A Matrix Representation for Automorphisms of Compact Riemann Surfaces

Jane Gilman
Mathematics Department
Rutgers University
Newark, New Jersey 07012

Submitted by Olga Taussky Todd

ABSTRACT

In this paper we prove a result which has as corollaries theorems of Hurwitz, Accola, Grothendieck, and Serre on automorphisms of Riemann surfaces.

1. INTRODUCTION

Throughout this paper W will denote a compact Riemann surface of genus $g \geq 2$ and h a conformal automorphism of W. Let $\pi_1(W)$ and $H_1(W,\mathbb{Z})$ be the fundamental group and the first homology group of W. Let \approx denote homology. By abuse of language we will refer to a curve in $H_1(W,\mathbb{Z})$ when we mean the homology class of the curve. For each integer n, $C(n, h)$ will be the subgroup of $H_1(W,\mathbb{Z})$ consisting of curves γ with $\gamma - h(\gamma) \approx n\delta$ for some curve δ in $H_1(W,\mathbb{Z})$.

Grothendieck and Serre [4] have shown that if $C(n, h) = H_1(W,\mathbb{Z})$ for some integer $n \geq 3$, then h is the identity. More recently, Earle [2] has pointed out that this is an immediate consequence of Minkowski's theorem (see p. 212 of [9]) about integer matrices which are congruent to the identity matrix modulo a prime.

The object of this paper is to obtain a basis for $H_1(W,\mathbb{Z})$ with respect to which the matrix of the action of h is in a particularly nice form. This enables us to compute the index of $C(n, h)$ in $H_1(W,\mathbb{Z})$ when h is of prime order. As a corollary we see that $C(n, h)$ is always a proper subgroup of $H_1(W,\mathbb{Z})$ unless h is the identity or h is the hyperelliptic involution and

LINEAR ALGEBRA AND ITS APPLICATIONS 17, 139-147 (1977)
n = 2. In addition we obtain an upper bound on the number of elements in \(C(n, h) \) in any homology basis and show that there is always a homology basis which does not contain any element of \(C(n, h) \) for any \(n > 3 \). The method also gives another proof of a result of Accola [1] about how \(h \) can act on homology. This is all done in Sec. 4.

The method of the proof is to use the Schreier-Reidemeister rewriting process [8] to obtain a presentation for \(\pi_1(W) \) on which the action of \(h \) is easily calculated. This is done in Sec. 3. The matrix of the action induced by \(h \) on homology is calculated in Sec. 4.

2. NOTATION

The following notation will be fixed throughout the paper. \(H \) will be the group generated by \(h \); \(W_0 \) will be the factor surface, \(W_0 = W/H \); \(g_0 \) will be the genus of \(W_0 \); and \(t \) will be the number of fixed points of \(h \). If \(t \neq 0 \) and if \(h \) is conformal, then \(t > 2 \). When \(h \) is of prime order, for example, this can be seen by applying Theorem 3 of [3] when \(T = 1 \) and \(n = 0 \). For two curves \(A \) and \(B \), \(A \times B \) will be their intersection number. Automorphism will always mean a conformal map.

3. A PRESENTATION FOR \(\pi_1(W) \)

Theorem 1. Let \(W \) be a compact Riemann surface of genus \(g \geq 2 \). Let \(h \) be an automorphism of \(W \) of prime order \(p \neq 1 \). Let \(g_0 \) be the genus of the factor surface and \(t \) the number of fixed points of \(h \). Then

(i) If \(t > 0 \), \(\pi_1(W) \) is generated by the set

\[
\begin{align*}
 h^j(A_w), h^j(B_w), & \quad w = 1, \ldots, g_0, \quad j = 0, \ldots, p-1, \\
 h^k(X_i), & \quad i = 3, \ldots, t, \quad k = 0, \ldots, p-2.
\end{align*}
\]

