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1. INTRODUCTION 

This paper is concerned with the initial-boundary value problem for the 
linear parabolic equation of higher order in t: 

,to A,-,& 6 D,) D: 4x, 1) =.0x, t), Q x (0, n (1.1) 

Bj(X, t, D,) 4-T t) = 0, j = 1, . . . . m, ai2 x (0, T], (1.2) 

(D:u)(x, 0) = u,(x), k = 0, . . . . I- 1, 52, (1.3) 

and the same problem for the associated Volterra equation 

j. &/Ax, t, D,) @4x, t), 

= I ’ B(x, t, s, D,) u(x, s) ds +f(x, t), 52 x (0, T-J. (1.4) 
0 

Here Aj(x, t, D,), j= 1, . . . . f, and B(x, t, S, D,) are linear differential 
operators in x with coefficients defined in 0 x [0, T] and fi x {(t, S) : 
0 <S < t d r}, respectively, and A,(x, t, D,) = 1. {Bj(x, t, D,)}J’= r is a 
system of linear differential operators with coefficients defined on 
%Q x [0, T] which do not contain derivatives in t. The operator on the left 
side of (1.1) and (1.4) is assumed to be parabolic in the sense of Petrowsky. 

* This work was supported by Grant-in-Aid for Scientific Research 61460003, Ministry of 
Education of Japan. 
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We plan to solve problems (l.l)-( 1.3) and (1.4), (1.2), (1.3) in the space 
L’(Q), 1 <p < co, and formulate the problem as follows: 

and 

NC D,) u(f) =f(f), O<t<T, (1.5) 

(D;ku)(o) = uk, k=O, . . . . f- 1, (1.6) 

O<t<T, (1.7) 

(D;u)(o) = uk, k = 0, . . . . 1- 1, 

respectively. Here A(t, D,) is the operator defined by 

A(?, D,) = i A,-k(t) Of, 
k=O 

(1.8) 

(1.9) 

where A,(t)=Z, A,-,(t)=A,-,(x, t,D,) for k= 1, . . . . I- 1, A,(t) is the 
realization of ,4,(x, t, D,) in Lp(Q) under the boundary conditions 
Bi(x, t, D,) uIdR=O, j= 1, . . . . m, and B(t, S) = B(x, t, S, D,). Our main 
objective is to construct the fundamental solutions U(r, S) and W( t, s) for 
(1.5), (1.6) and (1.7), (1.8), respectively, which are bounded operator 
valued functions satisfying 

A(& D,) vt, s) = 0, O<s<t<T, (1.10) 

0; U( t, s) = 0 at t=s for k = 0, . . . . l- 2, (1.11) 

D;- 1 U(t, s) = Z at t =s, (1.12) 

A(t, D,) W(t, s)= j’B(t, c) W(o, s) da, O<s<t<T, (1.13) 
s 

D;k W( t, s) = 0 at t=s for k=O, . . . . l-2, (1.14) 

D;- l W(t, s) = I at t =s. (1.15) 

The operator B(t, s) has the same order as A,(t), and the integral of the 
right of (1.8) should be understood as an improper integral: 

I 
, f 
B( t, (T) W( (r, s) do = lim I B(t, a) W(o, s) do. 

s e-+0 S+E 

With the aid of the fundamental solutions we give explicit representations 
of the unique solutions of (1.5), (1.6) and (1.7), (1.8) for initial values 
satisfying a compatibility condition and a Holder continuous 
inhomogeneous term. 
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In the previous paper [lo] we considered the case in which the boun- 
dary conditions (1.2) are independent of t. In this paper we investigate the 
case of time-dependent boundary conditions under more restrictive 
regularity assumptions on the coefficients of Aj(x, t, D,), j= 1, . . . . 1. As in 
the previous paper [lo] we rely on the weighted elliptic estimates by 
S. Agmon and L. Nirenberg [l] in the construction of the fundamental 
solution of (1.5), (1.6) but following the method of [3] instead of [7]. 
Once this is accomplished, the fundamental solution of (1.7), (1.8) is 
constructed in just the same manner as [lo] following the method of 
J. Priiss [6]. 

We show that U(t, s) and lV(t, s) also satisfy the adjoint equation, i.e., 

(1.16) 

j. (-D,lk (w(t, %ds))= j’ W(t, a)B(a,s)da. (1.17) 
s 

However, in the proof of (1.17) we need a strong smoothness hypothesis on 
the coefficients of B(t, s) unlike the verification of (1.16) and in contrast 
with the case I= 1. 

