was situated in
the center of the LVF (e) or UVF (f).
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the quadrature phase motion cancelation technique is provided as
supplemental material to Blakeslee and McCourt (2011). Briefly, a
counterphasing inducing grating, a standing wave, produces a
nearly instantaneous phase-reversed counterphasing induced grat-
ing, also a standing wave, in the homogeneous test field (Blakeslee
& McCourt, 1997, 2008; McCourt, 1982; McCourt & Blakeslee,
1994). Blakeslee and McCourt (2008) showed that induction phase
lag was less than 1 ms; for methodological simplicity we treat it
here as zero. A counterphasing quadrature grating (0.052 c/d; 0–
30% contrast), which is a standing wave in 90� spatial and temporal
phase relative to the induced grating, will sum with the counterph-
asing induced grating to produce a rightward drifting
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induced + quadrature grating compound, a traveling wave, to
which the visual system is extremely sensitive. A second lumi-
nance grating, (0.052 c/d), the canceling grating, is added to the
test field at variable contrasts. The canceling grating possesses
the same spatial and temporal frequency as the induced grating,
but is 180� out of spatial phase with it. The canceling grating is
added to the test field at contrast levels ranging from 20% to 95%
using the method of constant stimuli. When canceling grating con-
trast is less than induced grating contrast (i.e., when the induced
grating is under-canceled) the induced + canceling grating com-
pound possesses the spatial and temporal phase of the induced
grating and combines with the quadrature grating to produce a
rightward moving traveling wave just as in the case where no can-
celing grating is present. When canceling grating contrast exceeds
induced grating contrast (i.e., when the induced grating is over-
canceled) the induced + canceling grating compound possesses
the spatial and temporal phase of the canceling grating, and com-
bines with the quadrature grating to produce a leftward moving
traveling wave. When canceling grating contrast equals induced
grating contrast the contrast of the induced + canceling grating
compound is zero (i.e., the induced grating is nulled), and the
motion energy of the counterphasing quadrature grating which
remains is left/right balanced (i.e., is a standing wave), yielding a
50%:50% proportion of left/right motion judgments in a forced-
choice motion direction discrimination task.

The experimental paradigm was a forced-choice motion direc-
tion discrimination task. On each trial, which lasted 1500 ms, par-
ticipants indicated the perceived direction of motion of the pattern
within the test field via button press. Ten blocks of 10 trials per
canceling contrast were completed by each participant at each test
field height/temporal frequency combination. Within each block,
trials presenting the various levels of canceling contrast were
quasi-randomly interleaved. On each trial quadrature grating con-
trast was ramped from 0% to 30% over the 1500 ms duration of
stimulus presentation. Quadrature grating contrast was ramped
because quadrature-pair standing waves sum to produce a pure
traveling wave only when the contrasts of the components are
equal. Optimal quadrature grating contrast therefore depends on
the contrast of each induced-plus-canceling grating compound,
which itself depends upon the variable level of canceling grating
contrast. Rather than attempting to estimate a singular optimal
quadrature grating contrast value we smoothly increased its con-
trast from 0% to 30% over the duration of each inspection interval,
reasoning that observers would experience the optimal quadrature
grating contrast (yielding a motion signal with a maximal signal-
to-noise ratio) at some point during the inspection interval. Psy-
chometric data for each observer in each experimental condition
were fit by a two-parameter – point of subjective equality (PSE)
and standard deviation (SD) – cumulative normal function using
a maximum-likelihood criterion. The fitted PSE parameter corre-
sponded to the contrast of the canceling grating yielding 50%
‘‘right’’ motion responses and was taken as a measure of grating
induction magnitude.

2.1.4. Analysis
Data are analyzed using linear regression; all multiple compar-

isons are evaluated using Bonferroni correction.