\(\pi_1(W) \) has a single defining relation \(R \) in which each generator and its inverse occur exactly once. Further, for each \(i = 3, \ldots, t \), we have

\[
h(h^{p-2}(X_i)) \equiv \sum_{j=0}^{p-2} - h^j(X_i).
\]
(ii) If \(t = 0 \), \(\pi_1(W) \) is generated by the set

\[
\begin{align*}
&h^i(A_w), h^j(B_w), \quad w = 2, \ldots, g_0, \quad j = 0, \ldots, p - 1, \\
&A_1, B_1.
\end{align*}
\]

\(\pi_1(W) \) has a single defining relation \(R \) in which each generator and its inverse occur exactly once, \(h(A_1) = A_1 \) and \(h(B_1) = B_1 \).

(iii) In either case, the generators for \(\pi_1(W) \) have the following properties:

\[
\begin{align*}
&h^i(A_w) \times h^k(B_v) = \delta_{wv} \delta_{jk}, \text{ where } \delta_{rs} \text{ is the Kronecker delta and } w, v, i, \text{ and } k \\
&\text{vary over all possibilities.} \\
&h^i(A_w) \times h^k(A_v) = 0 \text{ for all possible } w, v, i \text{ and } k. \\
&h^i(B_w) \times h^k(B_v) = 0 \text{ for all possible } w, v, i \text{ and } k. \\
\text{However, when case (ii) occurs, } h^i(A_1) \times h^k(B_1) = 1 \text{ for all } j \text{ and } k.
\end{align*}
\]

Proof. Since parts (i) and (ii) are a slight modification of the result of Nielsen (see p. 31 of [10]), we give only a brief outline of a proof which will be need for the proof of (iii).

Macbeath [7] has shown that there exist Fuchsian groups \(G \) and \(M \) with \(G/M \) isomorphic to \(H \) and \(U/M \) isomorphic to \(W \), where \(U \) is the upper half plane. \(M \) is torsion free and thus isomorphic to \(\pi_1(W) \). \(G \) has presentation:

\[
\left\langle a_1, \ldots, a_{g_0}, b_1, \ldots, b_{g_0}, x_1, \ldots, x_t; x_1^p = 1, x_1 \cdots x_t \prod_{i=1}^{g_0} [a_i, b_i] = 1 \right\rangle.
\] (1)

Here \([a, b]\) denotes the commutator of \(a \) and \(b \).

We let \(\phi \) be the homomorphism of \(G \) onto \(H \) with kernel \(M \). Let \(\phi(x_i) = h^i, t = 1, \ldots, t \). By results of Harvey [5], replacing \(h \) by a conjugate homeomorphism if necessary, we may assume that \(\phi(b_i) = \phi(b_i) = \phi(a_i) = 1 \) for \(i = 2, \ldots, g_0 \). By the results of [3], we may also assume that \(\phi(a_1) = 1 \) when \(t \neq 0 \).

We apply the Schreier-Reidemeister rewriting process to \(G \) and obtain a presentation for \(M \). We use the notation of Chapter 2 of [8] and apply Theorem 2.9, p. 94.

We choose the Schreier system of representatives \(1, x_1, \ldots, x_t^{p-1} \) in case (i) and \(1, a_1, \ldots, a_j^{p-1} \) in case (ii), and carry out the tedious eliminations of generators and relations to obtain the desired result. We note that \(h \) acts on elements of \(M \) by conjugation by \(x_1^q \) or \(a_1^q \), where \(q \) is the integer which satisfies \(\phi(x_i)^q = h \) or \(\phi(a_i)^q = h \).

To simplify the notation we make the following substitution at the end of the calculation for case (i). Let \(j_0 \) be \(qj \) reduced modulo \(p \). Set \(h^i(A_w) = \)}
$S_{(g_0^p, \alpha_\pi)}$ and $h^j(B_w) = S_{(g_0^p, \alpha_\pi)}$ for $w = 1, \ldots, g_0$ and $j = 0, \ldots, p - 1$. Also we set $h^i(X_i) = S_{(g_0^p, \alpha_\pi)}$ for $i = 3, \ldots, t$ and $j = 0, \ldots, p - 2$. A similar substitution is made in case (ii).