2. ASSUMPTIONS AND THEOREMS 

Let Q be a bounded domain in R”, n > 1, with boundary aQ. We put 
D, = (D,, . . . . D,), Di = a/ax;, D, = a/at, 0; = 0”;’ . . .D: for a multi-integer 
a = (al, . . . . a,), ai 2 0, and 1 a 1 = a1 + . . . + a,. T denotes a positive number, 
and we put 

A={(t,s):O<s<t<T}, A= {(t,s):O<s<t<T}. 

We are interested in operators 

a(x, I, D,, D,) = c A,-&, t, D,) Df and W, t, s, D,), (2.1) 
k=O 

where Aj(x, t, D,), j= 1, . . . . Z, are linear differential operators in x with 
coefficients defined in 0 x [0, T], ,4,(x, t, D,) = 1, and B(x, t, s, D,) is a 
linear differential operator in x with coefficients defined in 0 x 2. 

Let sj be the order of Aj. It is assumed that 

s, = 24 sj < 2mj/l, j=O, . . . . l- 1, 
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for some integer m > 1 and that m and 1 are related by the condition 
2m/l= d, an even integer. The order of B is assumed to be 2m. 

In addition to (2.1) there are m linear differential boundary operators 

B~(x, t, Dx) = C b, p(X, t) D!, j = 1, . . . . m, 
IBl<m, 

of respective order mj < 2m which do not contain D,. 
We denote by A,?(x, t, D,) the sum of terms of Aj(x, t, D,) which are of 

order jd, and put 

a#@, t, D,, D,) = f: AEk(x, t, D,) 0:. 
k=O 

Similarly B,f (x, t, D,) is the sum of terms of Bj(x, t, D,) which are of order 
mj. 

We state our basic assumptions. 
(1.1) 6Z(x, t, D,, D,) is parabolic in the sense of Petrowsky, i.e., for all 

real n-vectors l# 0, all (x, t) E Q x [0, T], and all complex numbers ;1 with 
Re A> 0, a#(~, t, i<, 1) # 0. 

(1.2) s1 is a bounded domain of class C2”. At any point (x, t) of 
XJ x [0, T] let v be the normal to 852 at x and 5 be parallel to &J at x or 
5 = 0. Let ,? be any complex number with Re II > 0. Then, if (l, A) # 0, the 
polynomials in s: B,?(x, t, 5 + sv), j= 1, . . . . m, are linearly independent 
modulo the polynomial nr= i (s - sz (r, 2)) where s: (5, n) are the roots of 
ol #(x, t, i(5 + sv), 2) with positive imaginary part. 

(1.3) The coefficients of Aj, j = 1, . . . . 1, and their derivatives in t of order 
up to 1 are continuous in fix [0, r]. These derivatives of order 1 are 
uniformly Holder continuous in t in 0 x [0, T] with exponent p. As 
regards the coefficients of B, 

DfDy,b,,,, k = 0, . . . . 1, IYI d2m-mj, IPI 6mj, j= 1, . . . . m, 

are continuous on 8Q x [0, T], and these derivatives with k = 1 are 
uniformly Holder continuous in t on XJ x [0, r] with exponent p. 

(1.4) The coefficients of Aj, j= 1, . . . . 1, and their derivatives in t of order 
up to 21 are continuous on %2x [0, T]. As regards the coefficients of Bj 

DfD3;bj,B, k = 0, . . . . 21, IY( <2m-mj, I B I < mj, j= 1, . . . . m, 

are continuous on &2 x [0, r]. 
(1.5) The coefficients of B are continuous in 0 x 2 and uniformly Holder 

continuous in (t, s) in D x 2 with exponent p. 

505/73p7 
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Let I@“(Q), 1 <p < co, be the usual Sobolev space with the norm 

The norm of LP(sZ) is simply denoted by II IIP. We use the notations B(LP, 
LP), B(LP, IPp) to denote the set of all bounded linear operators from 
LP(Q) to Lp(Q), VP(Q), respectively. We denote the norm of B(LP, IYAp) 
by I/ II B(LP, wI.P) and in case j = 0 simply by I/ )I instead of II II B(Lq Lp). 

For a Banach space X and an interval Z we denote by C(I; X) the set of 
all functions which take values in X and are strongly continuous in I. 

The operators Aj( t), j = 0, . . . . Z, are defined as follows: A,(t) = Z, A,(t) u = 
Aj(x, t, D,) u for u E Widp(Q) if j = 1, . . . . I- 1, and A,(t) u = A,(x, t, D,) u 
for u in 

D(A,( t)) = { 24 E wZm,p (sz): Bj(x, t, Dx) u I X2 = O 

for j= 1, . . . . m}. 

We put 

A(t, D,) = f: A,pk(t) 0;. 
k=O 

The operator B(t, s) is defined by B(t, S) u = B(x, t, S, D,) u for 
u E w*yQ). 