2.2. Results and discussion

Fig. 2(a), (c), (e), and (f) plot percent canceling contrast (CC) as a
function of age in the four experimental conditions. Regression
analyses reveal no significant change in canceling contrast with
age at either test field height for inducing gratings counterphased
at 1 Hz [0.5� test field: CC = –0.019%� Years + 83.56%; r153 = –0.097;
p = .229; r2 = 0.009; 2.0� test field: CC = –0.017% � Years + 67.46%;
r153 = –0.044; p = .586; r2 = 0.002]. Because age does not signifi-
cantly modulate canceling contrast at 1 Hz, panels (b) and (d) plot
frequency histograms of canceling contrast (and Gaussian fits) col-
lapsed across age, where mean canceling contrast for the 0.5� and
2.0� test fields was 82.65% (sd = 3.02%), and 66.35% (sd = 5.81%),
respectively. However, a significant age-related decline in cancel-
ing contrast was found for inducing gratings counterphased at
4 Hz [0.5� test field: CC = –0.093% � Years + 74.85%; r153 = –0.396;
p < .001; r2 = 0.157; 2.0� test field: CC = –0.057% � Years + 48.73%;
r153 = –0.231; p = .004; r2 = 0.053]. The mean canceling contrast
values as well as the falloff in canceling contrast with increasing
counterphase frequency and test field height are consistent with
those reported by Blakeslee and McCourt (2011).

3. Experiment 2: contrast matching

Experiment 2 used grating induction, in combination with a
contrast matching paradigm (as distinct from the induction cancel-
ation paradigm used in Experiment 1) to further assess whether
age-related changes occur in the strength of the inhibitory pro-
cesses commonly thought to underlie brightness induction effects.
Observers made contrast matches to both real and induced grat-
ings, which were situated in the upper and lower visual fields.

3.1. Method

3.1.1. Participants
Participants were a subset of those in Experiment 1, and con-

sisted of 142 adults (76 female, 70 male) ranging in age from 16
to 80 years of age. Total time commitment per participant was
approximately 1 h. A detailed breakdown of log-contrast sensitiv-
ity by age group for Experiment 2 appears in Table 1(b).

3.1.2. Stimuli and apparatus
Fig. 1(c–f) illustrates the stimulus displays used in Experiment

2. Stimuli were generated, displayed, and viewed as in Experiment
1. Contrast adjustments were made using a Cambridge Research
Systems CB7 rotary response device. On half the trials (adjustable)
matching gratings were situated in the upper visual field (UVF) and
standard gratings appeared in the lower visual field (LVF); on half
the trials this arrangement was reversed. The order in which the
two conditions were administered was counterbalanced across
subjects.

3.1.2.1. Real gratings. The real grating displays consisted of static
sinusoidal standard gratings (30% Michelson contrast, 0.052 c/d,
height = 2�, width = 38.7�) situated in the UVF (Fig. 1c) or LVF
(Fig. 1d) and an adjustable contrast static matching grating (10%
or 80% initial contrast, 0.052 c/d, height = 2�, width = 38.7�) situ-
ated in the opposite visual field. Standard and matching grating
strips were situated ±7.5� from screen center.

3.1.2.2. Induced gratings. The grating induction display consisted of
static sinusoidal inducing gratings (100% Michelson contrast,
0.052 c/d) surrounding horizontal homogeneous test fields
(height = 0.5� or 2.0�, width = 38.7�) set to the mean display lumi-
nance. The inducing gratings occupied the full extent (14.75�) of
the UVF (Fig. 1e) or LVF (Fig. 1f). An adjustable real contrast static
matching grating (height = 0.5� or 2.0�, width = 38.7�) was situated
in the center of the opposite visual field.

