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1. INTRODUCTION

This paper is concerned with the initial-boundary value problem for the
linear parabolic equation of higher order in #:

li
Z Al—k(xa Z Dx) Dfu(x7 t)=f(x’ t)a QX(Os T]’ (1])
k=0
Bix, t,D,)u(x, t)=0, j=1, ., m, 02x(0,T], (1.2)
(DFu)(x, 0) = uy(x), k=0,.,1-1, Q, (1.3)

and the same problem for the associated Volterra equation
{
Z Al~k(x, t, Dx) Dltcu(xa t)’
k=0

= j B(x, 1,5, D )u(x,s)ds+f(x, 1), 9x(0,T]. (14)

Here A/x,t D,), j=1,.,l, and B(xts D,) are linear differential
operators in x with coefficients defined in @ x [0, 7] and 2x {(¢,s):
0<s<t<T)}, respectively, and Ao(x,2,D,)=1. {Bfx,t,D)}/, is a
system of linear differential operators with coefficients defined on
0Q x [0, T] which do not contain derivatives in ¢. The operator on the left
side of (1.1) and (1.4) is assumed to be parabolic in the sense of Petrowsky.

* This work was supported by Grant-in-Aid for Scientific Research 61460003, Ministry of
Education of Japan.

288
0022-0396/88 $3.00

Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.



FUNDAMENTAL SOLUTIONS 289

We plan to solve problems (1.1)-(1.3) and (1.4), (1.2), (1.3) in the space
L?(Q), 1 <p < o0, and formulate the problem as follows:

At D) u(t)=f(1), 0<it<T, (1.5)
(D*u)0)=u,, k=0, 0—1, (1.6)
and
A(t, D) u(t) = f Bt s)u(s) ds+f(1), O0<t<T, (17)
0
(D¥u)(0) = uy, k=0,.,1—1, (1.8)

respectively. Here A(t, D,) is the operator defined by
!
A, D))=} A,_ (1) D}, (1.9)
k=0

where Ay (t)=1, A,_(t)=A,_(x, t,D,) for k=1, ..., I—1, A[t) is the
realization of A,/x, ¢, D,) in L?(£2) under the boundary conditions
B(x,t,D)ulso=0, j=1,..,m, and B(t,s)=B(x,t,5 D,). Our main
objective is to construct the fundamental solutions U(t, s) and W(t, s) for
(1.5), (1.6) and (1.7), (1.8), respectively, which are bounded operator
valued functions satisfying

AL, D) U(t,5)=0, 0<s<t<T, (1.10)
DFU(t,s)=0 at t=s for k=0,.,1—2, (1.11)
DI-1U(t,s)=1 at t=s, (1.12)

A(1, D,) W(t, s) = j'B(z, 6) W(o,s)ds, 0<s<i<T, (L13)

D¥W(t,5)=0 at t=s for k=0,.,/1-2, (1.14)
DI-'W(,s)=1 at t=s. (1.15)

The operator B(t, s) has the same order as A/t), and the integral of the
right of (1.8) should be understood as an improper integral:

j'B(t,a) W(o,s)do= lim |  B(t, o) W(a,s)do.

> +0vs4 ¢
With the aid of the fundamental solutions we give explicit representations
of the unique solutions of (1.5), (1.6) and (1.7), (1.8) for initial values

satisfying a compatibility condition and a Holder continuous
inhomogeneous term.
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In the previous paper [10] we considered the case in which the boun-
dary conditions (1.2) are independent of ¢ In this paper we investigate the
case of time-dependent boundary conditions under more restrictive
regularity assumptions on the coefficients of A;(x, 1, D,), j=1,..,L As in
the previous paper [10] we rely on the weighted elliptic estimates by
S. Agmon and L. Nirenberg [1] in the construction of the fundamental
solution of (1.5), (1.6) but following the method of [3] instead of [7].
Once this is accomplished, the fundamental solution of (1.7), (1.8) is
constructed in just the same manner as [10] following the method of
J. Priiss [6].

We show that U(, s) and W(z, s) also satisfy the adjoint equation, ie.,

{
Z (=D, (U(t, 5) 4,_4(5)) =0, (1.16)

ZI: (=D (W1, s) A,,k(s))=r W(t, o) B(o, 5) do. (1.17)

k=0

However, in the proof of (1.17) we need a strong smoothness hypothesis on
the coefficients of B(t, s) unlike the verification of (1.16) and in contrast
with the case /= 1.