Throughout the paper we denote by C constants depending only upon 
the above basic assumptions. 

THEOREM 1. Under the assumptions (I.l)-(1.3) the fundamental solution 
U(t,s) of (1.5),(1.6) exists. We haueforj+kd<2m 

II 0: WC, s)llB(Lp, w,.n) Q C(t-s)‘- lpk--jld, 
lim 0: U( t, s) = 0 for k=O,...,l-2 

t--s-0 

(2.2) 

(2.3) 

in the strong operator topology of B(LP, W2mP kdPd.p), and 

lim D:-‘U(t,s)=I (2.4) 
t-s-0 

in the strong operator topology of B(LP, Lp). 
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For given elements u,,, . . . . u[-, of Lp(Q) we assume that 

(II) (Compatibility Condition) For i = 0, . . . . 1- 2, U,E WZm,P(Q), and 

i . 

z. 
BjkJ(X, 0, D,) 24-k = 0, j = 1, . ..) m, 

k=O 

; 

on the boundary 852, where Bj!“) is the operator obtained by differentiating 
the corresponding coeflicients of Bj k times in t. 

LEMMA 2.1. Under the assumption (II) the elements vo, . . . . II-~ defined 
successively by 

i-l 
uo=uo, vj=u,- c 

0 
; Df-k&(t)-’ A,(O)u,l,=, (2.5) 

k=O 

belong to D(A,(O)). 

Set 

(2.6) 

THEOREM 2. Let the assumptions (I.1 k(I.3) be satisfied. Then, for any 
elements uo, . . . . u,-, of Lp(Q) satisfying (II) and for any function f(t) with 
values in Lp(Q) which is Holder continuous in [0, T], the function u(t) 
defined by 

u(t)=‘~‘u;(t,+~; U(t,s)f(s)ds, 
i=O 

(2.7) 

Ui(l)=g A,(t)-’ A,(O) Vj 

- i = 0, . . . . 1-2, (2.8) 

UI- l(f) = U(t, 0) V/L I (2.9) 

is a solution of (1.5), (1.6), where vo, . . . . v,-, are the elements defined by 
(2.5), (2.6). The initial conditions (1.6) are satisfied in the following sense: for 
k = 0, . . . . I- 1 

pFo DFu(t) = uk strongly in W2”-kd-d,P(Q). (2.10) 

THEOREM 3. Suppose that the assumptions (1.1~(1.4) are satisfied. Then, 
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the fundamental solution U( t, s) of (1.5), (1.6) is 1 times continuously 
differentiable in s, and for j + kd d 2m 

II Df f-44 s)ll B(LPJ/,.p)<C(t-S)’ ‘-k-.“d, (2.11) 

lim DS U(t, s) = 0 for k=O, . . . . l-2 (2.12) 
t-s-0 

in the strong operator topology of B(Lp, W2m-kd-d,p), and 

lim (-D,)” U(t,s)=I (2.13) 
t-S-0 

in the strong operator topology of B(L”, Lp). For (t, s) E A and v E D(A,(s)) 
we have 

kCo(-D,)‘(U(t,s)A,~,(s))v=O. (2.14) 

The following theorem is concerned with the uniqueness of the solution. 

THEOREM 4. Suppose that the assumptions (I.1 k(I.4) are satisfied. Let f 
be a boundedfunction belonging to C((0, 7’1; Lp(sZ)). Ifu is a function such 
that for k = 0, . . . . I- 1 

D:uEC([O, T]; W2m-kdPd.P(S2))nC((0, T]; W2”PkdVP(Q)), 

D~UE C((0, T]; Lp(Q)), t II D:u(t)l12m-kd,p is bounded in (0, T] for 

k = 0, . . . . 1, and (1.5) holds, then for t E (0, T] 

I-1 I 
u(t)= c 1 (-D,)k-l-i(U(f,s)A,~k(s)).DSu(s)Is=o 

i=O k=i+l 

+ ' U(t,s)f(s) ds. 
5 0 

(2.15) 

THEOREM 5. Under the assumptions (I.1 )-(1.3), (1.5) the fundamental 
solution W(t, s) of (1.7), (1.8) exists. We have for j + kd< 2m 

II 0: Wt, s)ll B(LP,W/,~)~C(t-s)~---k~~‘d, 

lim D;k W( t, s) = 0 for k = 0, . . . . I- 2 
t-s-0 

(2.16) 