3.1.3. Procedure
Participants adjusted the contrast of matching gratings to equal

that of both real and induced (McCourt, 1982) standard gratings
under free viewing conditions. Real and induced gratings were
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matched in separate blocks of trials. Each block of induced grating
trials consisted of quasi-randomly interleaved presentations of the
two test field heights in one of the two matching grating conditions
(UVF, LVF). The order in which blocks of trials with matching grat-
ings in the two visual fields were presented was counterbalanced
across participants. Participants made five matches in each of the
six experimental conditions. The dependent measure was mean
matching grating contrast. Stimuli were observed from a viewing
distance of 57 cm (no chinrest was used, but the experimenter
monitored viewing distance throughout the experiment). The
room was dimly lit since the primary lightsource was the display
itself, and the walls were matte black. Stimuli remained on screen
until matches were made, and no time limit was imposed on the
duration of trials.

3.1.4. Analysis
As in Experiment 1 data are analyzed using linear regression; all

multiple comparisons are evaluated using Bonferroni correction.

3.2. Results and discussion

3.2.1. Real gratings
Fig. 3 plots mean matching grating contrast, averaged across

matching grating visual field, versus age in the real grating condi-
tion. Panel (a) shows that regression analysis revealed no signifi-
cant change in matching contrast (CM) with age [CM = –0.007% �
Years + 30.70%; r140 = –0.072; p = .393; r2 = 0.005]. Because age
does not significantly modulate matching contrast, panel (b) plots
a frequency histogram of matching contrast (and Gaussian fit)
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collapsed across age, where mean matching contrast to the 30%
contrast standard grating was 30.22% (sd = 1.73%). These data illus-
trate that, as reported in an earlier study employing the same tech-
nique (McCourt & Blakeslee, 1994), observers are capable of
making highly accurate contrast matches.

Fig. 4 plots mean matching grating contrast, differenced across
matching grating visual field, versus age in the real grating condi-
tion. Regression analysis revealed a significant age-related change
in matching contrast across the upper and lower visual fields
[CM = 0.048% � Years � 1.50%; r140 = 0.449; p < .001; r2 = 0.202],
where a relative LVF advantage of 1% in perceived suprathreshold
contrast segues to a LVF deficiency of 2% as age increases.
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Fig. 5. Mean matching grating contrast, averaged across matching grating visual
field, versus age in the induced grating condition. Panels (a) and (c) show matches
in the 0.5� and 2.0� test field height conditions, respectively. There is no significant
age-related change in matching contrast in either test field condition [0.5�:
CM = 0.074% � Years + 32.55%; r140 = 0.171; p = .042; r2 = 0.029; 2.0�: CM = 0.019% -
� Years + 23.65%; r140 = 0.040; p = .635; r2 = 0.002]. Panels (b) and (d) plot fre-
quency histograms of matching contrast (and Gaussian fits) collapsed across age in
the 0.5� and 2.0� test field conditions, respectively.
3.2.2. Induced gratings
Fig. 5 plots mean matching grating contrast, averaged across

matching grating visual field, versus age in the induced grating
condition. Panels (a) and (c) show matches in the 0.5� and 2.0� test
field height conditions, respectively. For neither test field height
condition was there a significant age-related change in matching
contrast [0.5�: CM = 0.074% � Years + 32.55%; r140 = 0.171; p = .042
(n.s.); r2 = 0.029; 2.0�: CM = 0.019% � Years + 23.65%; r140 = 0.040;
p = .635; r2 = 0.002]. Because there was no significant effect of
age, panels (b) and (d) plot frequency histograms of matching con-
trast (and Gaussian fit) collapsed across age, where mean matching
contrast in the 0.5� test field condition was 36.03% (sd = 7.56%),
and mean matching contrast in the 2.0� test field condition was
24.23% (sd = 8.33%). That observers are highly accurate in their
matches to real gratings lends credibility to the match values for
induced gratings. The mean matching contrasts of 36.03% and
24.23% are in good agreement with previous estimates of grating
induction magnitude (McCourt & Blakeslee, 1994).