To prove part (iii), recall that $W_0 = W/H$. Let \hat{W}_0 be W_0 with the images of the branch points removed and let \hat{W} be W with the fixed points of h removed. Then $\pi_1(\hat{W}_0)$ has presentation

$$\left\langle \alpha_1, \ldots, \alpha_{g_0^p}, \beta_1, \ldots, \beta_{g_0^p}, \delta_1, \ldots, \delta_{t-1}, \delta_t \prod_{i=0}^{g_0} [\alpha_i, \beta_i] = 1 \right\rangle. \quad (2)$$

$\pi_1(W)$ and $\pi_1(W_0)$ are both isomorphic to quotients of $\pi_1(\hat{W}_0)$. We may assume that the homology classes of the images of $\alpha_1, \ldots, \alpha_{g_0^p}, \beta_1, \ldots, \beta_{g_0^p}$ on W_0 form a canonical homology basis consisting of simple curves, so that

$$\alpha_i \times \beta_i = \delta_{ij}, \quad \alpha_i \times \alpha_j = 0, \quad \text{and} \quad \beta_i \times \beta_j = 0 \quad \text{for each } i \text{ and } j. \quad (3)$$

If M is the defining subgroup of the covering $\hat{W} \to \hat{W}_0$, one can perform a Schreier-Reidemeister calculation for M and $\pi_1(W)$. Let $\hat{\phi}$ be the corresponding homomorphism. We make the same assumptions on ϕ as we did on ϕ. Fix a base point p on W. Let p_k be the end point of the lifting of δ^k_1 with initial point p. Following the notation of [8], $S_{y,c} = yc^{-1}$, where yc is the coset representative of yc. If $\hat{\phi}(\gamma) = 1$, the homology class of $S_{\delta^k_1}$ is just that of the lifting of γ with initial point p_k. Note that for a smooth covering any two liftings of a simple curve either coincide or are disjoint. In case (ii), of course, we replace δ_1 by α_1 and we notice that $S_{\delta^k_1, \alpha_1}$ is just the lifting of α_1^k. Using the intersection numbers from (3) and the fact that two homology classes have intersection number zero if they contain disjoint curves, one can compute intersection numbers for curves in M of the form $S_{y,c}$ whenever $c = \alpha_1, \ldots, \alpha_{g_0^p}$ or $\beta_1, \ldots, \beta_{g_0^p}$ and y is either δ^k_1 or α_1^k for some integer k.

M is the quotient of \hat{M} under a homomorphism which sends S_{y,α_1} to $h^{\delta^k_1}(A_1)$ and S_{y,β_1} to $h^{\delta^k_1}(B_1)$ except that when $t = 0$, the homomorphism sends $S_{\alpha_1^{-1}, \alpha_1}$ to A_1. Here in case (i), $\hat{\phi}(\delta_1) = h^s$, and in case (ii), $\hat{\phi}(\alpha_1) = h^s$. The intersection properties follow from this fact.

4. THE ACTION OF h ON $H_1(W, \mathbb{Z})$

Definition 1. An integral homology basis for W is said to be adapted to h if for every curve γ in the basis either

(i) $h^j(\gamma)$ is in the basis for all $j = 0, \ldots, p - 1$, or
(ii) $h^j(\gamma)$ is in the basis for all $j = 0, \ldots, p - 2$ and $h^{p-1}(\gamma) = \sum_{i=0}^{p-2} - h^s(\gamma)$,
or

\[(iii) \, \gamma = h^k(\delta), \] where \(k \) is an integer \(0 < k < p - 2 \) and \(\delta \) satisfies (ii).