(2.17) 

in the strong operator toplogy of B(LP, W”‘- kd-d*p)r and 

lim D:-’ W(t, s) = I (2.18) 
I-S-O 

in the strong operator topology of B(LP, Lp). 
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THEOREM 6. Let the assumptions (I.l)-(1.3), (1.5) be satisfied. Then, for 
any elements uO, . . . . u,- 1 of Lp(Q) satisfying (II) and for any Holder 
continuous function f(t) in [0, T] with values in L”(Q), the function u(t) 
defined by 

u(t) = ‘f u,(t) + j-i W’(t, s)f(s) ds, 
i=o 

(2.19) 

ui(t)=$4,(t)-‘A,(0) v, 

+/; W(t, r){j: B(z, s+,(s)-l A,(O) vids (2.20) 

-A(z, D,) ;/i,(r)-’ A,(O) vi 
(. 

dz for i=O,...,l-2, 

u/- t(t) = vt, 0) v/- 1, (2.21) 

where vO, . . . . II,- 1 are the elements defined by (2.5), (2.6) is the solution of 
(1.7), (1.8). The integral of the right side of (1.7) exists in the improper 
sense: 

s 

I 

5 

I 
B( t, s) u(s) ds = lim B( t, s) u(s) ds. 

0 E’+O E 

The initial conditions are satisfied in the sense of (2.10). 

THEOREM 7. Suppose that the assumptions (I.1 F(I.5) are satisfied. Then, 
the solution of (1.7), (1.8) is unique in the class of functions such that for 
k = 0, . . . . I - 1 

D:uEC([O, T]; W2”~kd-d,p(Q))M((0, T]; Wz”-“~p(sZ)), 

Diu~C((0, T]; LP(Q)), t I( D:u(t)l(,,,Pk4P is bounded in (0, T] for 
k = 0, . . . . I, and sz B(t, s) u(s) ds is untformIy bounded for 0 < E < t < T and 
converges as E --+ 0 in the strong topology of Lp(Q) untformly in any closed 
subset of(0, T]. 

THEOREM 8. Suppose that the assumptions (I.lb(I.5) are satisj?ed. If in 
addition the coefficients of B( t, s) are I times continuously differentiable in 
(t, s) in 0 x 2, then the fundamental solution W( t, s) of (1.7), (1.8) is I times 
continuously differentiable in s, and for j + kd < 2m 

II 0: Wt, s)ll B(LP,W,,p)~C(t-s)‘-‘~k--j’4 

lim DaW(t,s)=O for k=O, . . . . f-2 
r--s-+0 

(2.22) 

(2.23) 



296 HIROKI TANABE 

in the strong operator topology of B(LP, W2”- kdPrl,p), and 

lim (-D,)‘-’ W(t,s)=Z (2.24) 
r-s-0 

in the strong operator topology of B(LP, Lp). For (t, s) E A and v E D(A,(s)) 
we have 

kio ( -DAk ( W(t, s) Al-&)) v = J1’ W(t, a) B(a, 8) v&. (2.25) 

Let f be a boundedfunction belonging to C((0, T]; Lp(Q)). Lf u is a function 
in the class offunctions stated in Theorem 7 and satisfies (1.7), (1.8), then 

u(t)= 1 c (-D,)k-iP1 (w(t,S)A,_k(S)).DfU(S)(,=O 

i=o k=r+l 

+J; W(t, s)f(s) ds. (2.26) 

3. SOME LEMMAS 

Throughout this section we assume that the hypothesis (I.l)-(1.3) are 
satisfied. 

The following lemma can be shown slightly modifying the proof of 
Theorem 5.2 of [ 11. 

LEMMA 3.1. There exist constants C, and ;1, such that the following 
inequality holds for 1 with Re 12 0, 111 B A,, t E [0, T], and u E W2m,p(Q): 

5 121 (2m -d/d 11 u 11 j, p 
j=O 

+ f I~I(2m-T) II gjllp+ f II gjll2m-tq.p), (3.1) 
j=l j=l 

where gj is an arbitrary function in W2m-mj,p(Q) coinciding with 
Bj(x, t, D,) u on 852 for each j = 1, . . . . m. 

Replacing the unknown function u by e -“r~ for some positive constant c 
if necessary we may and will assume that there exists an angle Ooe (x/2, n] 
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such that the conclusion of Lemma 3.1 holds for A EC = {A: larg II < 
&,} u (0). Hence, for IEZ the operator A(& A) defined by 

W(t, A)) = W,(t)), 
k=O 

especially A,(t), has a bounded inverse, and for any f~ Lp(Q) 

(3.2) 

Furthermore, arguing as in the proof of Lemma 3.6 of [9] we can show 
that A( t, A) - ’ f is 1 times continuously differentiable in t and 

: IAl (2m-j)‘d llDfA(t, A)-‘fllj,pG c Ilf llp? k = 1, . . . . 1, (3.3) 
j=O 

: 111 (2m-j)‘d II&4(t, n)yf-Dp(s, 3b)-‘fllj,,<C I t-sip Ilfll,. (3.4) 
.j= 0 

If (1.4) is also satisfied, A( t, A))‘f is 21 times continuously differentiable in 
t and (3.3) holds for k = 1, . . . . 21. 