Fig. 6 plots mean matching grating contrast, differenced across
matching grating visual field, versus age in the induced grating
condition. Panels (a) and (b) show that regression analysis revealed
significant age-related changes in matching contrast across the
upper and lower visual fields for the 0.5� [CM = 0.072%
� Years � 3.69%; r140 = 0.350; p < .001; r2 = 0.123] and 2.0�
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Fig. 4. Mean matching grating contrast, differenced across matching grating visual
field, versus age in the real grating condition. There is a significant age-related
change in matching contrast across the upper and lower visual fields [CM = 0.048% -
� Years � 1.50%; r140 = 0.449; p < .001; r2 = 0.202], where a relative LVF advantage
of 1% in perceived suprathreshold contrast at age 16 segues to a relative LVF
deficiency of 2% by age 80.
[CM = 0.042% � Years � 0.30%; r140 = 0.218; p = .009; r2 = 0.048]
test field height conditions, respectively. As was the case for real
gratings (Fig. 4), increasing age is associated with a progressive rel-
ative deficit of around 2% in the perceived suprathreshold contrast
of gratings situated in the LVF.
4. General discussion

4.1. Aging and inhibition

Using a canceling measure (Experiment 1) we found no signifi-
cant age-related change in the strength of grating induction at
either the 0.5� or 2.0� test field height at the low inducing grating
counterphase modulation frequency (1 Hz). Using a matching mea-
sure (Experiment 2) we likewise found no age-related change in
induction in either the 0.5� or 2.0� test field height condition, nor
was there any significant age-related change in average matching
contrast for real gratings in the real suprathreshold contrast condi-
tion. Tulunay-Keesey, Ver Hoeve, and Terkla-McGrane (1988) sim-
ilarly found no effect of age on suprathreshold contrast matching.

In the canceling condition, since the inhibitory processes which
give rise to grating induction are strongest at low temporal fre-
quencies (Blakeslee & McCourt, 2011), the lack of age-related
changes in induction magnitude in the 1 Hz condition is inconsis-
tent with the idea that there is a generalized age-related weaken-
ing of inhibitory processing (Betts, Sekuler, & Bennett, 2009, 2012;
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Fig. 6. Mean matching grating contrast, differenced across matching grating visual
field, versus age in the induced grating condition. Panels (a) and (b) show matches
in the 0.5� and 2.0� test field height conditions, respectively. Significant age-related
changes in UVF versus LVF matching contrast occur in the 0.5� [CM = 0.072% -
� Years � 3.69%; r140 = 0.350; p < .001; r2 = 0.123] and 2.0� [CM = 0.042% -
� Years � 0.30%; r140 = 0.218; p = .009; r2 = 0.048] test field height conditions,
respectively.

Table 2
This table presents correlations between canceling and average [(LVF + UVF)/2]
matching measures of induction magnitude. There are significant correlations
between four of the six non-identity pairings of the canceling measures. There is no
significant correlation between canceling contrasts when neither inducing temporal
frequency nor test field height are similar. None of the canceling contrast measures
are significantly correlated with average matching contrast. Matching contrasts at the
two test field heights are strongly correlated.

Canceling Matching

1 Hz 4 Hz

0.5� 2.0� 0.5� 2.0� 0.5� 2.0�

Canceling
1 Hz

0.5� r 1 .505 .238 .095 .022 �.020
p <.001 .003 .238 .792 .814
N 155 155 155 142 142