2. ASSUMPTIONS AND THEOREMS

Let Q be a bounded domain in R", n> 1, with boundary 0Q2. We put
D.=(D,,..,D,), D;=0/0x;,, D,=4d/0t, D*= D} --- D% for a multi-integer
a=(ay,..,0o,), ¢,=0, and |a|=0a, + --- +a,. T denotes a positive number,
and we put

A={(t,5):0<s5<t<T}, A={(1,5):0<s<1<T}.
We are interested in operators

!
A(x,t,D,,D,)=Y A; ((x,t,D,)D¥ and B(x,ts D), (21)

k=0

where A;(x,t,D,), j=1,..1, are linear differential operators in x with
coefficients defined in € x [0, T], Ao(x, 2, D,)=1, and B(x,t,5,D,) is a
linear differential operator in x with coefficients defined in Q2 x 4.

Let s; be the order of A4;. It is assumed that

§;=2m, 5; < 2mjl, j=0,.,1-1,
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for some integer m>1 and that m and / are related by the condition
2m/l=d, an even integer. The order of B is assumed to be 2m.
In addition to (2.1) there are m linear differential boundary operators

B(x,,D )= 3 b, 4x,0)DE,  j=1,.,m,

1Bl < m

of respective order m; < 2m which do not contain D,.
We denote by 4*(x, , D) the sum of terms of 4(x, ¢, D) which are of
order jd, and put

/
a*(x,t,D,,D)= Y AF (x,1,D,) D~
k=0

Similarly B (x, t, D,) is the sum of terms of B/(x, ¢, D) which are of order
m;.
We state our basic assumptions.

(L1) d(x,t, D,, D,) is parabolic in the sense of Petrowsky, ie., for all
real n-vectors & #0, all (x, 1)e Q x [0, T, and all complex numbers A with
Re 420, (L *(x,¢t, i, 4)#0.

(I2) Q is a bounded domain of class C*". At any point (x,?) of
082 x [0, T] let v be the normal to 3@ at x and & be parallel to 4Q at x or
&=0. Let 1 be any complex number with Re 1> 0. Then, if (£, 1) #0, the
polynomials in s:B*(x, ¢ {+sv), j=1,..,m, are linearly independent
modulo the polynomial JT7_, (s—s; (£, A)) where s/ (&, 1) are the roots of
a*(x, t, i(&+ sv), A) with positive imaginary part.

(I.3) The coefficients of 4,, j=1, .., /, and their derivatives in ¢ of order
up to / are continuous in Q2 x [0, T]. These derivatives of order / are
uniformly Holder continuous in ¢ in @ x [0, T] with exponent p. As
regards the coefficients of B,

DiDb, g, k=0, ..., 1, lyl<2m—m,, 1Bl<m;,j=1,.,m,

are continuous on 82 x [0, T], and these derivatives with k=/ are
uniformly Holder continuous in ¢ on 62 x [0, T] with exponent p.
(I.4) The coefficients of 4;, j=1, .., , and their derivatives in ¢ of order
up to 2/ are continuous on 02 x [0, T]. As regards the coefficients of B;
D¥Db, 5, k=0, .., 2], lyl <2m—m,, |1Bl<m;,j=1,..,m,
are continuous on Q2 x [0, T].

(I.5) The coefficients of B are continuous in Q x 4 and uniformly Hélder
continuous in (t, s) in 2 x 4 with exponent p.

505/73/2-7
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Let W/?(R2), 1 <p < oo, be the usual Sobolev space with the norm

1/p
uu||b,.,,,=< Y f ID"‘ul”dx) .

lx|<j "R

The norm of L?(£2) is simply denoted by || ||,. We use the notations B(L”,
L?), B(L?, W”*?) to denote the set of all bounded linear operators from
L7(Q) to L7(Q), W/7(82), respectively. We denote the norm of B(L?, W*?)
by || || sz, wiry and in case j=0 simply by || | instead of || || g1r, 1r)-

For a Banach space X and an interval I we denote by C(I; X) the set of
all functions which take values in X and are strongly continuous in 7.

The operators A(¢), j=0, ..., [, are defined as follows: Ao(t) =1, A(t) u=
Afx,t, D, )u for ue W4r(Q) if j=1,..,1—1, and A(t)u=A/(x,t,D,)u
for u in

D(A[1)) = {ue W™?(Q). B{x, t, D) u|,=0
for j=1,.,m}.