The fundamental solution U(t, s) of (lS), (1.6) can be constructed as 
follows, 

U(t, s) = U,(t, s) + Z(t, s), (3.5) 

U,(t, s)= (2n J-1)-’ ~re”“-“‘A(t, A)-’ dA, (3.6) 

where r is a smooth contour running in Z\ (0) from cOeCieo to coeieo, 

Z(t, s) = j-l U,(t, z) R(z, s) dr, 
s 

(3.7) 

R(t,s)-f’R,(t,r)R(r,s)dr=R,(t,s), 
s 

R,(t, 3) = -A(4 D,) Uo(t, 3) 

= -(2~~)-‘~~e”f-“k~~~~-k(t) 

(3.8) 

k k 
XC . 

0 i-1 ’ 
Ak-%fA(t, A)-’ d;l. (3.9) 
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LEMMA 3.2. For j + kd < 2m 

II Dt Uoth s)ll B(L/J, w,,r,~C(t-s)‘-‘-k-j’d, (3.10) 

II Da uo(t, s)ll fj(‘yJ, w,,p,~C(t-S)~~l~k~j’d. (3.11) 

For j+kd<2m, k>O 

II(D,+D,)D:-’ U,(t,s)llB(LP.W,.P)~C(f-S)‘~k--i”. (3.12) 

ForO<s<z<t<T 

IID~~‘U,(t,s)-Do-‘U,(t,r)lldClog((t-s)/(t-5)), (3.13) 

lim D;k U,,(t, s) = lim Df Uo(t, s) = 0 for k =O, . . . . I- 2 (3.14) 
r-s+0 t-s-0 

in the strong operator topology of B(Lp, w2m~kd~~p), and 

lim D:-‘Uo(t,s)=,~S~o(-DS)‘-L U,(t,s)=Z (3.15) 
r-s-0 

in the strong operator topology of B(LP, Lp). 

Proof: (3.10)-(3.13) are simple consequences of (3.2), (3.3). The 
equalities (3.14), (3.15) are verified as Proposition 3.2k of [S] and (3.21) of 
[lOI. 

Lemma 3.3. R( t, s) is un$ormly bounded in A. For 0 < s < z < t 6 T 

IIR(t,s)-R(z,s)ll <C((t-z)P+log((t-s)/(z-s)) 

+ (t-r)(l -log(t-r)) 

+(t-s)log(t-s)-(r-s)log(r-s)}. (3.16) 

Proof: It readily follows from (3.2), (3.3) that R,(t, s) is uniformly 
bounded, and hence so is R(t, s) in view of (3.8). With the aid of (3.2)-(3.4) 
we caneasily show for O<s<z<t<T 

II R,(t, s) - R,(z, s)ll < C{ (t - ~1” + W(t-s)/(z -s,,}. (3.17) 

Inequality (3.16) is a simple consequence of (3.8), (3.17). 

LEMMA 3.4. Z(t, s) is 1 times continuously differentiable in t, and for 
j+kdd2m 

II D:z(t, s)ll B(LP, w,,P)<C(t-S)‘-k--i’*. (3.18) 
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Proof If j+ kd<2m, Ineq. (3.18) is a simple consequence of 
Lemmas 3.2 and 3.3. We have for 0 <k 6 1 

~:Z(~,S)=J”D:U~(~,~)(R(~,S)--R(I,~))~~ 
s 

+J”(D,+D,)Df-‘U,,(t, ~)dzR(t,s) 
s 

+ Df - l U,( t, s) . R( t, s). (3.19) 

Inequality (3.18) for k > 0, j+ kd= 2m follows from this equality and 
Lemmas 3.2, 3.3. It follows from 

i Al-k(t)( -D,lk U,(c 7) = 0 
k=Q 

(3.20) 

that 

‘A,(t) U,(t,z)dz=I- i &k(f)(--Ds)k-l u,(t,S). (3.21) 
k=l 

Hence, we get 

A,(f) Z(t, s) = j-’ A,(t) Udt, 7)(R(7, s) -NC s)) d7 
s 

+ I- i &,(t)(-&)k-l u,(t,s) 
k=l 

from which (3.18) for k = 0, j = 2m follows. 
For operator valued functions F and G defined in A, we write for brevity 

(I;* G)(t, s) = j’F(t, 7) G(7, s) dz 
s 

(3.23) 

whenever the right side is meaningful. 