Let \(n \) be any positive integer. We set

\[nH = \{ \gamma \in H_1(W,Z) | \gamma = n\delta \ \text{for some} \ \delta \in H_1(W,Z) \} \]

and

\[C(n,h) = \{ \gamma \in H_1(W,Z) | \gamma - h(\gamma) \ \text{is in} \ nH \}. \]

Note that both \(nH \) and \(C(n,h) \) are subgroups of \(H_1(W,Z) \).

Remark. Let \(trh \) denote the trace of the action of \(h \) on the first homology group. We see that a homology basis adapted to \(h \) will contain precisely \(-(p-1)(trh) \) curves of type (iii) and \(2g + (p-1)(trh) \) curves of type (i).

Theorem 2. If \(h \) is an automorphism of a compact surface \(W \) of genus \(g > 2 \) and if the order of \(h \) is a prime \(p \neq 1 \), then there exists a homology basis adapted to \(h \).

Proof. The relation \(R \) of Theorem 1 in each case lies in the commutator subgroup of \(\pi_1(W) \). Thus the homology classes of the generators for \(\pi_1(W) \) which are given in Theorem 1 will form an integral homology basis. The basis is obviously adapted to \(h \).

For the rest of this paper when we refer to the homology basis adapted to \(h \), we will mean the one obtained from Theorem 1.

Remark. If \(t \neq 0 \), the matrix of the action induced by \(h \) on this basis can be written as \(2g_0 + t - 2 \) blocks along the diagonal, \(2g_0 \) of which are \(p \times p \) permutation matrices with ones along the superdiagonal and a one in the lower left hand corner, and \(t - 2 \) of which are \((p-1) \times (p-1) \) matrices with ones along the superdiagonal, every entry in the last row \(-1\), and zeros elsewhere. A similar statement holds when \(t = 0 \).

Corollary 1. Let \(h \) be an automorphism of prime order \(p \neq 1 \) on a compact surface of genus \(g > 2 \). Then there is a homology basis containing no curve in \(C(n,h) \) for any \(n \geq 3 \).
Proof. If \(t \) is positive, this follows directly from Theorem 2. If \(t = 0 \), replace \(A_1 \) by \(A_1 + A_2 \) and \(B_1 \) by \(B_1 + B_2 \). The Riemann-Hurwitz relation assures that \(g_0 \geq 2 \) if \(g \geq 2 \) and \(t = 0 \).

We fix some additional notation.

For any curve \(A \), let \(\{ A \} = A \) if \(h(A) = A \), and let \(\{ A \} = A + h(A) + \cdots + h^{p-1}(A) \) otherwise. For any curve \(A \), set \([A] = \sum_{i=0}^{p-2}(j+1)h^j(A) \).

Lemma 1. Let \(\gamma \) be any curve in \(H_1(W, \mathbb{Z}) \). Then \(h(\gamma) \equiv \gamma \) if and only if \(\gamma = \sum_{i=1}^{g_0} (n_i(A_i) + m_i(B_i)) \) for some integers \(n_i \) and \(m_i \).

Proof. Write \(\gamma \) as an integral combination of the basis adapted to \(h \), apply \(h \), and equate coefficients.

Corollary 2 (Accola [1]). Let \(h \) be an automorphism on a compact surface of genus \(g \geq 2 \). Assume there are four independent closed curves \(C_1, C_2, C_3, \) and \(C_4 \) with \(C_1 \times C_2 = 1, C_2 \times C_4 = 1, \) and \(C_4 \times C_1 = 0 \) if \(i+j \equiv 1 \pmod{2} \). Suppose that \(h(C_i) = C_i \) for each \(i \). Then \(h \) is the identity.