We put

/

A(t, D)) Z (D

The operator B(t,s) is defined by B(f,s)u=B(x,t,s5,D)u for
ue Wrmr(Q).

Throughout the paper we denote by C constants depending only upon
the above basic assumptions.

THEOREM 1. Under the assumptions (1.1)~(1.3) the fundamental solution
U(t, s) of (1.5), (1.6) exists. We have for j+ kd <2m

I DY UL, ) seeo, WivP)SC(t_s)lilik_j/d, (2.2)
llm D"U(t s)=0  for k=0,.,1-2 (2.3)

in the strong operator topology of B(L?, W*™~*4=4r) and

lim D'-'U(t,s)=1 (2.4)

t—s—0

in the strong operator topology of B(L?, L?).
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For given elements u, ..., ;,_, of L”(2) we assume that
(II) (Compatibility Condition) For i =0, ..., /2, u;e W*™?(Q), and
i l .
Z <k) B;k)(x’ 05 Dx) ui*k:OS .]=1’"" m,
k=0
on the boundary 42, where B is the operator obtained by differentiating
the corresponding coefficients of B; k times in 7.

LemMa 2.1.  Under the assumption (1) the elements v,, ..., v,_, defined
successively by

i—1 .
— v.-=u,-—z(’)DrkA,(r)*‘A,(O)vu,:o 25)

belong to D(AL0)).
Set

22711
Vi = — Z ( k )Dﬁ\lkA{(t)AlAl(O)Ukh:o- (2.6)

k=0

THEOREM 2. Let the assumptions (1.1)}-(1.3) be satisfied. Then, for any
elements uy, ..., u,_, of L?(Q) satisfying (11) and for any function f(t) with
values in LP(Q) which is Holder continuous in [0, T], the function u(t)
defined by

u(t) = If u () + L U(t, s) f(s) ds, 2.7)

i=0

w() = A1) 400,

- fol U(t, 5) A(s, D,) (—j—: Afs)" 1 4/0) vi) ds, i=0,.,/1-2 (28)
u,_()=U(,0)v,_, (2.9)

is a solution of (1.5), (1.6), where v, ..., v, are the elements defined by
(2.5), (2.6). The initial conditions (1.6) are satisfied in the following sense: for
k=0,.,1-1

lim D*u(t) = u, strongly in W?™~—*¢~47(Q). (2.10)

t—0

THEOREM 3. Suppose that the assumptions (1.1)-(1.4) are satisfied. Then,
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the fundamental solution U(t,s) of (1.5), (1.6) is [ times continuously
differentiable in s, and for j+ kd <2m

| DEUCL, 5 aer. win K Clt—s) oM (2.11)
limODfU(t,S)=0 for k=0,..,/-2 (2.12)
t—s—>

in the strong operator topology of B(L?, W*m~*4=2P) and

lim (=D~ 'U(t,s)=1 (2.13)

t—s5—0

in the strong operator topology of B(L?, L?). For (t,s}e 4 and ve D(A4,(s))
we have

/
Y, (=D (U(t,5) A;_x(s)) v=0. (2.14)
k=0

The following theorem is concerned with the uniqueness of the solution.

THEOREM 4. Suppose that the assumptions (L.1}-(1.4) are satisfied. Let f
be a bounded function belonging to C((0, T]; LP(2)). If u is a function such
that for k=0, ..,1—1

D¥ue C([0, T]; W=~ 4r(Q))n C((0, T]; W™~ *47(R2)),
Diue C((0, T1; L*(2)), t | D¥u(t)lsm—ra, is bounded in (0,T] for
k=0, .., 1, and (1.5) holds, then for te (0, T]

1—1 i
w(t)=3 Y (=D (U 5y A, i(8)) - Diul$)] -0

i=0k=i+1

+ j (L, s) f(s) ds. (2.15)
1]

THEOREM 5. Under the assumptions (1.1}-(L3), (1.5) the fundamental
solution W(t, s) of (1.7), (1.8) exists. We have for j+ kd<2m