The following lemma is easily established by induction. 

LEMMA 3.5. Zf F(t, s) and G(t, s) are i times continuously differentiable 
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functions in A such that F, = (D, + D,)j F and G, = (D, + D,)j G are bounded 
for j = 0, . . . . i, then 

(D, + DJi (F * G) = i c) F;-,j * G,. 
j=O 

LEMMA 3.6. If (1.4) is also satisfied, then R(t, s) is I times continuously 
differentiable in (t, s), and for i = 0, . . . . I 

II@, + DAi Nt, s)ll G C. (3.24) 

Proof Since R( t, s) is the solution of (3.8), we have 

R= f R,, R,=Rl * R,-,, v = 2, 3, . . . . 
v=l 

With the aid of Lemma 3.5 we can show by induction that there exist 
constants K,, K such that for i = 0, . . . . I, v = 2, 3, . . . . 

~~(D,+D,)iRY(t,~)~~<KoZC-l(t-s)Y--/(~-l)!, 

from which (3.24) follows. 

LEMMA 3.7. If (1.4) is also satisfied, then Z(t, s) is I times continuously 
differentiable in s, and the following inequality holds for j+ kd d 2m, 
O<k<lI: 

II D$zk s)ll B(,y* *,,,,<c(t-s)L-k-j’d. (3.25) 

Proof With the aid of Lemma 3.2 and integration by parts we get for 
O<k<l 

(3.26) 

Rewriting the summand with i = 0 we obtain 

D:Z(t,s)=/‘D:Uo(t,r)(R(r,s)-R(t,s))dT 
s 

- 0t-l Uo(t, s) . R(t, s) 

k k * 
+i;l i JS D:-‘U,(t, ~).(D~+D~)~R(z,s)dz. (3.27) 

0 
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Calculating formally we get 

DS 5 t D’,- l U,( t, T) . R(z, s) dz 
s 

= -D;- ’ U,( t, s) . R(s . s) 

+ j-’ D’,-’ U,(t, t) . (D, + D,) R(t, s) dz 
s 

- I ’ D;- ’ U,(t, z) . D,R(s, s) dr 
s 

+ I’ 0; U,(t, 7). R(z, s) dr 
s 

= s ’ D;- ’ U,( t, z) . (D, + D,) R(q s) dz 
3 

+ j-’ D;U,(t, z)(R(z, s) - R(r, s)) dT 
s 

- D;- ’ U,( t, s) . R( t, s). (3.28) 

It is not difficult to justify the above formal calculation. With the aid of 
(3.26) for k = I- 1 and (3.28) we see that (3.27) holds also for k = 1. The 
inequality (3.25) is an easy consequence of Lemma 3.2, 3.3, and 3.6 and 
Eq. (3.27). 

4. PROOF OF THEOREMS 

Proof of Theorem 1. The assertions (2.2~(2.4) follow from Lemmas 3.2 
and 3.4. That U(t, s) satisfies (1.10) can be verified without difficulty with 
the aid of (3.5), (3.19), (3.22). 

Proof of Lemma2.1. It is clear that Q,E D(A,(O)). Suppose that 
uk E D(A,(O)) for k = 0, . . . . i - 1, i < 1- 2. Put 

Then 

Wk(f)=Al(t)~lAI(o)Uk, k = 0, . . . . i - 1. 

Dip k wk(0), b’+(o) = ok. 



302 HIROKITANABE 

Differentiating both sides of 

i-k times in t and then letting t = 0 we get 

Hence, noting 

BjK)(x, 0, D,) D;-“- K w,(x, 0) = 0. 

we obtain for XEXJ 

B,(x, 0, D,) u,(x) 

= B,tx, 0, D,) uitx) 

Bj(X, 0, D,) Df- k W,(X, 0) 

= Bib, 0, D,) u;(x) 

Bj+(x, 0, D,) ui-,Jx) = 0. 

Proof of Theorem 2. That the last term of the right side of (2.7) is a 
solution of (1.5), (1.6) with u,=...=u,_,=O can be shown as 
Theorem 6.2 of [4]. The assertion of Theorem 2 can be easily shown with 
the aid of this fact and a direct calculation. 

LEMMA 4.1. For k = 0, . . . . 1 

IID: u(t, S) A,(s)-’ IIB(LP, t.+-Mq < c. 