Proof. We let \(n \) be the order of \(h \). Assume \(n \neq 1 \). Then the main steps in the proof of the theorem are to show that for a compact surface (1) if \(t \neq 0 \) and \(n \) is prime, then \(h(A) \equiv A \) and \(h(B) \equiv B \) for any two curves \(A \) and \(B \) only if \(A \times B \equiv 0 \pmod{n} \), and (2) if \(t = 0 \) and \(n \) is prime, then there is at most one such pair of curves \(A \) and \(B \) with \(h(A) \equiv A \), \(h(B) \equiv B \), and \(A \times B = 1 \). These two facts follow from Lemma 1 and Theorem 1, part (iii). The proof of (1) is direct. To see (2), assume there are four such curves. Let \(C_i = Y_i + a_i A_i + b_i B_i, C_2 = Y_2 + c_i A_i + d_i B_i, C_3 = Y_3 + e_i A_i + f_i B_i; \) and \(C_4 = Y_4 + g_i A_i + k_i B_i \). Here the \(Y \)'s are linear combinations of the \(\{ A_i \} \) and the \(\{ B_i \} \), where \(i = 2, \ldots, g_0 \). Using the intersection numbers for the \(C_i \) curves with each other and the fact that \(Y_i \times Y_i \equiv 0 \pmod{n} \), we obtain the following congruences modulo \(n \): \(af - eb \equiv 1 \equiv ck - d \). Also \(ad - bc \equiv ak - gb \equiv cf - de \equiv ek - fg \equiv 0 \). Then \(k(ad - bc) \equiv d(ak - bg) \equiv 0. \) Thus \(bcd - kbc \equiv 0 \). Since \(gd - kc \equiv -1 \), \(b \equiv 0 \). Similarly we can conclude \(f \equiv 0 \). This contradicts \(af - eb \equiv 1 \). Thus \(n = 1 \).

Lemma 2. Let \(\gamma \) be any curve in \(H_1(W, \mathbb{Z}) \). (i) Assume that \(p \) and \(n \) are relatively prime or \(t = 0 \). Then \(\gamma \) is in \(C(n, h) \) if and only if

\[
\gamma = \sum_{i=0}^{g_0} (m_i(A_i) + n_i(B_i)) + n\delta,
\]

where \(m_i \) and \(n_i \) are integers and \(\delta \) is in \(H_1(W, \mathbb{Z}) \). (ii) Assume that \(p = n \)
and \(t > 0 \). Then \(\gamma \) is in \(C(n, h) \) if and only if

\[
\gamma = \sum_{i=0}^{g_0} \left(m_i (A_i) + n_i (B_i) \right) + \sum_{i=3}^{t} r_i [X_i] + p \delta,
\]

where \(m_i, n_i \) and \(r_i \) are integers and \(\delta \) is in \(H_1(W, Z) \).

Proof. Write \(\gamma \) as in integral linear combination of the basis adapted to \(h \), and equate coefficients modulo \(n \).

Since \(nH \) is a normal subgroup, we can form the factor groups \(H_1(W, Z)/nH \) and \(C(n, h)/nH \). The first factor group is isomorphic to \((Z_n)^{2g}\) and has order \(n^{2g} \).

Theorem 3. If \(h \) is an automorphism of prime order \(p \neq 1 \) on a compact surface of genus \(g \geq 2 \), then \(C(n, h)/nH \) is isomorphic to \((Z_n)^m\), where

(i) \(m = 2g_0 \) if \(p \) and \(n \) are relatively prime or \(t = 0 \), and

(ii) \(m = 2g_0 + t - 2 \) if \(p = n \) and \(t > 0 \).

Here, of course, \(t \) is the number of fixed points of \(h \) and \(g_0 \) is the genus of the factor surface.

Proof. This follows directly from Lemma 2.

Since \(nH \) is a subgroup of \(C(n, h) \), the index of \(C(n, h)/nH \) in \(H_1(W, Z)/nH \) is equal to the index of \(C(n, h) \) in \(H_1(W, Z) \). Theorem 3 can be reformulated as

Theorem 4. Let \(h \) be an automorphism of prime order \(p \neq 1 \) on a compact surface of genus \(g \geq 2 \). Then the index of \(C(n, h) \) in \(H_1(W, Z) \) is

(i) \(n^{2g - 2g_0} \) if \(n \) and \(p \) are relatively prime or \(t = 0 \), and

(ii) \(n^{2g - 2g_0 - 1 + t} \) if \(p = n \) and \(t > 0 \).