I DE W (2, 5)ll pero, winy < Cle =)/ =1 =474, (2.16)
lim D*W(1,s)=0 for k=0,..,1-2 (2.17)
t—s—0

in the strong operator toplogy of B(L?, W*™~*4=4r) and
lim DI~ Wt 5)=1 (2.18)

t— 35—

in the strong operator topology of B(L*, LF).
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THEOREM 6. Let the assumptions (1.1)—~(1.3), (1.5) be satisfied. Then, for
any elements ug,..,u,_, of LP(Q) satisfying (I1) and for any Hdlder
continuous function f(t) in [0, T] with values in L?(Q2), the function u(t)
defined by

u(r) f (1, 5)f(s) (2.19)
ui(z)=i—;A,( 0= 40,
+ f Wi, r){ j B(, s) Afs) " AL0) v,ds (2.20)

—A(z, D, )< Aft)~1 4(0) v,)} dt  for i=0,.,1-2,
u,_()=WI(t,0)v, 4, (2.21)

where vy, ..., v;_, are the elements defined by (2.5), (2.6) is the solution of
(1.7), (L.8). The integral of the right side of (1.7) exists in the improper
sense:

j' B(t, s) u(s) ds= lim j B(1, 5) uls) ds.
0 e—+ +0J,

The initial conditions are satisfied in the sense of (2.10).

THEOREM 7. Suppose that the assumptions (1.1)-(1.5) are satisfied. Then,

the solution of (1.7), (1.8) is unique in the class of functions such that for
k=0,..,1—1

Dfue C([0, TT; W~ =47(Q)) n C((0, T1; W ~+4#(Q)),

Dﬁue C((0, T1; LP(Q)), t|Diw(t)lsm—_1a, is bounded in (0,T] for
k=0,..1/ and I B(t, 5) u(s) ds is uniformly bounded for 0 <e<t<T and
converges as £ — 0 in the strong topology of L*(82) uniformly in any closed
subset of (0, T].

THEOREM 8. Suppose that the assumptions (1.1)-(1.5) are satisfied. If in
addition the coefficients of B(t, s) are | times continuously differentiable in
(t,5) in Q@ x A4, then the fundamental solution W(u, s) of (1.7), (1.8) is I times
continuously differentiable in s, and for j+ kd <2m

I DXW(, s)|| s, win<C(t—s)'! ki, (2.22)
lim D*W(t,5)=0  for k=0,..,1-2 (2.23)

t—5-0
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in the strong operator topology of B(L*, W*"~*~4r) and

lim (=D,) ' W(t,s)=1 (2.24)

t—s—0
in the strong operator topology of B(L?, L*). For (t,s)€ 4 and ve D(A[s))
we have

! !
Y (—Ds)"(W(t,s)A,_k(s))u=j W(t, o) B(o, s)vdo.  (2.25)
k=0 0

Let f be a bounded function belonging to C((0, T]; L?(2)). If u is a function
in the class of functions stated in Theorem 7 and satisfies (1.7), (1.8), then

u(t)=Y Y (=D (WL 8) Ay i(s)) - Diu(s)l, o

i=0k=i+1

+ j "W, 5) f(s) ds. (2.26)
0

3. SoME LEMMAS

Throughout this section we assume that the hypothesis (I1.1)-(1.3) are
satisfied.

The following lemma can be shown slightly modifying the proof of
Theorem 5.2 of [1].

LeMMA 3.1. There exist constants C, and A, such that the following
inequality holds for A with Re 120, |A|=4,, te[0,T], and ue W r(Q):

2m )
XA, ,
j=0

sc,,{na(x, 6Dy, A)ul,

M P R g,»nzm;m,,,,}, (3.1)

ji=1 j=
where g, is an arbitrary function in Wrm—mi-P(Q) coinciding with
Bj(x,t,D,)u on 02 for each j=1, .., m.

Replacing the unknown function u by e ~“‘u for some positive constant ¢
if necessary we may and will assume that there exists an angle 8, € (n/2, ]
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such that the conclusion of Lemma 3.1 holds for AeX = {1: |arg 4| <
6o} v {0}. Hence, for A€ X the operator A(t, A) defined by

1
D(A(t, A))=D(A[1)), Al A)= Z A1) A
especially 4,(¢), has a bounded inverse, and for any fe L?(Q)

Z || =Y A AT, < TS (32)

j=0

Furthermore, arguing as in the proof of Lemma 3.6 of [9] we can show
that A(¢, A)~' fis / times continuously differentiable in ¢ and

2m
2 A D A A, <CU Sl k=104 (33)

j=0

2m
2N DIA(L AT = DiA(s, )T f N, <Cli=sIP I f 1, (34)

j=0
If (1.4) is also satisfied, A(z, A) "' f'is 2/ times continuously differentiable in
t and (3.3) holds for k=1, ..., 21