Proof: In view of (3.5) and Lemma 3.4 it suf’tkes to show 

tI D: uo(t, s) A,(s)-’ ~IB(LP, w=-+) < c. 
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This is a consequence of (3.3) with k = 1, 1= 0, and 

A(?, A)-’ A,(t)-’ = PA,(t)- 
/Ll 

- c Ak-‘A(& A)-’ AIek(t) II,(t)-‘. 

k=O 

Proof of Theorem 3. The assertions (2.11)-(2.13) are consequences of 
Lemmas 3.2 and 3.7. In case p = 2 for any element 4 of L2(Q) 

- s r u(c 0) A(03 Do) (a-S)‘-1 
A,(a)-‘q5 da (4.1) s (I- l)! > 

since both sides of this equality are solutions of 

A(& D,) u(t) = 0, s<t<T, 

u(s) = . . = &2)(s) = 0, u(‘-‘)=A,(s)-‘4 

such that 11 @u(t)11 2m- kd,p is bounded for k = 0, . . . . I by virtue of 
Lemma 4.1 and the uniqueness in this class of functions is already known 
in case p = 2 in view of [2] or [8]. Approximating 4~ LP(s2) by a 
sequence of elements of LP(R) n L’(Q) in the strong topology of Lp(sZ) we 
see that (4.1) holds also in case p # 2. Integrating by parts we get 

s 
’ u(t, 0) A,Lk(c) 0: 

(a-s)l-’ 

(I- l)! 
A,(a)-‘4 do 

0 > 

(a-s)‘-’ 

+~‘(-D,)k(C’(I,a)A,-k(cr)). tl-ll, h(g)-‘@” (4.2) 
s 

for k = 1, . . . . 1. Combining (4.1) and (4.2) yields 

(-D,)k t”(h al A,Lk(a))’ (a-S)‘-1 A,(a)-‘qida=O. (4.3) (/- 1l! 

Differentiating both sides of this equality 1 times in s we obtain 

from which (2.14) follows. 
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Proof of Theorem 4. Let u be a function in the statement of the 
theorem. Then, in view of (2.14) we have 

t / 

0 (-D,)k(U(t,S)A~~k(S)).u(s)ds=O 
& k=O 

for 0 <E -C t < T. Integrating by parts in the left hand side and letting E + 0 
we conclude (2.15). 

Proof of Theorem 5. The theorem is proved in just the same manner as 
Theorem 1 of [lo]; namely, the fundamental solution W(t, S) of (1.7), (1.8) 
is constructed as follows: 

W(t, s)= U(t, S)+Aj(t)-’ Jqt, s), 

V(t,s)= V&,s)+j’P(t,a) V(a,.s)da, 
s 

(4.4) 

(4.5) 

= ‘(P(t,cr)-P(t,s))A,(a)U(a,s)d~ 
I s 

+ f’(t, s) j’ A,(o) WC, s) do, 
s 

(4.6) 

P(t,s)=A,(t)j’U(t,W(v)h 
s 

= ‘A,(t) U,(t, ~)(K(z,s)-K(t,s))dz 
s s 

+ I- f: &,(t)(-D,)k-l u,(t, s) 
k=l 

(4.7) 

where K(t, S) is the operator valued function defined by 

zqt, s) = z3(t, s) A,(s)-‘. 

By the assumption (1.5) and the inequality (3.3) K(t, S) is uniformly Holder 
continuous in 6: 

IIK(t’,s’)-K(t,s)lldC(It’-t(~+IS’-slq. (4.8) 
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It follows from this inequality that for s < cr 6 r < t 

IIK(z,a)-K(t,a)-K(z,s)+K(t,s)lldC(t-z)p’2(,-S)P’2. (4.9) 

With the aid of Lemmas 3.2, 3.4 and Ineqs. (4.8), (4.9) we can show that 
P(t, S) is strongly continuous in 1 and 

II fY& s) - JTc a)ll 
<C{(a-s)P+(t-@‘2(0-.r)P’2+log((t-.s)/(t-C))} (4.10) 

for O<-s<cr< t < T. Using (2.2), (4.10) and noting 

rA,(rr)u(rr,s)do=- i A,~,(t)D)-lU(t,s)+z 
k=l 

+ i SrA,~,(a)Dk,~lU(a,s)da, 
k=l s 

we see that Vo(t, S) is strongly continuous in 2. Hence, the integral 
equation (4.5) can be solved by successive approximation and the solution 
V(t, S) is strongly continuous in 1. Arguing as in [lo] it is not difficult to 
show that the operator valued function defined by (4.4) is the desired 
fundamental solution of (1.7), (1.8), the integral of the right side of (1.13) 
existing as an improper integral 

lim ’ 
s B( t, a) W( 0, s) da. 

c++o S+E 

Proof of Theorem 6. The theorem can be shown as Theorem 2 and 
Theorem 2 of [lo]. 