2.0� 1 .114 .287 .073 .115
.159 <.001 .387 .173
155 155 142 142

4 Hz
0.5� 1 .342 �.100 �.071

<.001 .236 .403
155 142 142

2.0� 1 �.094 �.054
.268 .527
142 142

Matching
0.5� 1 .725

<.001
142

2.0� 1

Significant correlations are highlighted in bold.
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Betts et al., 2005; Hua et al., 2006; Leventhal et al., 2003;
Schmolesky et al., 2000; Tadin & Blake, 2005). Also inconsistent
with the hypothesis that aging might entail a generalized weaken-
ing of inhibitory cortical processes are recent findings by Delahunt,
Hardy, and Werner (2008) and by Govenlock et al. (2009, 2010),
who report that psychophysically-derived spatial frequency and
orientation channel bandwidths are comparable in young and
older subjects, and by Karas and McKendrick (2009, 2012), who
report that the magnitude of contrast–contrast (Chubb, Sperling,
& Solomon, 1989), a contrast-domain (second-order) induction
phenomenon thought, like luminance-domain (first-order) bright-
ness induction, to index the strength of inhibition (McCourt, 2005),
actually increases with increasing age. Hence, we interpret the age-
related decline in grating induction magnitude we find only at the
higher counterphase frequency (4 Hz) to reflect a diminished
capacity for inhibitory processing at higher temporal frequencies
(Elliott, Whitaker, & MacVeigh, 1990; Kim & Meyer, 1994;
McFarland, Warren, & Karis, 1958; Meyer et al., 1988; Sekuler,
Hutman, & Owsley, 1980; Sloane, Owsley, & Jackson, 1988;
Tulunay-Keesey, Ver Hoeve, & Terkla-McGrane, 1988; Tyler, 1989).
4.2. Nomothetic measures of grating induction magnitude

This is the first study documenting the strength and variability
of grating induction in a large sample (N = 155; 142) of observers.
Mean canceling contrasts in the 1 Hz counterphase frequency con-
dition were 82.65% and 66.35% for test field heights of 0.5� and
2.0�, respectively. These mean canceling contrasts are in good
agreement with earlier reports on smaller sample sizes
(Blakeslee & McCourt, 2011). Canceling contrasts are distributed
normally in both cases with standard deviations of 3.02% and
5.81%, respectively. Mean matching contrasts in Experiment 2
were 36.03% and 24.23% for test field heights of 0.5� and 2.0�,
respectively. The mean matching contrast in the 0.5� test field
height condition is in good agreement with the asymptotic con-
trast match value of 27.5% reported earlier by McCourt and
Blakeslee (1994) for a 0.5� test field at the higher inducing grating
spatial frequency of 0.125 c/d. Matching contrasts are distributed
normally in both cases with standard deviations of 7.56% and
8.33%, respectively.

Table 2 presents correlations between canceling and average
[(LVF + UVF)/2] matching measures of induction magnitude. Note
that there are highly significant correlations between four of the
six non-identity pairings of the canceling measures. Canceling con-
trasts across test field height at common temporal frequencies are
highly correlated, as are canceling contrasts at common test field
heights across inducing temporal frequency. There is, however,
no significant correlation between canceling contrasts when nei-
ther inducing temporal frequency nor test field height are similar.
Finally, none of the canceling contrast measures are significantly
correlated with the average [(LVF + UVF)/2] matching contrast.
Matching contrasts at the two test field heights are, however,
highly significantly correlated.

The significant correlations between canceling contrasts for
combinations of inducing temporal frequency and test field height
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where at least one stimulus dimension (i.e., inducing frequency or
test field height) is congruent, combined with the lack of correla-
tion when neither stimulus dimension is similar, suggests that
multiple neural mechanisms give rise to brightness induction at
different combinations of inducing temporal frequency and test
field height. This is consistent with the Oriented Difference of
Gaussians (ODOG) model of brightness perception (Blakeslee,
Cope, & McCourt, submitted for publication; Blakeslee &
McCourt, 1999).

The low degree of correlation found between matching and can-
celing measures of induction is interesting, but perhaps not sur-
prising given that the canceling data were obtained at temporal
modulation frequencies of 1 Hz or 4 Hz, whereas the matching data
were obtained using static gratings, and the neural mechanisms
responsible for induction under these different conditions will
likely differ.