The fundamental solution U(z, s) of (1.5), (1.6) can be constructed as
follows,

U(t, s)= Usglt, s)+ Z(1, s), (3.5)

Uo(t, s)=(2n /—1)"* fre“"”A(t,/l)*‘ di, (3.6)

where I is a smooth contour running in £\ {0} from coe ™ to aoe™,

Z(1,5) = f Uq(t, 7) R(z, 5) dr, (3.7)

R(, s)—f'Rl(z, ) R(%, s) de = R, (1, 5), (3.8)
Ri(1,5)= —A(t, D,) Uy(t, s)

!
—@n/=D)7H [ S0 T A0

k=1

x i ( )xk iDiA(t, 4)~" di. (3.9)
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LEmMA 3.2. For j+ kd<2m
Il Df Uol(t, s)”B(L/’, wi ) S C(t _S)I_ ! _k_j/d, (3.10)
| DX Us(t, s)| gere, wiry < C(t —s)/ R (3.11)

For j+kd<2m, k>0
(D, + D) D¥=" Ug(t, )| err, wiory < C(2—5)' ~* 74, (3.12)
ForO0<s<t<t<T

1D5~ " Uo(t, ) — D Uolt, ) < Clog((1 = s)/(t =), (3.13)
lim DiUo(t,s)= lim DiUs(t,s)=0 for k=0,..I-2 (3.14)
t 0

t—85— —5—
in the strong operator topology of B(L?, w*™ *4=%r) and

lim DI='Uy(t,s)= lim (—=D,) ' Uy(t,s)=1I (3.15)
(4]

1—s5s— t—s5—0
in the strong operator topology of B(L”, L*).

Proof. (3.10)-(3.13) are simple consequences of (3.2), (3.3). The
equalities (3.14), (3.15) are verified as Proposition 3.2k of [5] and (3.21) of

[10].
Lemma 3.3. R(t, s) is uniformly bounded in A. For 0<s<t1<t<T
IR(2, 5) — R(z, 5)| < C{(t —1)* +log((t —5)/(1 —5))
+ (t—1)(1 —log(t—1))
+(t—s)log(t—s)—(t—s)log(t—s)}. (3.16)
Proof. 1t readily follows from (3.2), (3.3) that R,(¢,s) is uniformly

bounded, and hence so is R(z, s) in view of (3.8). With the aid of (3.2)—(3.4)
we can easily show for 0<s<t<t<T

I Ry(2, 5)— Ry(z, )| S C{(t—1)* +1og((r—s)/(x—s))}.  (3.17)
Inequality (3.16}) is a simple consequence of (3.8), (3.17).

LEMMA 3.4. Z(t,s) is | times continuously differentiable in t, and for
j+kd<2m

1 D’fZ(t, s B(LE, Wi ry S C(t— s)[_kwj/d- (3.18)
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Proof. If j+kd<2m, Ineq.(3.18) is a simple consequence of
Lemmas 3.2 and 3.3. We have for 0<k </

D¥Z(t,5)= | DXUglt, D)(R(, 5) = R(t, 5)) de
+[ (D, + D) DE U, 7 de Rt 5)
+ DA UL, 5) - R, 5). (3.19)

Inequality (3.18) for k>0, j+kd=2m follows from this equality and
Lemmas 3.2, 3.3. It follows from

i A ((=D)f Uglt, 1) =0 (3.20)
k=0

that

jr A()Uy(t,tydr=1— 21: A, (=D)L Uolt, 5). (3.21)

=1

Hence, we get

A1) Z(t,5)= [ A{) U(t, D)(R(z, 5) = R(t, 5)) de

R}

+{1— i A (1) (=D))< Uo(t,s)} R(1, ), (3.22)

k=1

from which (3.18) for k=0, j=2m follows.
For operator valued functions F and G defined in 4, we write for brevity

(Fx G)(t, s)= j F(t, 7) G(z, s) dr (3.23)

whenever the right side is meaningful.

The following lemma is easily established by induction.