Proof of Theorem 7. Let u(t) be a solution of (1.7), (1.8) with 
u. = . . = u,- , = 0 in the class of functions stated in the theorem. In view of 
Theorem 4 we have 

u(t) = j; U( t, z) j; B(z, s) u(s) ds dz. 

With the aid of (4.10) and the boundedness of s 11 A,(s) u(s)ll, we get 

which implies that 11 A,(t) u(t)ll, is bounded. Hence, with the aid of 
Gronwall’s inequality we obtain A,(t) u(t) = 0, from which we get u(t) = 0. 
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Proof of Theorem 8. Since FV(t, s) is the solution of the integral 
equation 

W(t, s) = U(t, s) + j’ U(t, z) jT B(z, a) W(o, s) da dz 
s s 

= U( 1, s) + j’ W( t, t ) jr B( z, a) U( (i, s) da dz, 
s s 

it is expressed as 

w- T w,,, w,= u, w,= w,,-, * Q, v = 1, 2, . ..) 
Y = 0 

where 

Q(t, s) = (B * U)(t, s) = - i K(t, 2) AIdk(l) Of-’ U(r, s) 
k=l 

and the convolution F * G of F and G is defined by (3.23). 

LEMMA 4.2. For O<i<l, O<kQI, jikdG2m 

II(D,+D,)‘D)~‘U(t,s)l~B(LP,W,,p)~C(f-~)’~k~j’d 

Proof. As is easily seen for O<i<l, O-ckdl, j+kd62m 

II(D,+D,)‘D~~lUo(t,s)ll.~,,,,,,,~C(t-s)’~k~i’d. 

An application of Lemma 3.5 yields 

(D,+ D,)i Df-‘.Z(t, s) 

I 1 i = 
w ,=o s i 

(D, + Dr)‘-j Of-’ U,(t, z) . (D, + D,)‘R(z, s) dz. 

With the aid of (4.13), (4.14), and Lemma 3.6 we get 

II(D,+D,)iD;k-1Z(t,~)IIB(Lp.W,.p)~C(f-~)’-k--j’d+‘. 

Combining (4.13) and (4.15) yields (4.12). 

LEMMA 4.3. For 0 < i < 1 

IIP, + D,Y Q(h s)ll G C. 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 



FUNDAMENTAL SOLUTIONS 307 

II Q(t, 3) - Q(G s)ll d C log((t -s)/(r - $1). (4.17) 

Proof: Inequality (4.16) follows from (4.11) and Lemma 4.2. It is also 
easily seen that 11 D,Q(t, s)ll < C/(t - s), which implies (4.17). 

LEMMA 4.4. For j + kd < 2m 

II 0: w,(t, s)ll B(LP, W,.P) < C(t -S)‘-k-“d. 

Proof: Just as (3.27) was established we get 

(4.18) 

0: w,(t, s) = j’ D: W, z)(Q(z, s) - Q(t, s)) dz s 

-D$-‘U(t,+Q(t,s) 

D:-iU(t, T) .(D, + D,)i Q(q s) d? (4.19) 

for 0 <k < 1. Inequality (4.18) in this case is a simple consequence of (2.11) 
and Lemma 4.3. The proof of (4.18) for k = 0 is the same as that of (3.18) 
for k = 0. 

By virtue of Lemma 4.4 one can show by induction that for v B 2 

and there exist constants MO, A4 such that for j + kd 6 2m 

II D$ Wv(t, s)ll BcLp, w,,~~~MoMY-l(t-~)‘~k--i’d+“--/(v- l)!. (4.20) 

It follows from (2.11k(2.13), (4.20) that (2.22k(2.24) hold. 
Let 4 be any element of Lp(Q). Then, 

W(t, s) A,(s)-’ q3 = ‘;;yy A,(t)-’ $4 

+ j’ W(t, T){ j :  B(z, a)( ‘~z~sl;! ’ A,(a)-’ 4) da 
s 

-4?>D,) 

(T - s)‘- 1 

(z-1)! A,(z)-‘4 dz 

505/73/2-Z 
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since both sides are the solutions of 

A(t,D,)u(t)=j-rB(t,o)u(a)dcr, s<t<T, 
s 

u(s) = . . . = u(‘-2)(s) = 0, u(‘- l)(s) = A,(s) - l (25, 

and in view of Theorem 7 the solution of this problem is unique. With the 
aid of the argument by means of which we derived (4.30) from (4.2) we 
obtain 

Wt, 7) B(T 0) dz - i (-D,)k (W(t, a) ,dek(cr)) 
k=O 

x (d-s)‘-l 

(I- l)! 
A,(o)-‘dda=O. 

Differentiating both sides of this equality 1 times in s and putting 
u = A,(s)-’ 4 we get (2.25). The verification of (2.26) is the same as that of 
(2.15). 
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