The only other large-scale study of brightness induction
(N = 101) was conducted by Bosten and Mollon (2010) who, using
a matching paradigm, report a mean brightness induction magni-
tude, for a 3.1� diameter circular test region centered within a
12.4� diameter surround, of approximately 34.4%. In agreement
with present findings these authors likewise reported no signifi-
cant correlation between brightness induction magnitude and par-
ticipant age, nor was there a significant correlation between the
magnitude of brightness induction and the magnitude of another
phenomenon commonly thought to reflect the strength of inhibi-
tory visual processes, contrast–contrast (Chubb, Sperling, &
Solomon, 1989).
4.3. Age-related changes in the upper versus lower visual field

Perhaps the most intriguing result of the present study was the
discovery of differential age-related changes in suprathreshold
contrast processing across the upper (UVF) and lower visual field
(LVF). Table 3 shows the correlations between the magnitude of
the upper and lower visual field differences for the three stimulus
conditions: Induced gratings (0.5� and 2.0� test fields) and real
gratings (2.0� standard). These correlations are all highly signifi-
cant, suggesting first that the UVF/LVF differences we observe are
robust and repeatable, and that the mechanisms which drive these
differences are similar across our three stimulus conditions.

There are a variety of known anatomical and functional asym-
metries between the two visual fields; see Skrandies (1987) and
Previc (1990) for comprehensive reviews. At a peripheral level
there is a greater retinal thickness (Silva et al., 2010) and higher
photoreceptor (Osterberg, 1935; Perry & Cowey, 1985) and gan-
glion cell density (Curcio & Allen, 1990; Stone & Johnston, 1981)
Table 3
This table shows the correlations between the magnitude of the upper and lower
visual field differences for the three stimulus conditions. These correlations are all
highly significant.

LVF–UVF differences Induced Real

0.5� 2.0� 2.0�

Induced
0.5� r 1 .553 .258

p <.001 .002
N 142 142

2.0� 1 .260
.002
142

Real
2.0� 1

Significant correlations are highlighted in bold.
in the superior retina (LVF). Component latencies of the electroret-
inogram (Skrandies, 1987) and visual evoked cortical potentials
(Eason, White, & Oden, 1967; Kimura & Tsutsui, 1981; Lehmann
& Skrandies, 1979) are shorter to stimulation in the LVF. In monkey
the LVF is overrepresented in a number of visual areas such as the
lateral geniculate nucleus (Connolly & Van Essen, 1984), area V1
(Van Essen, Newsome, & Maunsell, 1984), area MT (Maunsell &
Van Essen, 1987; Van Essen, Maunsell, & Bixby, 1981) and V6A
(Galletti et al., 1999). In humans the LVF also enjoys a larger ana-
tomical representation in early retinotopically mapped visual cor-
tex, as well as larger BOLD (Liu, Heeger, & Carrasco, 2006), MEG
(Portin et al., 1999), and ERP (Eason, White, & Oden, 1967)
responses to visual stimuli. There is enhanced sensitivity to stimuli
in the LVF at both threshold (Carrasco, Talgar, & Cameron, 2001;
Rijsdik, Kroon, & van der Wildt, 1980; Silva et al., 2008, 2010;
Skrandies, 1985b, 1987, 1995) and suprathreshold contrast levels
(Fuller, Rodriguez, & Carrasco, 2008; Levine & McAnany, 2005).
Attentional contrast enhancement (Fuller, Rodriguez, & Carrasco,
2008) and attentional acuity (He, Cavanagh, & Intrilligator, 1996),
as well as illusory contour perception (Rubin, Nakayama, &
Shapley, 1996), and letter recognition (Skrandies, 1987) are supe-
rior in the LVF. Spatial resolution (Skrandies, 1985b; Talgar &
Carrasco, 2002), visual search (Rezec & Dobkins, 2004), visuomotor
transformations (Carlsen et al., 2007; Danckert & Goodale, 2001;
Khan & Lawrence, 2005), perceptual identification (Carlsen et al.,
2007), critical flicker fusion frequency (Landis, 1954; Skrandies,
1985a), double flash discrimination (Skrandies, 1985a), simple
reaction time (Ellison & Walsh, 2000; Payne, 1967), pursuit eye
movement initiation (Tychsen & Lisberger, 1986), and chromatic
(Levine & McAnany, 2005), and motion processing (Lakha &
Humphries, 2005; Levine & McAnany, 2005) also show a LVF
superiority.