Here \(t \) is the number of fixed points of \(h \) and \(g_0 \) the genus of the factor surface.

An immediate consequence of Theorem 3 and 4 is

Theorem 5. Let \(h \) be an automorphism of prime order \(p \neq 1 \) of a compact surface of genus \(g \geq 2 \). Then a homology basis for the surface can contain at most \(m \) elements of \(C(n, h) \), where \(m = 2g_0 \) if \(p \) does not divide \(n \) or \(t = 0 \) and \(m = 2g_0 + t - 2 \) if \(p = n \) and \(t > 0 \). Here \(t \) is the number of fixed points of \(h \), and \(g_0 \) is the genus of the factor surface.
Proof. Curves in a basis are primitive. If some basis contains q curves in $C(n,h)$, then the order of $C(n,h)/nH$ is at least n^q.

Corollary 3 (Grothendieck and Serre [4]; Earle [2]). If h is an automorphism of a compact surface W of genus $g > 2$ and h induces the identity on $H_1(W,Z/nZ)$ for some integer $n > 3$, then h is the identity.

Proof. We first assume that n is prime. Also it suffices to prove the theorem for all powers of h which are of prime order. The hypothesis of the theorem is that the index of $C(n,h)$ in $H_1(W,Z)$ is 1. Assume that h has prime order $p
eq 1$. Then set $2g = 2g_0$ or $2g = 2g_0 + t - 2$. Use the Riemann-Hurwitz relation along with the fact that $g > 2$ and $t < 2g + 2$ to show that either $p = 1$, so h is the identity, or $p = n = 2$, $g_0 = 0$, and $t = 2g + 2$. We can conclude that for any n, either h is the identity or n is a power of two and some power of h is the hyperelliptic involution. Since there is a homology basis with respect to which the matrix of the action of the hyperelliptic involution is minus the identity matrix, the latter case will never occur, because that power of h would not induce the identity on $H_1(W,Z/nZ)$ for any $n > 2$.

Corollary 4.

(i) Let h be an automorphism of a compact surface of genus $g > 2$. Assume that the order of h divides n and that p is the smallest prime dividing n. Assume that a homology basis for the surface contains more than $2(g-1)/p + 2$ curves A for which $h(A) = A$. Then h is the identity.

(ii) Let h be an automorphism of a compact surface of genus $g > 2$. If there is a homology basis for the surface containing more than $g + 1$ curves A for which $h(A) = A$, then h is the identity.

Proof.

(i) We may assume that h is of order n. We will show that for each prime q dividing n, $h^{n/q}$ is the identity. Let g_q be the genus of the factor surface obtained when identifying under the action of $h^{n/q}$. The Riemann-Hurwitz relation shows that $2(g-1)/q + 2 > 2g_q$. Let r be a prime not dividing n. By Theorem 5, a homology basis can contain at most $2g_q$ elements of $C(r,h^{n/q})$. By assumption, if $h^{n/q}$ fixes s curves in a homology basis, then $s > 2(g-1)/p + 2$. But $2(g-1)/p + 2 > 2(g-1)/q + 2 > 2g_q$.

Thus $s > 2g_q$, so $h^{n/q}$ is the identity.

(ii) Apply (i) with the fact that $p > 2$.

Remark. Using the methods of Takao Kato [6], Theorem 5 can be extended to open surfaces. The number \(m \) must be replaced by the number \(m \) for the compact case plus the number of boundary components.

I wish to thank David Patterson for reading this manuscript and suggesting some improvements.

REFERENCES

2. Clifford J. Earle, A fact about matrices, unpublished manuscript.
6. Takao Kato, Analytic self-mappings inducing the identity on \(H_1(W, \mathbb{Z}/m\mathbb{Z}) \), to be published.

Received 10 April 1976