LeMMA 3.5. If F(t,s) and G(t,s) are i times continuously differentiable
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functions in A such that F;=(D,+ D,y F and G,=(D,+ D,)’ G are bounded
for j=0, ..., i, then

(D,+D) (FxG)= ¥, C) F,_ G,
j=0
LeEMMA 3.6. If (14) is also satisfied, then R(t,s) is [ times continuously

differentiable in (1, s), and for i=0, .., 1
I(D.+D,) R(t, s)| < C. (3.24)

Proof. Since R(t, s) is the solution of (3.8), we have
R=ZRV, R,=R,*R,_,, v=2,3, ...
v=1

With the aid of Lemma 3.5 we can show by induction that there exist
constants K, K such that for i=0,..,/, v=2,3, ..,

(D, + D,) R,(1, 5)| KoK~ (2 —s)""YJ(v=1)},
from which (3.24) follows.

LemMA 3.7. If (1.4) is also satisfied, then Z(1,s) is | times continuously
differentiable in s, and the following inequality holds for j+kd<2m,
O<k<l

I DX Z(t, )|l pero, wiory < C(t — R} B (3.25)

Proof. With the aid of Lemma 3.2 and integration by parts we get for
O0<k<l!

DEZ(t, )= 3 (’f) j D=1 Uy(1, 1) (D.+ D) R(r, s) dr.  (3.26)

i=0
Rewriting the summand with i =0 we obtain
D¥Z(t, 5) =j' D Uy(t, t)(R(1, ) — R(1, 5)) dt
—D*=1Uq(¢, 5)- R(1, 5)

+ il (lf) f DUyt 7)- (D.+D,) R(z, ) dr. (3.27)
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Calculating formally we get

D, Jt D! 'Uy(t, 1) - R(x, 5) dt
= —D{"'Uy(t, 5)- R(s -5)

+[ D1 U1, 1) (D, 4+ D) R(x,5) e
—j' D!-1U(t, 1)- DRz, 5) dt
= [ D1 U1, 1) (D, + D) Riz, s) de— (= 1) R(t, 5)
t
+ [ DLUNL ) - R(z, 5) do
- j D!I-1Uy(1, 7)- (D, + D,) R(1, 5) dr

+ [ LU, TRz, 5~ R(1, 5)) de

—DI-1Uy(t, 5)- R(1, ). (3.28)

It is not difficult to justify the above formal calculation. With the aid of
(3.26) for k=I/—1 and (3.28) we see that (3.27) holds also for k =/ The
inequality (3.25) is an easy consequence of Lemma 3.2, 3.3, and 3.6 and
Eq. (3.27).

4. PrROOF OF THEOREMS

Proof of Theorem 1. The assertions (2.2)-(2.4) follow from Lemmas 3.2
and 3.4. That U(4, s) satisfies (1.10) can be verified without difficulty with
the aid of (3.5), (3.19), (3.22).

Proof of Lemma2.l. It is clear that vy,e D(A,(0)). Suppose that
v, € D(A/0)) for k=0, ..,i—1,i<]/—2. Put

wi(t)= A1)~ 4(0) v, k=0,..,i—1.
Then

i—1
v;=u;— Z (Il() D *w,(0), wi(0) =v,.
k=0
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Differentiating both sides of
B(x,t, D) wi(x, 1)=0, x €08,

i—k times in ¢ and then letting =0 we get
ik (%) i—k—x
Y . B{)(x,0,D,) D! wi(x, 0)=0.
k=0

Hence, noting

(W)= wem 2 () w0

we obtain for x € 092
B(x,0, D) v(x)
= Bj(-x5 O, Dx) ui(x)

i—1 7
- Z <;€> Bj(xa 0’ Dx)D:‘ikwk(xi 0)
k=0

=B(x,0,D.) ux)

T () (K (x) i—k—«
+ Y () Z 0 ) BR00.D) DI wi(x, 0)
k=0

k=1

=B,(x,0,D,) u(x)

L/ S fi—K\ .,
+ 2 () 8Rem0.00 Y (1) o o)
k=1

k=0

Lol
B ( ) B{(x,0, D) u; (x)=0.
=0

P K

Proof of Theorem 2. That the last term of the right side of (2.7) is a
solution of (1.5), (1.6) with uy=---=u,_ ;=0 can be shown as
Theorem 6.2 of [4]. The assertion of Theorem 2 can be easily shown with
the aid of this fact and a direct calculation.

Lemma 4.1, For k=0, ..., 1
| D¥U(t, 5) Afs) ™" || gire, wom—rasy < C.
Proof. In view of (3.5) and Lemma 3.4 it suffices to show

| D¥Uq(t, sy Afs) |l BLe, wim—kipy < C.
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This is a consequence of (3.3) with k=1, A=0, and
A, )7 A=A

I—1
=Y A AT A (1) Afr)
k=0
Proof of Theorem3. The assertions (2.11)-(2.13) are consequences of
Lemmas 3.2 and 3.7. In case p =2 for any element ¢ of L*(Q)

(t—s)!