Beyond area V1 visual processing bifurcates into two compli-
mentary streams which course ventrally (into temporal cortex)
and dorsally (into parietal cortex). While both the UVF and LVF
afferents contribute to both streams, the LVF may have a stronger
representation within the dorsal stream whereas the UVF may
have a stronger association with the ventral stream (Danckert &
Goodale, 2001). Moreover, there is a relatively greater contribution
of the magnocellular system to the dorsal stream, and of the parvo-
cellular system to the ventral stream. Hence, one conceptualization
of the origin of UVF/LVF visual processing differences is that the
UVF may be specialized for object identification in far (extraper-
sonal) space, and rely more strongly on parvocellular input,
whereas the LVF may be specialized for visual processing in near
(peripersonal) space, and rely more strongly on magnocellular
input in support of visuomotor behavior (Previc, 1990).

Our results are broadly consistent with the large body of litera-
ture referenced above, since we find that, for young observers, both
real and induced suprathreshold gratings possess higher perceived
contrast when they are situated in the LVF. Our novel finding is
that this LVF advantage progressively weakens with age until, for
our oldest observers it is reversed and perceived contrast is signif-
icantly lower for stimuli in the LVF. It should be noted that the age-
related change in UVF versus LVF sensitivity to suprathreshold
contrast is not accompanied by a wholesale reduction in supra-
threshold contrast perception, since average matched contrast to
both real and induced gratings is relatively constant with age
(Experiment 2), and induced contrast measured in central vision
is likewise relatively stable with age, at least at low temporal fre-
quencies (Experiment 1).

To the extent that visual processing in the LVF may have a
stronger association with the magnocellular system it is possible
that the age-related reversal of the typical UVF/LVF anisotropy
we find is a consequence of magnocellular dysfunction, which is
thought to underlie the psychophysically-defined ‘‘transient’’
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channel (Kline & Schieber, 1981; Kline et al., 1983; Sturr, Van
Orden, & Taub, 1987). Alternatively, since attention has been pro-
posed to modulate perceived contrast (Carrasco, Ling, & Read,
2004), it is possible that the effects we report accrue from age-
related reductions of space-, object-, or feature-based attention
within the lower visual field. However, since attentional modula-
tion of perceived contrast occurs primarily at low (perithreshold)
contrasts (Schneider, 2006), it is unlikely that this explanation is
applicable to the highly suprathreshold (30% contrast) stimuli used
in the present experiment.

Cortical cataract formation has been reported to be asymmetri-
cal (Sasaki et al., 2003) owing to exposure to ultraviolet B radiation
which induces opacification in older observers localized to the
lower nasal quadrant of the lens. Since lens opacity in the lower
quadrants will reduce the perceived contrast of peripheral stimuli
in the UVF, this phenomenon cannot account for the reduced per-
ceived contrast of stimuli in the LVF reported here.

Finally, there is a significant association between LVF deficits,
impairments of locomotion, and increased prevalence of falls in
the elderly (Black, Wood, & Lovie-Kitchin, 2011; Lord, 2006;
Marigold & Patla, 2008; Timmis, Bennett, & Buckley, 2009). Since
seeing takes place primarily at suprathreshold levels of contrast,
the age-related reductions in perceived contrast for stimuli in the
LVF which we document could certainly contribute to this health
risk, particularly for older persons who are at the upper end of
the distribution.

4.4. Potential limitations

One potential limitation of the present study is that contrast
matches were made under conditions of free viewing, meaning
that observers were able to move their eyes to inspect the stimulus
array. Thus, the effective eccentricity of the standard and matching
gratings might be somewhat less than their physical values (±7.5�).
However, many perceptual asymmetries are reliably revealed
under free-viewing conditions, such as the left visual field advan-
tages in the perception of chimeric faces (Levy & Heller, 1981;
Levy et al., 1983; Luh, Rueckert, & Levy, 1991), in perceived object
midpoint (Jewell & McCourt, 2000; McCourt & Jewell, 1999), in
perceived object size (Charles, Sahraie, & McGeorge, 2007), as well
as in the perceived numerosity and brightness of objects (Nicholls,
Bradshaw, & Mattingley, 1999). Thus we may have underestimated
the true magnitude of the UVF/LVF asymmetry in suprathreshold
contrast perception, and further experiments are warranted in
which observers’ patterns of fixations will be monitored via eye-
tracking, or under instructions to maintain steady fixation. On
the other hand, that these UVF/LVF differences in perceived supra-
threshold contrast are found under conditions of free viewing is a
potential strength, and lends these results heightened ecological
validity, since it is under these conditions that normal visual per-
ception occurs.

A second potential limitation is that we did not control for pos-
sible reductions in retinal illuminance due to the age-related
reduction in pupil size (Winn et al., 1994). However, this concern
is lessened by the fact that grating induction magnitude is rela-
tively stable with changes in retinal illumination across the phot-
opic regime (McCourt, 1990), and by previous studies which find
that differential pupil size does not constitute a major source of
age-related differences in visual processing (Betts, Sekuler, &
Bennett, 2007; Betts et al., 2005; Elliott, Whitaker, & Thompson,
1989; Karas & McKendrick, 2009). Finally, reduced retinal illumi-
nance seems an unlikely source of the UVF/LVF asymmetry, and
despite potential age-related differences in mean retinal illumi-
nance we find no significant age-related alterations in contrast
matching to real or induced gratings, or in induced grating cancel-
ing contrast.
A third limitation is that we cannot determine whether the age-
related UVF/LVF differences we find are due to a loss of sensitivity
in the LVF or to an increase of sensitivity in the UVF (or to some
combination of each), because we do not have a neutral matching
condition, such as in central vision. However, it seems less likely
for sensitivity to increase with age than the opposite.

A fourth potential limitation is that we did not refract our par-
ticipants to our viewing distance of 57 cm, but instead allowed
them to wear their habitual spectacle lenses. This limitation is mit-
igated by the following considerations.

First, depth of field (DOF) varies inversely with stimulus spatial
frequency. DOF for 0.625 c/d gratings (4 mm pupil, white light) is
about 3 D (Marcos, Moreno, & Navarro, 1999). Because the spatial
frequency of our stimuli is an order of magnitude lower still
(0.052 c/d), DOF for our observers will be correspondingly greater,
significantly lessening the potential impact of uncorrected refrac-
tive error.

Second, the effect of modest refractive error on stimulus con-
trast is quite small. The point-spread function of the blur circle pro-
duced by a 2.5 D lens (assuming an age-corrected 4.5 mm pupil:
Winn et al., 1994) is 38.7 min of arc (Hoffman & Banks, 2010; :
Eq. (3)). Since the spatial period of our 0.052 c/d sinewave gratings
is 1154 min of arc, the transmission efficiency of this system is
quite high: 0.9990. This means that defocusing the 30% contrast
gratings used in this study by 2.5 D will lower their contrast to
29.97%, a reduction of just 0.03% contrast. It should also be noted
that grating induction magnitude is not reduced (actually subtly
increased) by blurring the inducing field/test field boundary
(McCourt & Blakeslee, 1993). Since the age-related difference in
UVF/LVF matching contrast we observe for both real and induced
grating stimuli is nearly 3.0%, we conclude that refractive error
does not contribute to the UVF/LVF differences in perceived con-
trast we report.

Third, we reanalyzed our data after excluding the 26 partici-
pants who wore multifocal lenses during testing and none of the
significant trends we report are affected by their exclusion.
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