U(f,S)A/(S)71¢=‘(I—_W

A1)~ ¢

' (O,_S)lfl .
—j Ult, 5) A(o, DU)<W— A/(0) ¢> do  (41)

since both sides of this equality are solutions of
A(t, D) u(t)=0, s<t<T,
u(s)=---=u'"Ds)=0, w'"" V=A(s)""¢

such that | D¥u(t)llym kq, is bounded for k=0,..,/ by virtue of
Lemma 4.1 and the uniqueness in this class of functions is already known
in case p=2 in view of [2] or [8]. Approximating ¢e L?(£2) by a
sequence of elements of L?(2) n L*(2) in the strong topology of L?(Q) we
see that (4.1) holds also in case p # 2. Integrating by parts we get

S)[ 1

[ vtn.0) 4y 401 D (U 4o+ 6) do

= UG, A0) " B0t S A0 83

[ D) U ) A, o) = a0t pde (42)

. T
for k=1, .., [ Combining (4.1) and (4.2) yields

¢ B . (O'—S)171
| X (=D (Ut ) A sto)) gy

~

Af6) ' ¢pdo=0. (4.3)
Differentiating both sides of this equality / times in s we obtain

!

Z )< (U(t,5) A;_i(s5)) - Afs) ™' ¢=0

from which (2.14) follows.
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Proof of Theorem4. Let u be a function in the statement of the
theorem. Then, in view of (2.14) we have

[ % (=D (Ut5) 4, 4(5))-u(s) ds =0

€ k=0

for 0 <e <t < T. Integrating by parts in the left hand side and letting ¢ - 0
we conclude (2.15).

Proof of Theorem 5. The theorem is proved in just the same manner as
Theorem 1 of [10]; namely, the fundamental solution W(z, s) of (1.7), (1.8)
is constructed as follows:

Wi(t, s)=U(t, s)+ A1) ' V(1,s), (44)

Vit 5)= Volt, )+ P(t, 6) V{5, 5) do, (4.5)

Vo1, s) =j' P(1,0) A (o) U(o, 5) do

5

=L’ (P(t, 6)— P(t, 5)) A{c) Ula, 5) do (4.6)
+P(1, ) j Ac) U(s, 5) do,
P(1, )= A1) f U(t, 1) K(z, 5) de
= [/ 40) Ut 1)(K(, 5) = K1 ) e

+ {1— }I: A l()(=D) 1 Ut S)} K(t, 5)

k=1

+[ 440 20,0 Kz, 5) d, 4.7)

5

where K(t, 5) is the operator valued function defined by

K(t,5)=B(t,5) A(s) "

By the assumption (1.5) and the inequality (3.3) K{(¢, s) is uniformly Holder
continuous in 4:

IK(¢', ') — K(t, )| < C(1 £ —1]” + |5 = 51°). (4.8)
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It follows from this inequality that for s<o<t<1
I K(z, 0) ~ K(t, 6) — K(z, 5) + K(1, s)| S C(t = 1) (¢ —5)"2. (49)

With the aid of Lemmas 3.2, 3.4 and Inegs. (4.8), (4.9) we can show that
P(t, s) is strongly continuous in A4 and

” P(ta S)——P(t’ 0)”
SC{(a—s5)+(t—0a)*(a—s5)"?+log((t—s)/(t—0))} (4.10)

for 0<s<o<t< T Using (2.2), (4.10) and noting

f (o) U(o, s) do = — fj (DU s)+ T

5

M~ n

'[A, «(¢) DX~ 1U(a, s) da,

we see that Vy(s,s) is strongly continuous in 4. Hence, the integral
equation (4.5) can be solved by successive approximation and the solution
V(t, s) is strongly continuous in 4. Arguing as in [10] it is not difficult to
show that the operator valued function defined by (4.4) is the desired
fundamental solution of (1.7), (1.8), the integral of the right side of (1.13)
existing as an improper integral

lim J' B(t, 0) Wie, s) do.
s+e

e— +0

Proof of Theorem 6. The theorem can be shown as Theorem 2 and
Theorem 2 of [10].

Proof of Theorem7. Let u(t) be a solution of (1.7), (1.8) with
uy=---=u,_; =0 1n the class of functions stated in the theorem. In view of
Theorem 4 we have

t T
ut)=[ U 0) [ B, s) uls) ds dr.
0 0
With the aid of (4.10) and the boundedness of s || 4,(s) u(s)|, we get

{0 ()= [ P(1,5) Afs) uls) db,

which implies that || 4,(¢) u(t)ll, is bounded. Hence, with the aid of
Gronwall’s inequality we obtain A,(¢) u(t) =0, from which we get u(¢)=0.
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Proof of Theorem 8. Since W(t, s) is the solution of the integral

equation
W(t,s)= U1, 5) + f Ult,7) [ B(z.0) Wi, 5) do de

=U(t, 5)+ jt Wi, 1) Jr B(t, 0) Ulo, s) do dr,

s

it is expressed as

W= Z an W0=Ua WV=WVA1*Q’ v=1’ 2a

v=0

where

Ot s)=(B* U)t,5)= — Z K(t, 1) A,_,(£) DX 1U(1, 5)

k=1
K(t, 5)+ Z j K(t, 1) A,_ (1)) - D*~ 1 U(t, 5) de
and the convolution F* G of F and G is defined by (3.23).
LEmMMA 4.2. For 0<i<[, 0<k<l j+kd<2m
I(D,+ D,y D~ U(t, )|l s, winy < C(t —3)~* 774,
Proof. As is easily seen for 0<i</, 0<k </ j+kd<2m
(D, + D,y D~ ' Ug(t, $)ll prr, i py < Cl2 —5)' = F 7
An application of Lemma 3.5 yields
(D,+ D,y D*='Z(1, s)
- Z j ( )D +D,) I DF=1Uy(t, 1) - (D, + D,) R(x, 5) dv.
With the aid of (4.13), (4.14), and Lemma 3.6 we get
D+ D,) D=1 Z(t, ) pro, wsny S Ct —5)! *7H*L
Combining (4.13) and (4.15) yields (4.12).

LemMMA 4.3. For 0<i<!

I(D,+ D) Q(z, s)I < C.

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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ForO<s<t<itgT

10(t, 5) — Q(z, s)|| < Clog((t—s)/(t —5)). (4.17)

Proof. Inequality (4.16) follows from (4.11) and Lemma 4.2. It is also
easily seen that | D,Q(¢, s)| < C/(t —s), which implies (4.17).

LEMMA 44. For j+kd<2m
| DXW (2, )l perr. wiomy < C(t — 5)/ =K, (4.18)

Proof. Just as (3.27) was established we get

DEW\(1,5) = | DAV, Q5 $) — O, 5)) do
_Dls(_ ! U(t, S) : Q(t, S)

+] ._il @ DIIU(1,7) (Do + D) 05, 5) dr (4.19)

for 0 < k <1 Inequality (4.18) in this case is a simple consequence of (2.11)
and Lemma 4.3. The proof of (4.18) for k=0 is the same as that of (3.18)
for k=0.

By virtue of Lemma 4.4 one can show by induction that for v>2
L . .
Diwto)=[ % (§) D, 0. (D + D Qlns) o
S i=0

and there exist constants M,, M such that for j+ kd <2m

| DEW (1, 5) || peer, winy S MoM™~ (it —s)! =574+ = 1/(y — 1)L, (4.20)

It follows from (2.11)—(2.13), (4.20) that (2.22)—(2.24) hold.
Let ¢ be any element of L?(€). Then,

(t—s)!

W(t,s) Ads) ! ¢=W

A ¢
+j' Wi, r){f’ B(r, a)<% Ao)"! ¢> do

(t—s) !

— Alr, D,)(W Afr)~! ¢)} dr

505/73/2-8



308 HIROKI TANABE

since both sides are the solutions of

A(z,D,)u(t):j'B(z,a)u(a)do, s<t<T

u(s)=---=u"D(s)=0,  u'"D(s)=A[s)"" ¢,

and in view of Theorem 7 the solution of this problem is unique. With the
aid of the argument by means of which we derived (4.30) from (4.2) we
obtain

[ {j' Wit, o) Bz, a) de— 3 (D) (Wi, a)A,mk(o))}

s k=0
(O’—S)171

=D Afo) ' $do=0.

Differentiating both sides of this equality / times in s and putting
v=A/s)"" ¢ we get (2.25). The verification of (2.26) is the same as that of
(2.15).
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